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Abstract: In this study, a neural-network-based online learning algorithm is established to solve the finite horizon linear
quadratic tracking (FHLQT) problem for partially unknown continuous-time systems. An augmented problem is constructed
with an augmented state which consists of the system state and the reference trajectory. The authors obtain a solution
for the augmented problem which is equivalent to the standard solution of the FHLQT problem. To solve the augmented
problem with partially unknown system dynamics, they develop a time-varying Riccati equation. A critic neural network is
used to approximate the value function and an online learning algorithm is established using the policy iteration technique
to solve the time-varying Riccati equation. An integral policy iteration method and an online tuning law are used when the
algorithm is implemented without the knowledge of the system drift dynamics and the command generator dynamics. A
simulation example is given to show the effectiveness of the established algorithm.
1 Introduction

The purpose of optimal tracking control is to obtain an optimal
control law that minimises the performance index function and
forces the plant to track a desired trajectory. The objective in finite
horizon controller design is to seek a control law which satis-
fies such demands over a specified time interval. In the field of
optimal control theory [1, 2], the finite horizon linear quadratic
tracking (FHLQT) is an important problem. The FHLQT problem
tries to find a control law that not only minimises a predefined
performance index function, but also tracks a desired reference
trajectory and satisfies a final constraint condition over a speci-
fied time interval. The standard solution of the optimal control law
to the FHLQT problem can be obtained by solving two differential
equations backward using the exact system dynamics and boundary
conditions. This procedure is a backward-in-time scheme which
is not practical for real-time control and is generally an offline
method which requires the complete system dynamics. An ideal
FHLQT optimal control law using forward-in-time control design
and partial knowledge of the system dynamics can overcome this
weakness.

Dynamic programming (DP) [3] provides a principled method
for determining optimal control policies for dynamic systems.
Owing to the nature of exhaustive search, DP is often com-
putationally untenable and it also requires the accurate system
representation. Among the methods for solving the optimal con-
trol problems, adaptive DP (ADP) has received increasing attention
owing to its learning and optimal capabilities [4–16, 44]. Rein-
forcement learning (RL) is another computational method and it
can interactively find an optimal policy [17–20]. The ADP and RL
schemes relax the need for a complete and accurate model of the
process to be controlled in DP by using compact parameterised
function representations whose parameters are adjusted through
adaption. In the existing literature of ADP-based optimal control,
either policy iteration (PI) or value iteration is utilised to solve
the Bellman equation or the Hamilton–Jcaobi–Bellman equation.
Liu et al. [21] extended the PI algorithm to non-linear optimal
control problem with unknown dynamics and discounted cost func-
tion. Wang et al. [22] investigated a neural-network-based robust
optimal control design for a class of uncertain non-linear systems
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via ADP approach. Wang et al. [23] established a novel strategy
to design a robust controller for a class of continuous-time non-
linear systems with uncertainties. Yang et al. [24] developed an
adaptive RL-based solution for the infinite-horizon optimal control
problem of constrained-input continuous-time non-linear systems in
the presence of non-linearities with unknown structures. Vrabie and
Lewis [25] derived an integral RL method to obtain direct adaptive
optimal control for non-linear input-affine continuous-time systems
with partially unknown dynamics. Jiang and Jiang [26] presented
a novel PI approach for continuous-time linear systems with com-
pletely unknown dynamics. Lee et al. [27, 28] presented an integral
Q-learning algorithm for continuous-time systems without the exact
knowledge of the system dynamics. Liu et al. [29] developed an
online synchronous approximate optimal learning algorithm based
on policy iteration to solve a multiplayer non-zero-sum game with
unknown dynamics. Li et al. [30] established an integral RL (IRL)
algorithm to solve two-player zero-sum differential games with
completely unknown linear continuous-time dynamics. Liu et al.
[31] developed a novel online learning optimal control approach
to deal with the decentralised stabilisation problem for a class of
continuous-time non-linear interconnected systems. The existing
RL solutions to the optimal tracking [32–34] employ the dynamic
inversion concept to obtain the feedforward control term a priori
and find the optimal feedback control term using RL techniques.
Near optimal control schemes were developed in [35–37] for linear
and non-linear systems over finite horizon by iterative methodology
with partial knowledge of the system dynamics. Modares and Lewis
[38, 39] developed an online learning algorithm to solve the linear
quadratic tracking problem for partially-unknown continuous-time
systems. Modares and Lewis [40] extended the IRL technique to
solve the solution of the optimal tracking control problem with non-
linear partially-unknown constrained-input systems. Kiumarsi and
Lewis [41, 42] developed optimal control for linear and non-linear
discrete-time systems with unknown dynamics using reinforcement
Q-learning. Song et al. [43] proposed a new optimal tracking con-
trol method for a class of complex-valued non-linear systems based
on ADP.

Although ADP-based and RL-based algorithms are widely used
to solve the optimal regulator problem and the infinite horizon
optimal tracking problem, there are few results for the FHLQT
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problem. Compared with the infinite horizon optimal tracking
problem which has a time-invariant solution in [39], the FHLQT
problem is more challenging since the solution is time varying
and a terminal constraint has to be satisfied. The novelty of this
paper is that we establish an online learning algorithm to solve
the FHLQT problem with partially unknown system dynamics.
We formulate the FHLQT problem into an augmented problem
by defining the augmented state which consists of the system state
and the reference trajectory. To obtain the augmented solution with
partially unknown system dynamics, we develop a time-varying
Riccati equation. Using the PI technique, we establish an online
learning algorithm to solve the time-varying Riccati equation. To
implement this algorithm, a critic neural network (NN) is used to
approximate the value function. An integral PI method and a tun-
ing law are implemented to obtain the optimal control policy. The
effectiveness of the optimal tracking control law is demonstrated
by a simulation example.

