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a b s t r a c t

Image tag-ranking, the task to sort tags based on their relevance to the related images, has become a hot
topic in the field of multimedia. Most existing methods do not incorporate the tag-ranking order
information into the models, which is actually very important to solve the issue of image tag-ranking. In
this paper, by taking advantage of such important information, we propose a novel model which uses
images with ranked tag lists as its supervision information. In the proposed method, each ranked tag list
is decomposed into a number of image–tag pairs, all of which are pooled together for training a scoring
function. With this pairwise supervision, the model is able to capture the intrinsic ranking structures. In
addition, unsupervised data, namely images with unranked tag lists, is also integrated for digging the
binary order: relevant or irrelevant. By leveraging both the pairwise supervision and unsupervised
structural information, our model sufficiently exploits the tag relevance to images as well as the ranking
structures of tag lists. Extensive experiments are conducted on both image tag-ranking and tag-based
image search with three benchmark datasets: SUNAttribute, Labelme and MSRC, demonstrating the
effectiveness of the proposed model.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, Internet users are willing to share their per-
sonal information (such as blogs, videos and pictures) and enjoy the
information from others at the same time, which brings the prosperity
of social networks. In order to take advantage of the uploaded
information from users, the providers of social networks encourage
users to attach meaningful tags while uploading the associated
information. For example, when users share their pictures, system
may ask users to type some keywords (tags) or to choose some
recommended keywords that best describe the contents of their
pictures. By doing this, system can facilitate applications such as
image search and interests group recommendation. Actually, these
applications can be further improved by utilizing the carefully sorted
keywords. For instance, a user who loves cats may upload a picture
containing a cute cat walking in the wild, and he may attach the
keywords in a random order: “grass”, “tree”, “path”, “cat” and “sky”.
One interests group recommendation system that considers the order
of keywords is very likely to mis-categorize the user to the groups
such as “Nature Photography” by simply analyzing that the first three
keywords (“grass”, “tree”, “path”) are closely related to the “nature”,
which deviates from the real intention of the user. However, if the
uploaded keywords can be properly sorted before being fed into the

recommendation system, say “cat”, “path”, “grass”, “tree” and “sky”, it
is more likely to categorize the user to the “Cat Fans” group.

The goal of image tag-ranking is to sort tags according to their
relevance to the contents of the images. The issue of tag-ranking has
been investigated in [1], where the statistics of position distribution of
the most important tags is presented: for 1200 images with at least 10
tags randomly selected from Flickr,1 there are only less than 10% of the
images having their most relevant tags at the first place. Furthermore,
we also make an analogous analysis on the benchmark datasets, the
SUNAttribute [2], Labelme [3] and MSRC [4], which are used in the
experiments. Since each tag is assigned to a relevance level from 0 to
3, corresponding to irrelevant to the most relevant, we calculate the
average relevance levels of the top tags. In Fig. 1, it is obviously
observed that the original average relevance levels of the top tags are
lower than the optimal ones, which indicates that there are many
highly relevant tags that are not placed at the top positions.

By now, there have been some methods proposed for image tag-
ranking. Most of them, such as [1,5–7], are unsupervised methods.2 In
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practise, unsupervised data is much more than supervised data, which
makes researchers put lots of endeavor to utilize unsupervised
information. Since supervised data (the images with ranked tag lists)
is so limited that there are very few algorithms proposed based on it.
For example, [8,9] present a semi-supervised method and a purely
supervised method, respectively.

In this paper, a pairwise supervision based semi-supervised model
is proposed to address the issue of image tag-ranking (we name it
PSTR). In the literature, pairwise supervision is well studied in learning
to rank (L2R) techniques [10], which motivates the proposed model. It
addresses the ranking problem by viewing a ranked list as a number of
item pairs to preserve the relative ranking structure, which is mostly
ignored by the existing tag-ranking methods. By utilizing the pairwise
supervision, the proposed model will gain the global view of ranking
structure by decomposing the ranked tag lists into image–tag pairs.
Moreover, we also integrate the unsupervised information into our
model. The tags in unranked tag lists are deemed as weak ranking
information, since we can tell whether the tags are relevant or
irrelevant. So the proposed model is semi-supervised by using both
the pairwise supervision and unsupervised information. The main
contributions of our work are listed below:

� The idea of pairwise supervision is introduced into the pro-
posed model for image tag-ranking. The pairwise supervision
treats the tag lists as image–tag pairs—the items in the lists are
no longer viewed independently and have mutual interactions,
which makes the model capable of predicting the tag relevance
by considering all pairs in a list.