The rest of this paper is organised as follows. In Section 2, we
present the FHLQT problem and its standard solution. In Section 3,
we formulate the FHLQT problem into a related augmented prob-
lem and obtain an augmented solution. In Section 4, we establish an
online learning algorithm using PI to obtain the augmented solution
with partially unknown system dynamics. In Section 5, a simulation
example is provided to illustrate the effectiveness of the derived
optimal tracking control law. In Section 6, we conclude the paper
with a few remarks.

2 Problem formulation

Consider the linear time-invariant continuous-time system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (1)

where x(t) ∈ R
n is the measurable system state vector, u(t) ∈ R

r

is the control input vector, y(t) ∈ R
m is the output vector and the

matrices A, B and C have appropriate dimensionalities. Let z(t) ∈
R

m be the desired output.
The objective of the FHLQT problem is to find the optimal

control policy u∗ to control system (1) in such a way that the
system output y(t) tracks the desired output z(t) as close as possible
during the interval [t0, tf ] with minimum expenditure of control
effort. For this, we define the error vector as

e(t) = z(t) − y(t)

and choose the value function as

V (t) = 1

2
eT(tf )Fe(tf )

+ 1

2

∫ tf

t

[
eT(τ )Qe(τ ) + uT(τ )Ru(τ )

]
dτ (2)

where t ∈ [t0, tf ] and tf is the fixed final time. In (2), F ∈
R

m×m, Q ∈ R
m×m and R ∈ R

r×r are all positive definite symmetric
matrices. We call eT(t)Qe(t) + uT(t)Ru(t) is the utility function.

The standard solution of optimal control u∗ to the FHLQT
problem is given as [1]

u∗(t) = −R−1BTP(t)x∗(t) + R−1BTg(t) (3)

where x∗(t) is the optimal system state, P(t) and g(t) can be
obtained by solving the matrix differential Riccati equation (DRE)
and the non-homogeneous vector differential equation, respectively

Ṗ(t) = −P(t)A − ATP(t) + P(t)BR−1BTP(t) − CTQC

ġ(t) = −
[
A − BR−1BTP(t)

]T
g(t) − CTQz(t) (4)

with the terminal conditions P(tf ) = CTFC and g(tf ) = CTFz(tf ).
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Substituting the optimal control policy (3) into the system
dynamics (1), we can obtain that the optimal state x∗(t) satisfies

ẋ∗(t) =
[
A − BR−1BTP(t)

]
x∗(t) + BR−1BTg(t)

with initial condition x(t0) = x0. Using the optimal state, the
optimal value function V ∗(t) can be represented as

V ∗(t) = 1

2
x∗T(t)P(t)x∗(t) − x∗T(t)g(t) + 1

2
h(t)

where h(t) is the solution of

ḣ(t) = gT(t)BR−1BTg(t) − zT(t)Qz(t)

with the terminal condition h(tf ) = zT(tf )Fz(tf ).
By solving the differential equations (4) backward using the

boundary conditions, we can obtain the standard solution of the
FHLQT problem. Once the system dynamics, reference trajectory
and the value function are specified, we can independently compute
P(t) and g(t) before the system operates in the forward direction
from its initial condition.

Remark 1: The feedback and feedforward parts of the control input
are calculated in a backward-in-time manner which is not practi-
cal for real-time control. The standard solution described in this
section is a kind of offline methods which require the complete
system dynamics. To obtain the time-varying control input online
with partial knowledge of the system dynamics, we construct an
augmented problem and establish an online learning algorithm.

3 Augmented FHLQT problem and the
augmented solution

In this section, we formulate the FHLQT problem into a related
augmented problem represented by the augmented state which is
made up of the system state and the reference trajectory. The aug-
mented solution is derived using the complete system dynamics.
The equivalence between the augmented solution and the standard
solution is provided.

3.1 Augmented FHLQT problem

We consider the reference trajectory z(t) which is generated by the
following linear command generator system

ż(t) = Dz(t)

where D is a constant matrix with initial condition z(t0) = z0.
The command generator can generate many useful reference tra-
jectories, such as step signals, sinusoidal waveforms and damped
sinusoids.

Lemma 1: The FHLQT problem described in Section 2 can be
transformed to an augmented problem with a quadratic value
function.

Proof: The augmented system dynamics can be described as

Ẋ (t) =
[

A 0

0 D

]
X (t) +

[
B

0

]
u(t)

= MX (t) + Nu(t) (5)

where X (t) =
[
x(t)T, z(t)T

]T = [x1, x2, . . . , xl]T ∈ R
l is the

augmented system state. We set l = n + m.
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Using the augmented system state, the first term of the value
function (2) can be rewritten as

1

2
eT(tf )Fe(tf ) = 1

2
[z(tf ) − Cx(tf )]TF[z(tf ) − Cx(tf )]

= 1

2
X T(tf )[−C Im]TF[−C Im]X (tf )

= 1

2
X T(tf )L

TFLX (tf )

where L = [−C, Im], and Im denotes the m × m identity matrix.
The second term of the value function (2) can be rewritten as

1

2

∫ tf

t

[
eT(τ )Qe(τ ) + uT(τ )Ru(τ )

]
dτ

= 1

2

∫ tf

t

[
[z(τ ) − Cx(τ )]TQ[z(τ ) − Cx(τ )] + uT(τ )Ru(τ )

]
dτ

= 1

2

∫ tf

t

[
X T(τ )LTQLX (τ ) + uT(τ )Ru(τ )

]
dτ

On the basis of the above conclusions, the value function (2) with
quadratic form can be rewritten as

V (x(t), t) = 1

2
X T(tf )HX (tf )

+ 1

2

∫ tf

t

[
X T(τ )WX (τ ) + uT(τ )Ru(τ )

]
dτ (6)

where H = LTFL, W = LTQL. This completes the proof. �

3.2 Augmented FHLQT solution

In this subsection, we will derive the augmented solution for the
augmented problem according to [1]. A theorem is presented to
demonstrate the equivalence between the augmented solution and
the standard solution.

Using the definition of the Hamiltonian along with the aug-
mented system (5) and the value function (6), we formulate the
Hamiltonian as

H(X (t), u(t), λ(t)) = 1

2
X T(t)WX (t)

+ 1

2
uT(t)Ru(t) + λT(t)[MX (t) + Nu(t)]

where λ(t) is the costate vector of l-order. For notation sim-
plicity, we use (·)∗ to represent that the functions between
the parenthesis are optimal ones. For instance, (∂H/∂u)∗ =
∂H(X ∗(t), u∗(t), λ∗(t))/∂u∗(t). Differentiating the Hamiltonian
with respect to control u, we can obtain the optimal control u∗(t)
using the control relation as

(
∂H
∂u

)
∗

= 0 ⇒ Ru∗(t) + N Tλ∗(t) = 0

leading to

u∗(t) = −R−1N Tλ∗(t) (7)

The optimal state and optimal costate equations can be repre-
sented as

Ẋ ∗(t) = +
(

∂H
∂λ

)
∗

⇒ Ẋ ∗(t) = MX ∗(t) + Nu∗(t)

λ̇∗(t) = −
(

∂H
∂X

)
∗

⇒ λ̇∗(t) = −WX ∗(t) − M Tλ∗(t)
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We substitute the optima control (7) in the above state and costate
equations and obtain a canonical system, also called Hamiltonian
system as [

Ẋ ∗(t)
λ̇∗(t)

]
=
[

M −NR−1N T

−W −M T

][
X ∗(t)
λ∗(t)

]
(8)

The general boundary condition at optimal manner is produced
here as

λ∗(tf ) =
(

∂V (t)

∂x(tf )

)
∗

=
(

∂[ 1
2 X T(tf )HX (tf )]

∂X (tf )

)
∗

= HX ∗(tf ) (9)

To formulate a closed-loop optimal control, that is, to obtain the
optimal control u∗(t) which is a function of the costate λ∗(t) as
seen from (7), as a function of the state X ∗(t), we examine the
terminal condition on λ∗(t) given by (9). This in fact relates the
costate in terms of the state at the final time tf . Similarly, we can
connect the costate with the state for the complete interval [t0, tf ].
We assume a transformation

λ∗(t) = S(t)X ∗(t) (10)

where S(t) is a positive definite symmetric matrix to be determined
and is called the Riccati coefficient matrix. We can easily see that
with (10), the optimal control (7) becomes

u∗(t) = −R−1N TS(t)X ∗(t)

which is now a negative feedback of the optimal state X ∗(t).
Differentiating (10) with regard to time t, we obtain

λ̇∗(t) = Ṡ(t)X ∗(t) + S(t)Ẋ ∗(t) (11)

Using the optimal control (7), the state and costate systems (8),
and the transformation (10), we obtain

Ẋ ∗(t) = MX ∗(t) − NR−1N TS(t)X ∗(t)

λ̇∗(t) = −WX ∗(t) − M TS(t)X ∗(t) (12)

Substituting the state and costate relations (12) in (11), we have

− WX ∗(t) − M TS(t)X ∗(t) = Ṡ(t)X ∗(t)

+ S(t)
[
MX ∗(t) − NR−1N TS(t)X ∗(t)

]
⇒
[
Ṡ(t) + S(t)M + M TS(t) + W − S(t)NR−1N TS(t)

]
X ∗(t) = 0

(13)

The relation (13) should be satisfied for all time t ∈ [t0, tf ] and for
any choice of the initial state X ∗(t0). Also, S(t) is not dependent
on the initial state and it follows that (13) should hold for any value
of X ∗(t). This clearly means that the Riccati coefficient matrix S(t)
should satisfy the matrix differential equation

Ṡ(t) + S(t)M + M TS(t) + W − S(t)NR−1N TS(t) = 0

This is the matrix differential equation of the Riccati type, and it is
often called the matrix DRE. The matrix DRE can also be written
in an equivalent form as

Ṡ(t) = −S(t)M − M TS(t) − W + S(t)NR−1N TS(t) (14)

Comparing the boundary condition (9) and the Riccati transforma-
tion (10), we have the terminal condition on S(t) as

λ∗(tf ) = S(tf )X
∗(tf ) = HX ∗(tf ) ⇒ S(tf ) = H

Before we summarise the solution for the augmented problem,
a lemma which makes the value function be a simpler form is
presented.
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Lemma 2: The optimal value function for the augmented system
(5) can be represented as

V ∗(X ∗(t), t) = 1

2
X ∗T(t)S(t)X ∗(t) (15)

Proof: For convenience, we omit the optimal symbol ‘∗’ during
the proof procedure. We note that

∫ tf

t

d

dτ

[
1

2
X T(τ )S(τ )X (τ )

]
dτ = −1

2
X T(t)S(t)X (t)

+ 1

2
X T(tf )S(tf )X (tf )

Substituting (1/2)X T(tf )S(tf )X (tf ) into the value function (6), we
obtain

V (X (t), t) = 1

2
X T(t)S(t)X (t)

+ 1

2

∫ tf

t

[
X T(τ )WX (τ ) + uT(τ )Ru(τ )

+ d

dτ

[
X T(τ )S(τ )X (τ )

] ]
dτ

= 1

2
X T(t)S(t)X (t) + 1

2

∫ tf

t

[
X T(τ )WX (τ )

+ uT(τ )Ru(τ ) + Ẋ T(τ )S(τ )X (τ )

+ X T(τ )Ṡ(τ )X (τ ) + X T(τ )S(τ )Ẋ (τ )
]

dτ

Now, using (8) for the optimal state X ∗(t) and the optimal control
u∗(t), we obtain

V (X (t), t) = 1

2
X T(t)S(t)X (t) + 1

2

∫ tf

t
X T(τ )

[
W + M TS(τ )

+ S(τ )M − S(τ )NR−1N TS(τ ) + Ṡ(τ )
]
X (τ ) dτ

Finally, using the matrix DRE (14), the integral part becomes zero.
We obtain

V ∗(X ∗(t), t) = 1

2
X ∗T(t)S(t)X ∗(t)

This completes the proof. �

We summarise the procedure for solving the augmented FHLQT
problem as follows.