� We leverage the unsupervised data which is viewed as the weak
ranking information to facilitate the proposed model. The final
objective function in the semi-supervised model consists of two
components: pairwise supervision item and unsupervised item,
and it can be elegantly optimized with a closed-form solution.

� Two experiments (image tag-ranking and tag-based image
search) have been carried out to compare the proposed model
with state-of-the-art algorithms on three benchmark datasets.
The experimental results show that the proposed method can
produce better ranked tag lists.

The remainder of this paper is structured as follows. Section 2
briefly summarizes the related work. In Section 3, the motivation
deriving from L2R algorithms is first introduced. Then the pro-
posed model is described in detail. Extensive experiments are
shown in Section 4. Finally, the conclusions are drawn in Section 5.

2. Related work

The issue of image tag-ranking has attracted remarkable atten-
tions, and various methods have been proposed for it. Automatic

image annotation [11–15], which automatically assigns meaningful
and content-related tags to the corresponding images, provides
preliminary insights into this issue. These methods only generate
coarse tag lists for the untagged images. They do not consider the
orders of the tags. Whereas, image tag-ranking sorts tags in existing
tag lists. Following image annotation, tag refinement methods, such
as [16–18], are required for more precise image–tag association.
These methods are built upon image annotation, namely taking the
results from automatic image annotation as the initializations, and
subsequently explore which tags are more appropriate to be anno-
tated. One problem is that the initial tags may not be correctly
provided by image annotation methods, whereas in image tag-
ranking tags are all supposed to appropriately describe the images.

To address the issue of image tag-ranking, a number of
specifically designed methods have been proposed. As mentioned
in Section 1, they are divided into three categories, i.e., unsuper-
vised, semi-supervised and supervised methods.

Unsupervised methods: For tag-ranking, most methods, such as
[1,5–7], are designed in the unsupervised fashion. Ref. [1] is the
first attempt to address image tag-ranking problem. In [1], Liu
et al. assign initial relevance scores to the tags by using kernel
density estimation (KDE), and then perform a random walk based
refinement on a tag–tag similarity graph. Li et al. [5] propose to
learn the tag relevance by neighbor voting. The idea of [5] includes
two steps: (1) calculate the image nearest neighbors; (2) accumu-
late the tag votes within the top K neighbors. The method in [6]
assumes that in the view of an image, the image can be repre-
sented as a weighted combination of the relevant tags. And for a
tag, the tag can be expressed as a weighted combination of the
representative images. Then a image–tag correlation matrix is
learned under the criterion that two images with high similarity
are close in the tag view, and vice versa. The final tag relevance
scores are the elements in the image–tag correlation matrix.
Differently, Sun et al. [7] use commercial search engines as aux-
iliaries to collect images for each tag, and then a Bayesian based
model is proposed to estimate the initial relevance scores for the
tags by using the collected images. Finally, a random walk is
performed on the tag graph to refine the tag scores. To address the
issue of personalized tag recommendation, Zhao et al. [19] propose
a graph based ranking method, leveraging the benefit of tradi-
tional manifold ranking. This method can achieve good perfor-
mance to recommend tags for users. Thus, we can see that these
unsupervised methods rely on the tag relevance propagation via
visual similarity, but ignoring the ranking structure information
within the tag lists.

Semi-supervised methods: To our knowledge, [8] is the only
method in the semi-supervised fashion. The aim of this method is
to obtain a projection matrix that projects visual features to tag
relevance space. The supervised component is formulated as the
linear regression between the tag relevance scores and the
projected image visual features. The unsupervised component is
a regularizer that restricts the large relevance scores only appear-
ing for the tags that are annotated to the associated images.
Finally, it results in a quadratic programming problem. In our
view, a single linear projection cannot capture complicated rela-
tionships between visual feature space and tag relevance space,
and the tag-biased regularization is also not related to the inner
ranking structures among the tag lists.

Supervised methods: Lan et al. [9] propose a Max-Margin Rifled
Independence Model for tag-ranking. The main idea is that the
max-margin formalism with riffled independence factorization
proposed in [20] can perform structure learning. Therefore, this
model can predict the tag orders in the tag permutation space.

Besides the above methods, learning to rank (L2R) techniques
[10] have the potential to accomplish the task of image tag-
ranking. However, there is no existing methods utilizing L2R to

Fig. 1. Average relevance levels at the first position on SUNAttribute, Labelme
and MSRC.
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tackle the image tag-ranking issue. Some difficulties that prevent
researchers from directly applying L2R to tag-ranking will be
discussed in the next section, and we introduce the pairwise
supervision that originates from L2R techniques into the proposed
model for image tag-ranking.

3. Image tag ranking using pairwise supervision

In this section, the motivation, which derives from the pairwise
based L2R algorithms, is first described. Then, the pairwise super-
vision based semi-supervised model is proposed to address image
tag-ranking problem.

3.1. Motivation from learning to rank algorithms.

The proposed model is originally motivated by the pairwise
based learning to rank algorithms. To begin with, we introduce the
L2R algorithms and their difficulties to be applied to image tag-
ranking problem.

Without loss of generality, we take document retrieval as an
example to introduce the L2R algorithms. Assume that the training
data contains two sets: the query set Q and the document set D. Each
query qiAQ is associated with a document set Di ¼ fdi;1; di;2;…;

di;j;…; di;ni g and a relevance level set Yi ¼ fyi;1; yi;2;…; yi;j;…; yi;ni
g,

where ni is the number of documents for query qi. The related
relevance level set Yi depicts how relevant document di;j is related
to query qi, and each element yi;j in Yi is assigned to a nonnegative
integer (the larger, the more relevant). By now, the training set can be
represented as triads T ¼ fðqi;Di;YiÞgNi ¼ 1, where N is the number of
queries.

The goal of L2R is to learn a relevant level prediction function
f ðqi; di;jÞ by minimizing the empirical risk function

R̂ðf Þ ¼ 1
N

XN
i ¼ 1

L Fðqi;DiÞ; yi
� �

; ð1Þ

where Fðqi;DiÞ ¼ ½f ðqi; di;1Þ; f ðqi; di;2Þ;…; f ðqi; di;ni Þ�T , yi ¼ ½yi;1; yi;2;…;

yi;ni
�T is the vector form of Yi, Lð�Þ is the loss function to measure

the errors between the predicted relevance levels and the ground-
truth. Since L2R is feature based, namely a feature vector
xi;j ¼ ϕðqi; di;jÞ is generated based on each query–document pair
ðqi; di;jÞ, the relevant level prediction function f ðqi; di;jÞ ¼ f ðxi;jÞ
actually deals with the feature vectors rather than the raw
query–document pairs. There exist several methods, such as
BM25 [21] and PageRank [22], to generate the feature vectors for
the query–document pairs. The relevant level prediction function,
in most L2R algorithms, is defined as the linear model

f ðxi;jÞ ¼wTxi;j; ð2Þ
where w is the parameter to be learned.

Generally, based on the definitions of the loss function Lð�Þ, L2R
algorithms are divided into three categories: pointwise based,
pairwise based and listwise based methods. In pointwise based
L2R approaches, each query–document pair is processed indepen-
dently, and the ranking problem is simply viewed as classification
or regression problems. In pairwise based L2R approaches, the
training data is reconstructed into tuples: under the same query,
two query–document pairs form a tuple. When the first pair is
more relevant than the second, the formed tuple is positive,
otherwise it is negative. Ranking SVM [23] uses these tuples to
transform the ranking problem to pairwise classification. Listwise
based L2R approaches view the document ranking lists of each
query as instances in the learning procedure, rather than a single
document–query pair or a two-pair tuple. We focus on pairwise
supervision, in which the document ranking lists are decomposed
into a number of query–document pair tuples. In this way, the

inner ranking structure information is reflected by the relative
relationships in these tuples.