Step 1: Solve the matrix DRE

Ṡ(t) = −S(t)M − M TS(t) − W + S(t)NR−1N TS(t)

with the terminal condition S(tf ) = H .
1794
Step 2: Solve the optimal augmented state Ẋ ∗(t) from

Ẋ ∗(t) =
[
M − NR−1N TS(t)

]
X ∗(t)

with initial condition X (t0) = X0.

Step 3: Obtain the optimal control u∗(t) as

u∗(t) = −R−1N TS(t)X ∗(t)

Step 4: Obtain the optimal value function as

V ∗(X ∗(t), t) = 1

2
X ∗T(t)S(t)X ∗(t)

Now we introduce a theorem to testify the equivalence between
the augmented solution and the standard solution.

Theorem 1: The solution of the FHLQR problem for the augmented
system is the same as the standard solution described in Section 2.

Proof: We rewrite the Riccati coefficient matrix S(t) as

S(t) =
[

S11(t) S12(t)

S21(t) S22(t)

]

where S11(t) ∈ R
n×n, S22(t) ∈ R

m×m, S12(t) and S21(t) have
appropriate dimensions.

Substituting S(t) into the matrix DRE (14), we obtain (see (16))

Dealing with the terminal condition of S(t), we obtain[
S11(tf ) S12(tf )

S21(tf ) S22(tf )

]
=
[−CT

Im

]
F
[−C Im

]

=
[

CTFC −CTF

− FC F

]
(17)

For S11(t), we have

Ṡ11(t) = −S11(t)A − ATS11(t) − CTQC

+ S11(t)BR−1BTS11(t)

S11(tf ) = CTFC

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⇒ S11(t) = P(t)

Now we consider the optimal control u∗(t) for the augmented
system

u∗(t) = −R−1N TS(t)X ∗(t)

= −R−1[BT 0
] [ S11(t) S12(t)

S21(t) S22(t)

][
x∗(t)

z(t)

]

= −R−1BTS11(t)x
∗(t) − R−1BTS12(t)z(t)
[
Ṡ11(t) Ṡ12(t)

Ṡ21(t) Ṡ22(t)

]
= −

[
S11(t) S12(t)

S21(t) S22(t)

][
A 0

0 D

]
−
⎡
⎣AT 0

0 DT

⎤
⎦
[

S11(t) S12(t)

S21(t) S22(t)

]
−
[−CT

Im

]
Q
[−C Im

]

+
[

S11(t) S12(t)

S21(t) S22(t)

][
B

0

]
R−1 [BT 0

] [ S11(t) S12(t)

S21(t) S22(t)

]

=⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ11(t) = −S11(t)A − ATS11(t) − CTQC + S11(t)BR−1BTS11(t)

Ṡ12(t) = −S12(t)D − ATS12(t) + CTQ + S11(t)BR−1BTS12(t)

Ṡ21(t) = −S21(t)A − DTS21(t) + QC + S21(t)BR−1BTS11(t)

Ṡ22(t) = −S22(t)D − DTS22(t) − Q + S21(t)BR−1BTS12(t)

(16)
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For the second term of this formulation, we assume that

f (t) = −S12(t)z(t)

Differentiating both sides of this equation and substituting (16) and
the relation S11(t) = P(t), we have

ḟ (t) = −Ṡ12(t)z(t) − S12(t)ż(t)

= −[−S12(t)D − ATS12(t) + CTQ

+ S11(t)BR−1BTS12(t)
]
z(t) − S12(t)Dz(t)

= ATS12(t)z(t) − CTQz(t) − S11(t)BR−1BTS12(t)z(t)

= −ATf (t) − CTQz(t) + S11(t)BR−1BTf (t)

= −
[
A − BR−1BTS11(t)

]T
f (t) − CTQz(t)

The terminal condition satisfies

f (tf ) = −S12(tf )z(tf ) = CTFz(tf )

Compared with the standard solution, we notice that the vector
f (t) = g(t). As a result, the optimal control u∗(t) is equal to the
standard solution u∗(t) presented in (3).

Substituting (16) and the relations S11(t) = P(t) and g(t) =
−S12(t)z(t) into the augmented optimal value function (15), we
have

V ∗(X ∗(t), t) = 1

2
X ∗T(t)S(t)X ∗(t)

= 1

2

[
x∗T(t) zT(t)

] [ S11(t) S12(t)

S21(t) S22(t)

][
x∗(t)

z(t)

]

= 1

2
x∗T(t)S11(t)x

∗(t) + 1

2
x∗T(t)S12(t)z(t)

+ 1

2
zT(t)S21(t)x

∗(t) + 1

2
zT(t)S22(t)z(t)

= 1

2
x∗T(t)S11(t)x

∗(t) − x∗T(t)g(t)

+ 1

2
zT(t)S22(t)z(t)

We assume that o(t) = zT(t)S22(t)z(t). Differentiating o(t) with
respect to t and substituting (16) and the relation g(t) =
−S12(t)z(t), we have

d

dt
[o(t)] = d

dt
[zT(t)S22(t)z(t)]

= żT(t)S22(t)z(t) + zT(t)Ṡ22(t)z(t) + zT(t)S22(t)ż(t)

= zT(t)DTS22(t)z(t) + zT(t)S22(t)Dz(t)

+ zT(t)
[−S22(t)D − DTS22(t) − Q

+ S21(t)BR−1BTS12(t)
]
z(t)