Although well studied and applied to many practical applica-
tions, it is difficult to directly use L2R for image tag-ranking. The
images and their associated tags are from two modalities, i.e.,
visual information and textual words, whereas the queries and the
documents belong to the same modality, i.e., text. Due to the
different modalities, it is hard to jointly represent the images and
the tags to form feature vectors for L2R algorithms. Joint subspace
learning [24] can be adopted here to learn a subspace for the
images and the tags, if the preliminary that the samples in two
modalities should be characterized as feature vectors is met.
However, the tags, usually in the form of a single word, are less
informative. It is unlikely to be extracted meaningful feature
vectors from the tags, which prevents us from using joint subspace
learning. Since the joint feature representations between the
images and the tags are difficult to obtain, the feature based linear
prediction model (2) is not suitable in this case. In view of the
above issues, L2R algorithms cannot be directly used to solve the
image tag-ranking problem. However, we can absorb the thought
of pairwise supervision in L2R into the proposed model.

3.2. Semi-supervised image tag ranking

We propose a model for image tag-ranking by using the
pairwise supervision which is significant in L2R algorithms.
On one hand, the relevance prediction function in our model is
similarity based, rather than feature based. Thus our model adopts
the superiority of the pairwise supervision while avoiding to
construct the joint feature representations of images and tags
compared with L2R algorithms. On the other hand, our model
incorporates the images with the unranked tag lists (unsupervised
information). Hence, it is semi-supervised.

3.2.1. Notations
Some notations are redefined in the scenario of image tag-

ranking. Suppose that the image set is X ¼ xif gNi ¼ 1. N is the
number of images and xi is the feature vector of the ith image.
The tag set is T ¼ ft1; t2; t3;…; tMg and M is the size of the
vocabulary. For each image xi, its associated tag indicator vector
is yiAf0;1gM . yi;j ¼ 0 means that the jth tag is absent for the ith
image, while yi;j ¼ 1 means the presence of the jth tag. Further-
more, assume that the first l images have ranked tag lists and the
remaining N� l images only have tag lists but without ranking. Let
riARM ði¼ 1;2;3;…; lÞ denote the tag relevance vector of the ith
image. ri;jAR in ri depicts how the jth tag is related to the ith
image (the larger, the more relevant). By now, the first l images
have both the tag indicator vectors and the tag relevance vectors,
but the last N� l images only have the tag indicator vectors. The
goal is to rank the tags of the last N� l images.

3.2.2. Pairwise supervision in image tag ranking
In this subsection, we introduce pairwise supervision in our model.

In the pairwise supervision based L2R algorithms, the ranked lists are
viewed as pair tuples that are fed into the learning procedure.
Incorporating pairwise supervision into the L2R algorithms is char-
acterized by designing specific loss functions. Thus, in order to utilize
pairwise supervision in the proposed model, we have to define a
pairwise based loss function.

First, for the supervised part, the tag relevance vectors rn are
transformed to the relative relation matrices CnARM�M by using
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the following criterion:

Cnði; jÞ ¼
1; rn;i4rn;j
�1; rn;iorn;j
0; rn;i ¼ rn;j

8><
>: ; i; j¼ 1;2;3;…;M; ð3Þ

in which Cnði; jÞ is the element of Cn in the ith row and jth column.
This process is shown in Fig. 2(a) and (b). Evidently, the tag
relevance vectors and the relative relation matrices can represent
the identical ranking order equivalently. Each element in Cn

describes the relative ranking positions of two tags with respect
to image xn (namely image–tag pairs), hence the entire relative
relation matrix Cn has the capability to capture the inner tag-
ranking structure. Subsequently, we define the predicted relative
relation matrices as follows:

Ĉnði; jÞ ¼ sgn f ðxn; tiÞ� f ðxn; tjÞ
� �

; ð4Þ
where f ðxn; tiÞ is the relevance prediction function for scoring the
image–tag pair (xn; ti), and sgnð�Þ is the sign function. Actually, we
do not care about the output values of the relevance prediction
function, but concern about the relative relations between these
values. For example, if ti is more relevant than tj, the only
requirement is f ðxn; tiÞ4 f ðxn; tjÞ, no matter what the real values
of f ðxn; tiÞ and f ðxn; tjÞ will be. According to the above transforma-
tions, the loss function is defined as

Lðf Þ ¼ �1
l

Xl
n ¼ 1

XM
i ¼ 1

XM
j ¼ 1

Cnði; jÞĈnði; jÞ: ð5Þ

When the two matrices Cn and Ĉn are identical, the loss value
reaches the minimum. Since the relative relation matrices leverage
the pairwise supervision, the proposed loss function (5) is
pairwise based.