= zT(t)S21(t)BR−1BTS12(t)z(t) − zT(t)Qz(t)

= [S12(t)z(t)]TBR−1BT[S12(t)z(t)] − zT(t)Qz(t)

= gT(t)BR−1BTg(t) − zT(t)Qz(t)

The terminal condition satisfies

o(tf ) = zT(tf )S22(tf )z(tf ) = zT(tf )Fz(tf )

Compared with the standard solution, we notice that the vector
o(t) = h(t). The optimal value function V ∗(t) is equal to the stan-
dard one in Section 2. We have the conclusion that the solution
IET Control Theory Appl., 2015, Vol. 9, Iss. 12, pp. 1791–1801
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of the FHLQR problem for augmented system is the same as the
standard solution. This completes the proof. �

Remark 2: The fact that the matrix S(t) is symmetric for all t ∈
[t0, tf ], that is, S(t) = ST(t) can easily be shown. First, from the
formulation of the augmented problem we note that, the matrices
H , W and R are symmetric and therefore the matrix NR−1N T is
also symmetric. Now transposing both sides of the matrix DRE
(14), we notice that both S(t) and ST(t) are solutions of the same
differential equation and satisfy the same terminal condition (9).

Remark 3: Typically, we compute S(t) backward in an offline man-
ner and store them separately, and feed these stored values when
the system is operating in the forward direction in the interval
t ∈ [t0, tf ]. In this procedure, we need the exact knowledge of the
system matrices M and N to obtain the optimal control policy.

Remark 4: We do not need the controllability condition on the
system for solving the optimal feedback control. As long as we deal
with a finite time system, the contribution of those uncontrollable
states to the value function is still a finite quantity.

4 Online learning algorithm and its
implementation

In this section, we establish an NN-based online learning algorithm
to obtain the solution of augmented FHLQT problem with partially
unknown system dynamics. Compared with the infinite horizon
problem, a time-varying Riccati equation is developed. The online
algorithm consists of an online integral PI method and an online
tuning law for different time intervals of the time-varying Riccati
equation.

For the system dynamics (5), we consider a value function with
infinite horizon

�(t) = 1

2

∫∞

t
[X T(τ )WX (τ ) + uT(τ )Ru(τ )] dτ (18)

According to the optimal control theory [1], the optimal control
with respect to this value function is given by

μ∗(t) = −R−1N TS̄X (t) (19)

where S̄ ∈ R
l×l is a constant positive definite symmetric matrix,

which is the solution of the non-linear matrix algebraic Riccati
equation (ARE)

S̄M + M TS̄ + W − S̄NR−1N TS̄ = 0 (20)

Using the constant matrix S̄, the value function can be represented
in a quadratic form as

�(t) = 1

2
X T(t)S̄X (t) (21)

Now we consider the relationship between the solution of the
matrix DRE (14) and the solution of the ARE (20). We make
a simple time transformation τ = tf − t. Then, in τ scale we can
consider the final time tf as the ‘starting time’, S(tf ) as the ‘initial
condition’ and S̄ as the ‘steady-state solution’ of the matrix DRE.
As tf → ∞, the ‘transient solution’ is pushed to near tf which is
at infinity. Then for the beginning time interval, the matrix S(t)
becomes a steady state, that is, a constant matrix S̄ which is the
solution of the ARE (20), as shown in Fig. 1.

According to Fig. 1, the matrix S(t) in DRE becomes the
constant matrix S̄ during the steady-state interval. We give the
following Riccati equation to solve S(t) during the interval [t0, tf ]

S(t) =
{

S̄, t ∈ [t0, t1)

S(t), t ∈ [t1, tf ]
where t1 is the terminal time of the steady-state interval. We will
establish the online integral PI method to calculate the steady-state
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Fig. 1 Interpretation of the constant matrix S̄

interval solution S̄ and the online tuning law to solve the transient
interval solution S(t).

4.1 Solution for steady-state interval using online
integral PI

In this subsection, we discuss the implementation of the online
integral PI method during the steady-state interval. S̄ is the solution
of the ARE (20). To obviate the need for the complete knowledge
of the system dynamics, the IRL algorithm [25] can be used to
solve the ARE. The IRL is a PI method which uses an equivalent
formulation of the Lyapunov equation that does not involve the
system dynamics. Hence, it is central to the development of the
online integral PI method for continuous-time systems. To obtain
the IRL Bellman equation, noting that for time interval �t > 0,
the value function satisfies

�(t) = �(t + �t)

+ 1

2

∫ t+�t

t
[X T(τ )WX (τ ) + uT(τ )Ru(τ )] dτ

The expression (21) yields the IRL Bellman equation

X (t)TS̄X (t) − X T(t + �t)S̄X (t + �t)

=
∫ t+�t

t
[X T(τ )WX (τ ) + uT(τ )Ru(τ )] dτ (22)

The last term of (22) is known as the integral reinforcement.
Now we give a lemma to state the equivalence of the ARE (20)

and the IRL Bellman equation (22).

Lemma 3: The IRL Bellman equation (22) and the ARE (20) have
the same solution S̄.