To avoid using the feature based relevance prediction function,
we propose a similarity based relevance prediction function. As
mentioned before, forming joint feature representations of the
images and the tags is very difficult, and we only have the features
of the images. As a result, we define the relevance prediction
function as

f ðxn; tiÞ ¼ ðMsnÞi; ð6Þ
whereMARM�N is the image–tag correlation matrix to be learned,
snARN collects the similarities between the nth image and all
images, and ð�Þi represents the ith element of a vector. The image–
tag correlation matrix bridges the images and the tags: each row
indicates the relevance of all images to a tag, and each column
depicts the relevance of all tags to an image. To measure the
similarity of two images, we use the following metric:

sn;m ¼ exp � dðxn; xmÞ
σ � log 2ð2þjT n \ T m j Þ

� �
; ð7Þ

where sn;m indicates the similarity between the nth image and the
mth image, dð�; �Þ is a distance measurement of two images, T n and

T m are the tag sets, \ is the intersection of two sets, j � j
represents the cardinality of a set and σAð0;1� is a balance
parameter. The component 2þjT n \ T m j in the denominator is
to ensure that log 2ð�Þ results in a positive number no less than 1.
Metric (7) is calculated by using both the low-level visual features
and the high-level semantic features, thus the “semantic gap”
problem can be alleviated. From another point of view, the
relevance prediction function (6) is a process of relevance linear
propagation based on image similarities throughout the whole
dataset.

Substituting (6) into (4), we obtain

Ĉnði; jÞ ¼ sgn ðMsnÞi�ðMsnÞj
� �

: ð8Þ

The sign function is non-differentiable, thus it makes the final
objective function difficult to be optimized. To address this
problem, we use the signed magnitude as an approximate surro-
gate of the sign function

Ĉnði; jÞ � ðMsnÞi�ðMsnÞj: ð9Þ
If the signed magnitude (9) is directly substituted into the loss
function (5), the loss function will become hard to be optimized
due to the operator ð�Þi in (6). Fortunately, we observe that the
relative relation matrices are skew-symmetric, which means that
only half of the elements in Cn (the upper triangular part or the
lower triangular part) are sufficient for computing the loss func-
tion. Therefore, we can convert the matrix Cn to a vector cn by
aligning the elements of the upper triangular part of the matrix Cn

by row as follows:

cn ¼ ½Cnð1;2Þ;Cnð1;3Þ;…;Cnð1;MÞ;
Cnð2;3Þ;Cnð2;4Þ;…;CnðM�1;MÞ�T : ð10Þ

The above conversion is illustrated in Fig. 2(b) and (c). Analo-
gously, the predicted relative relation matrices Ĉn are also skew-
symmetric, and they can be converted to the vector forms by
multiplying an alternating subtraction matrix

A¼

1 �1 0 0 ⋯
1 0 �1 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋯
1 0 0 ⋯ �1
0 1 �1 0 ⋯
0 1 0 �1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮
⋯ ⋯ ⋯ 1 �1

2
66666666666664

3
77777777777775
; ð11Þ

ĉn ¼AMsn; ð12Þ
in which AARa�M , and a¼ M

2

� �
. By conducting the conversions

(10) and (12), the sum of the elements in the matrix calculated
from the element-wise multiplication between Cn and Ĉn can be
easily transformed to an inner product of two vectors cn and ĉn.
Thus, the loss function in (5) is rewritten as

LðMÞ ¼ �1
l

Xl
n ¼ 1

XM
i ¼ 1

XM
j ¼ 1

Cnði; jÞĈnði; jÞ ¼ �2
l

Xl
n ¼ 1

cTnĉn

¼ �2
l

Xl
n ¼ 1

cTnAMsn ¼ �2
l
trðCTAMSlÞ; ð13Þ

where C¼ ½c1; c2;…; cn;…; cl�ARa�l, Sl ¼ ½s1; s2;…; sn;…; sl�ARN�l

and trð�Þ is the trace of a matrix. Since we only use the upper
triangular parts of matrices Cn and Ĉn to generate vectors cn and
ĉn, the loss is twice (the constant number 2 in (13)) to the sum of
all the inner products.