Proof: Considering the IRL Bellman equation (22), the derivative
of the value function (21) along the trajectory of the system can
be calculated as

lim
�t→0

1

2

X T(t + �t)S̄X (t + �t) − X (t)TS̄X (t)

�t

= lim
�t→0

−1

2

∫t+�t
t

[
X T(τ )WX (τ ) + uT(τ )Ru(τ )

]
dτ

�t

= −1

2

[
X T(t)WX (t) + uT(t)Ru(t)

]
= �̇(t) (23)

The derivative of the value function (21) can also be calculated as

�̇(t) = d

dt

[
1

2
X (t)TS̄X (t)

]
= 1

2

[
Ẋ (t)TS̄X (t) + X (t)TS̄Ẋ (t)

]
(24)
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Equations (23) and (24) yield the following relation

Ẋ T(t)S̄X (t) + X T(t)S̄Ẋ (t) = −[X T(t)WX (t) + uT(t)Ru(t)] (25)

Substituting the optimal control (19) into (25), we have

[MX (t) + Nu(t)]TS̄X (t) + X (t)TS̄[MX (t) + Nu(t)]
= −X T(t)WX (t) − X T(t)S̄NR−1N TS̄X (t)

and after some basic manipulations, we obtain the following
equation

S̄M + M TS̄ + W − S̄NR−1N TS̄ = 0

which is the ARE in (20). The proof is completed. �

Equation (22) which is derived from (18) and (19) plays an
important role in relaxing the assumption of knowing the system
dynamics, since M does not appear in the equation. It means that
the algorithm can be implemented without knowing the system
dynamics M , but the knowledge of N is still required.

Remark 5: We solve the linear quadratic problem over infinite hori-
zon to obtain the ‘steady-state solution’ S̄ in this subsection. The
admissibility of control is required to guarantee the existence of
S̄. So an admissible control is needed to implement this online
integral PI method.

We will discuss the NN-based implementation of the established
online integral PI method. A critic NN is used to approximate the
value function. We assume that for the system, �(t) is represented
on a compact set � by single-hidden-layer NN as

�(t) = 1

2
X (t)TS̄X (t) = 1

2
sTχ(t)

where

sT = [s11, s12, . . . , s1l , s22, s23, . . . , sl−1,l , sll]
χT(t) = [x2

1, 2x1x2, . . . , 2x1xl , x2
2, . . . , 2xl−1xl , x2

l ]

sij is the ith-row and jth-column elements of S̄, s ∈ R
[{l(l+1)}/2]

is unknown bounded ideal weight parameters which will be
determined by the established integral PI method, and χ(t) ∈
R

[{l(l+1)}/2] is the continuously differentiable activation functions.
Since the ideal weights are unknown, the outputs of the critic NN is

�(i)(t) = 1

2
(ŝi)Tχ(t) = �(t) − εi (26)

where ŝi is the current estimated weight vector and εi ∈ R is the
bounded NN approximation errors.

Using the expression (26), (22) can be rewritten in a general
form

ψT
k ŝi = θk (27)

with

θk =
∫ t+k�t

t+(k−1)�t

[
X T(τ )WX (τ ) + u(i)T(τ )Ru(i)(τ )

]
dτ

ψk = χ(t + (k − 1)�t) − χ(t + k�t)

where the measurement time is from t + (k − 1)�t to t + k�t, �t
is the time interval. Since (27) is only a one-dimensional equation,
we cannot guarantee the uniqueness of the solution. Similar to [27],
we use the least-square-based method to solve the parameter vec-
tor over a compact set �. For any positive integer K , we denote
IET Control Theory Appl., 2015, Vol. 9, Iss. 12, pp. 1791–1801
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� = [ψ1, ψ2, . . . , ψK ] and  = [θ1, θ2, . . . , θK ]T. Then, we have
the following K-dimensional equation

�T ŝi = 

If �T has full column rank, the weight parameters can be solved by

ŝi = (��T)−1� (28)

Therefore we need to guarantee that the number of collected
points K satisfies K ≥ rank(�) = [{l(l + 1)}/2], which will make
(��T)−1 exist. The least squares problem in (28) can be solved
in real time by collecting enough data points generated from the
system.

4.2 Solution for transient interval using online tuning
law

In this subsection, we will derive an online tuning law to obtain
the solution S(t) of the DRE with the terminal condition S(tf ) = J
during time interval [t1, tf ]. We assume that the value function V (t)
is represented by single-layer NN as

V (t) = 1

2
X (t)TS(t)X (t) = 1

2
sT(t)χ(t)

We define the ideal time-varying weights of the critic network

sT(t) = [s11, s12, . . . , s1l , s22, s23, . . . , sl−1,l , sll]

where we omit the time t in the elements of S(t).
When we consider the time-varying function S(t) for the Bell-

man equation (22), there is a residual error caused by the estimated
value function. We assume that S(t) is a constant matrix during the
time interval [t, t + �t]. The residual error can be expressed as

e1(t) = X T(t + �t)S(t)X (t + �t) − X (t)TS(t)X (t)

+
∫ t+�t

t
[X T(τ )WX (τ ) + uT(τ )Ru(τ )] dτ

By defining the expressions

θ(t) =
∫ t+�t

t

[
X T(τ )WX (τ ) + uT(τ )Ru(τ )

]
dτ

ψ(t) = χ(t) − χ(t + �t)

the residual error e1(t) can be rewritten as

e1(t) = θ(t) − ψT(t)ŝ(t)

Next, the terminal constraint S(tf ) = H need to be satisfied. The
constraint error is given as

e2(t) = j − ŝ(t)

where j is defined as

jT = [j11, j12, . . . , j1l , j22, j23, . . . , jl−1,l , jll]

In order to minimise both the residual error and the constraint error,
we give the following online parameters tuning law

ŝ(t + �t) = ŝ(t) + α
ψ(t)e1(t)

ψT(t)ψ(t) + 1
+ α

e2(t)

(1 + tf − t)c (29)

where α is the learning rate satisfying 0 < α < 1, and c is a
predefined positive constant.
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Theorem 2: The parameters update law of the value function is
given by (29). Within the finite time interval t ∈ [t1, tf ], there exists
a positive constant learning rate 0 < α < 1 such that the value
function parameter estimation error is bounded.