So far, the loss function only contains the item constructed with
supervised information (namely pairwise supervision), and it is a
linear function with respect to M, making it impossible to reach

Fig. 2. Transformation from the tag relevance vector rn to the relative relation
matrix Cn and the final vector cn .
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the minimum of loss function (13). In the next subsection, the
unsupervised information is incorporated into the loss function to
introduce a quadratic item of M, making the loss function solvable.

3.2.3. Unsupervised information in image tag ranking
Unsupervised data is very important for addressing the image tag-

ranking problem, and the reasons are two-folds: (1) in practice, the
supervised information is in the minority, which may lead to a low
vocabulary coverage. That is to say, some tags that appear in the
unsupervised set may be absent in the supervised set. As a result,
some image–tag correlation cannot be sufficiently learned. (2) unsu-
pervised information can not only result in a high vocabulary coverage,
but also provide weak ranking information. Although the majority of
images do not have ranked tag lists, they are annotated with tags. We
call the annotation weak ranking information because it can separate
tags into two groups: relevant and irrelevant. The tags that are
relevant to the image should be ranked ahead of those irrelevant
ones. To incorporate this weak ranking information into the model, we
propose the following binary-relevance regression item:

1
N� l

XN
i ¼ lþ1

Jyi�Msi J22; ð14Þ

where J � J2 is ℓ2-norm. This item is to guide the image–tag
correlation matrix M to capture the coarse ranking information
introduced by the tag indicator vector yi.

Actually, to further validate the effectiveness of the proposed semi-
supervised model, two trivial variations based on the original unsu-
pervised term (14) are constructed. The first variation (named as PSTR-
S) uses only supervised data in the binary-relevance regression item.
This configuration will make the model solvable with only supervised
data. As mentioned above, this may lead to a low vocabulary coverage
and then insufficient learning of the image–tag correlation. Another
variation (named as PSTR-US) leverages both unsupervised and
supervised data to construct the term (14). In our view, adding
supervised data in the unsupervised term may be redundant, since
the weak ranking information from supervised data is included by the
strong ranking information that is modeled by the pairwise based
linear term (13).

Algorithm 1. Workflow of the proposed semi-supervised model.

Input:

The supervised data fðxi; yi; riÞgli ¼ 1 and the unsupervised

data fðxj; yjÞgN� l
j ¼ 1.

Output:
The ranked tag lists for each image in the unsupervised set.

1: Transform tag relevance vectors rn into relative relation
matrices Cn using (3).

2: Convert relative relation matrices Cn into the corresponding
vectors cn by using (10).

3: Generate the alternating substraction matrix A that has the
form of (11).

4: Calculate the mutual image similarities using (7) to obtain Sl
and Su.

5: Compute the image–tag correlation matrix M by
substituting A, C, Sl, Su and Yu into the closed-form solution
in (17).

6: Use the relevance prediction function (6) to score each tag,
and the final tag lists are ranked in the descending order
based on the tag relevance scores.

3.2.4. Final model for image tag ranking
So far, we leverage both the pairwise supervision and the

unsupervised information to design the respective loss functions.
Combining (13) and (14), the final semi-supervised model for

image tag-ranking is formulated as follows:

min
M

LðMÞ ¼ �1
l
trðCTAMSlÞþ

β

N� l
JYu�MSu J2F þλJMJ2F ; ð15Þ

where Yu ¼ ½ylþ1; ylþ2;…; yN�ARM�ðN� lÞ, Su ¼ ½slþ1; slþ2;…; sN�A
RN�ðN� lÞ, and β and λ are penalty parameters. The constant
number 2 is omitted in the first item, and the item λJMJ2F is to
ensure an available solution and avoid over-fitting.

To solve the optimization problem (15), we take the derivative
of loss function L with respect to M

∂L
∂M

¼ �1
l
ATCSTl þ

2β
N� l

ðMSuSTu�YuSTuÞþ2λM; ð16Þ

and set it to 0

M¼ 2lβYuSTuþðN� lÞATCSTl
� �

� 2lβSuSTuþ2λlðN� lÞI
� ��1

: ð17Þ

The optimization results in a closed-form solution. Once the
image–tag correlation matrix M is obtained, the relevance scores
are calculated using the relevance prediction function (6). Fin-
ally, the tags are ranked in the descending order based on
their relevance scores. The proposed method is summarized in
Algorithm 1.