Proof: We consider the following Lyapunov function candidate
given by

�(t) = s̃T(t)s̃(t)

where s̃(t) = s(t) − ŝ(t). Using this expression, we have

e1(t) = ψT(t)s(t) − ψT(t)ŝ(t) = ψT(t)s̃(t)

e2(t) = j − [s(t) − s̃(t)] = j − s(t) + s̃(t)

We define s̃(t + �t) = s(t) − ŝ(t + �t) and obtain

s̃(t + �t) = s̃(t) + ŝ(t) − ŝ(t + �t)

= s̃(t) − α
ψ(t)e1(t)

ψT(t)ψ(t) + 1
− α

e2(t)

(1 + tf − t)c

Then using online parameter tuning law (29), the first difference
of �(t) can be derived as

��(t) = s̃T(t + �t)s̃(t + �t) − s̃T(t)s̃(t)

= s̃T(t)s̃(t) − 2α
s̃T(t)ψ(t)e1(t)

ψT(t)ψ(t) + 1
− 2α

s̃T(t)e2(t)

(1 + tf − t)c

+ α2 ψT(t)ψ(t)e2
1(t)

[ψT(t)ψ(t) + 1]2
+ α2 eT

2 (t)e2(t)

(1 + tf − t)2c

+ 2α2 ψT(t)e1(t)e2(t)

[ψT(t)ψ(t) + 1](1 + tf − t)c
− s̃T(t)s̃(t)

≤ −α(1 − α)

[
ψT(t)ψ(t)

ψT(t)ψ(t) + 1
+ 1

(1 + tf − t)c

]
s̃T(t)s̃(t)

+ 2α2 ψT(t)ψT(t)s̃(t)[j − s(t) + s̃(t)]
[ψT(t)ψ(t) + 1](1 + tf − t)c

− 2α
s̃T(t)[j − s(t)]
(1 + tf − t)c

+ α2 [j − s(t)]T[j − s(t)] + 2[j − s(t)]T s̃(t)

(1 + tf − t)2c

≤ −α(1 − α)
( �

� + 1
+ �

)
s̃T(t)s̃(t) + 2α2 ‖j − s(t) + s̃(t)‖2

(1 + tf − t)c

where � = mint∈[t1,tf ][ψT(t)ψ(t)], � = [1/{[(1 + tf − t1)c}].
Since the learning rate α is selected as 0 < α < 1, the
first term of ��(t) is negative, and the second term
ϒ = 2α2[{‖j − s(t) + s̃(t)‖2}/{(1 + tf − t)c}] is bounded. Using
standard Lyapunov stability theory, the value function parameter
estimation error can be proven to be bounded with a bound which
is dependent upon initial condition of the system and the fixed final
time instant tf .

Assume that the initial value function parameter estimation error
is bounded such that ‖s̃(t1)‖2 ≤ �0. According to standard Lya-
punov stability theory, value function parameter estimation error
at time t can be expressed as

�(t) = ��(t) + ��(t − �t) + · · · + ��(t1) + �(t1)

=
Nt−1∑
i=0

��(t1 + i�t) + �(t1)

where

Nt =
⌈

t − t1
�t

⌉
, 
x�

is the ceiling operation represents the smallest integer not less than
x. Note that �t is a small sampling interval. The bound for the
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value function parameter estimation error �t can be expressed as

�t = ‖s̃(t)‖2 = �(t) =
Nt−1∑
i=0

��(t1 + i�t) + �(t1)

≤
Nt−1∑
i=0

[−β(1 − β)i�(t1)] +
Nt−1∑
i=1

[β(1 − β)i−1ϒ] + �(t1)

≤ −β
1 − (1 − β)Nt

β
�(t1) + �(t1) + β

1 − (1 − β)Nt−1

β
ϒ

≤ (1 − β)Nt �0 + [1 − (1 − β)Nt−1]ϒ

where β = α(1 − α) [[�/(� + 1)] + �]. Since 0 < α < 1, we
know 0 < β < 1. The value function estimation error �t is depen-
dent upon initial bound �0 and ϒ .

The proof is completed. �

We have already obtained the Riccati coefficient matrix S(t)
during the interval t ∈ [t0, tf ] using the online integral PI method
and the online tuning law. Next, we will describe the online learn-
ing algorithm which can be used to solve the augmented FHLQT
problem with partially unknown system dynamics.

Algorithm 1 Online learning algorithm
Part I: Steady-state interval

1: Give a small positive real number ε. Let i = 0 and start
with an initial S̄(0) which makes the control policy u(0)(t) be
admissible.

2: Policy evaluation:
On the basis of the Riccati coefficients S̄(i) and control policy
u(i)(t), solve the following Bellman equation for S̄(i+1)

X (t)TS̄(i+1)X (t) − X (t + �t)TS̄(i+1)X (t + �t)

=
∫ t+�t

t
[X T(τ )WX (τ ) + u(i)T(τ )Ru(i)(τ )] dτ

3: Policy improvement:
Update the control policy using

u(i+1)(t) = −R−1N TS̄(i+1)X (t)

4: If ‖S̄(i+1) − S̄(i)‖ ≤ ε, set t1 = t, obtain the steady-state solu-
tion, and go to Part II; else, set i = i + 1 and go to Step
2.

Part II: Transient interval
1: Start with S̄ when t = t1.
2: Policy evaluation:

On the basis of the Riccati coefficients online tuning law,
update S(t + �t) using

ŝ(t + �t) = ŝ(t) + α
ψ(t)e1(t)

ψT(t)ψ(t) + 1
+ α

e2(t)

(1 + tf − t)c

3: Policy improvement:
Update the control policy using

u(t + �t) = −R−1N TS(t + �t)X (t + �t)

4: Repeat Step 2 and Step 3 while t < tf .

Remark 6: This algorithm is a kind of PI algorithms which consist
of policy evaluation and policy improvement. For the two different
1798
time intervals, the policy evaluation is implemented using (22) and
(29), and the policy improvement is implemented using (19) where
the knowledge of system dynamics N is required. In [26], Jiang
and Jiang presented a novel approach for continuous-time linear
systems with completely unknown dynamics. Note that the method
can be used to avoid the knowledge of N .

Remark 7: The convergence of the optimal solution can be obtained
under the persistence of excitation (PE) condition. The PE condi-
tion can be satisfied by injecting a known probing noise into the
control input. As in [28], one can consider the effect of the noise
into the IRL Bellman equation to avoid affecting the convergence
of the learning process.

5 Simulation

In this section, we provide a simulation example to demonstrate
the effectiveness of the online learning algorithm. Compared with
the standard solution, the algorithm derived in Section 4 is imple-
mented online without the knowledge of M . We use this algorithm
to obtain the feedback control law and plot all the time histories
of optimal states and control.

We consider the following second-order example to illustrate
the linear quadratic tracking control. A second-order plant

ẋ1(t) = x2(t)

ẋ2(t) = −2x1(t) − 3x2(t) + u(t)

y(t) = x1(t) (30)

is to be controlled to minimise the following value function

V (t) = [e(tf )]2 +
∫ tf

t

(
[e(τ )]2 + 0.002[u(τ )]2

)
dτ (31)

The initial condition x(0) = [−0.5, 0]T. The final time tf is spec-
ified at 20 s and the final state x(tf ) is free. It is required to
keep the output y(t) close to the reference trajectory z(t) = cos t.
z(t) is generated by the command generator system ċ(t) = −c(t)i
where i2 = −1 with the initial value c(0) = 1. The value function
indicates that the state x1(t) is to be kept close to the reference
trajectory.

We identify the various matrices in the present tracking system
by comparing state (30) and the value function (31) with the cor-
responding (1) and (2), respectively, of the general formulation of
the problem described in Section 2, we obtain

A =
[

0 1

−2 −3

]
, B =

[
0

1

]
, C = [

1 0
]

F = 2, Q = 2, R = 0.004

According to the standard solution, we use complete system
dynamics to solve the following differential equations

Ṗ11 = 250P2
12 + 4P12 − 2

Ṗ12 = 250P12P22 − P11 + 3P12 + 2P22

Ṗ22 = 250P2
22 − 2P12 + 6P22

ġ1 = (250P12 + 2)g2 − 2 cos t

ġ2 = −g1 + (250P22 + 3)g2

with the terminal conditions P11(20) = 2, P12(20) = 0, P22(20) =
0, g1(20) = 2 cos(20) and g2(20) = 0, where

P(t) =
[

P11(t) P12(t)

P12(t) P22(t)

]
, g(t) =

[
g1(t)

g2(t)

]

IET Control Theory Appl., 2015, Vol. 9, Iss. 12, pp. 1791–1801
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Fig. 2 Standard solution of Riccati coefficients P(t)
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Fig. 3 Standard solution of system state x(t) and tracking error e(t)
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Fig. 4 Standard solution of the optimal control u(t)

Figs. 2–4 illustrate the evolutions of the Riccati coefficients, system
states and optimal control, respectively. It is clear that the state
x1(t) can track the reference trajectory.

Now we assume that the system drift dynamics and the com-
mand generator dynamics are unknown, that is, we cannot use the
knowledge of M when the online learning algorithm is applied.
Algorithms 1 is implemented online to solve the augmented
FHLQT problem. Compared with the augmented formulation (5)
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Fig. 5 Augmented solution of Riccati coefficients S(t)
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Fig. 6 Augmented solution of system state x(t) and tracking error e(t)
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Fig. 7 Augmented solution of system control u(t)

and (6), the corresponding matrices can be represented as

M =
⎡
⎣ 0 1 0

−2 −3 0
0 0 −i

⎤
⎦ , N =

⎡
⎢⎣

0

1

0

⎤
⎥⎦ , L = [−1 0 1

]

J =
⎡
⎢⎣

2 0 −2

0 0 0

−2 0 2

⎤
⎥⎦ = W , R = 0.004
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The 3 × 3 symmetric Riccati coefficient matrix S(t) can be repre-
sented as

S(t) =
⎡
⎢⎣

s11(t) s12(t) s13(t)

s12(t) s22(t) s23(t)

s13(t) s23(t) s33(t)

⎤
⎥⎦

The activation functions are chosen as

χT(t) = [x2
1, 2x1x2, 2x1x3, x2

2, 2x2x3, x2
3]

The weight parameters of the critic NN are represented as

sT(t) = [s11(t), s12(t), s13(t), s22(t), s23(t), s33(t)]

Using the online integral PI method, we solve the ‘steady-state
solution’ S̄ of the matrix DRE. To implement this algorithm, we
let the integer K = 6, the time period �t = 0.05 s and the initial
weights as s(0)T = [1, 0, 6, 0.1, 0.1, 1]. The least squares problem
is solved after six samples are acquired, and the weights of the critic
NN are updated every 0.3 s. It is clear that the weights approxi-
mately converge to the steady ones after six updates at t = 1.8 s in
Fig. 5.

To implement the online parameters tuning law, we let the time
period �t = 0.1 s, learning rate α = 0.6 and the constant c = 4. We
obtain the near optimal solution S(t) of the matrix DRE during the
time interval [1.8, 20] s. The system states and control are obtained
at the same time interval. Figs. 5–7 illustrate the evolutions of the
Riccati coefficients, system states and optimal control with partially
system dynamics. It is clear that using the derived algorithm the
state x1(t) can track the reference trajectory during the simulation.

6 Conclusion

A neural-network-based online learning algorithm was established
using PI to solve the FHLQT problem for partially unknown lin-
ear time-invariant continuous-time systems. On the basis of the
augmented system, the augmented solution which is equivalent to
the standard solution of the FHLQT problem was obtained. Com-
pared with the infinite horizon problem, the time-varying Riccati
equation was developed to obtain the augmented solution with par-
tially unknown system dynamics. The online learning algorithm
consists of an online integral PI method and an online tuning law
for different time intervals of the time-varying Riccati equation.
A simulation example was given to show the efficiency of the
proposed algorithm.
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