As for the two variations, Eqs. (15) and (17) need to be
rewritten as

� For PSTR-S:

min
M

LðMÞ ¼ �1
l
trðCTAMŜ lÞþ

β

l
JYl�MŜ l J2F þλJMJ2F ; ð18Þ

M¼ ATCŜ
T
l þ2βYlŜ

T
l

� �
2βŜ lŜ

T
l þ2λlI

� ��1
; ð19Þ

where Ŝ lARl�l (mutual similarities within all supervised
images), Yl ¼ ½y1; y2;…; yl�ARM�l and M has the dimensions
of M� l. In test phase, the similarities between the test image
and all supervised images are calculated. The relevance scores
of image–tag pairs are also obtained using (4).

� For PSTR-US:

min
M

LðMÞ ¼ �1
l
trðCTAMSlÞþ

β

N
JY�MSJ2F þλJMJ2F ; ð20Þ

M¼ 2lβYST þNATCSTl
� �

� 2lβSST þ2λlNI
� ��1

; ð21Þ

where Y¼ ½y1; y2;…; yN �ARM�N , S¼ ½s1; s2;…; sN �ARN�N and
MARM�N .

3.2.5. Complexity analysis
In this subsection, we make a brief analysis about computa-

tional complexity and space cost. A big anxiety is related to matrix
A. When the vocabulary size M is large, the row dimension
(a¼ M

2

� �
) of A will become very large. However, it is evident that

A is highly sparse, namely only two non-zero elements (1 and �1)
in each row and M�1 non-zero elements in each column, which
makes the computation efficient. In the closed-form solution (17),
A is engaged in ATCSTl . Generally, dynamic programming can be
used to handle the matrix multiplication with more than two
dense matrices. In our case, there are only three matrices, thus it is
simple to solve the problem by exhaustive search. A preliminary
knowledge is that the computational complexity of multiplying
two matrices of dimensions a� b and b� c results in O(abc). If A is
viewed as a dense matrix, the complexity of computing ATCSTl is
min O M � M

2

� �� lþM � l� N
� �

;O M
2

� ����
l� NþM � M

2

� �� NÞÞ.
However, when A is sparse in our case, the computational
complexity decreases to min O M�ðð ðM�1Þ� lþM � l� NÞ;
O M

2

� �� l� NþM � ðM�1Þ � N
� �Þ. In practice, matrix
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multiplication can be highly paralleled, especially using GPU,
which greatly boosts the computation efficiency. Another issue is
to solve the large scale linear system in Eq. (17). In general, it can
be solved in OðN3Þ.

As for space cost, we can count the total elements contained in
all matrices. For Yu, A and I, they are highly sparse matrices

including M̂ � ðN� lÞ, 2� M
2

� �
and N non-zero elements respec-

tively, where M̂ is the average number of tags for each image. For
dense matrices Sl and Su, there are N � l and N � ðN� lÞ elements,

respectively. The total number of elements is M̂N�M̂lþM2�Mþ
�

NþN2Þ. In practice, the number of images (N) is much larger than
the number of tags (M), thus the space cost is dominated by N.

4. Experiments

In this section, we conduct experiments of two applications,
image tag-ranking and tag-based image search on three benchmark
datasets: SUNAttribute [25,2], Labelme [3] and MSRC [4]. Afterwards,
the influence of hyper parameters is sufficiently analyzed.

4.1. The benchmark datasets

In the experiments, three benchmark datasets, i.e., SUNAttri-
bute, Labelme and MSRC, are used to evaluate the effectiveness of
the proposed algorithm. First, we give brief introductions to these
datasets below (a shortcut view is in Table 1).

SUNAttirbue [25,2] database is the latest released and largest
dataset among the three (actually, there are much larger datasets
in which images have tags, such as NUS-WIDE [26], but these tag
lists are not ranked, so it is unavailable to tag-ranking). It is for
scene understanding and recognition and contains 14,340 images
from 707 categories covering diverse scenes. The vocabulary size is
102, and a variety of attributes, such as materials, lighting, surface
properties and spatial envelope properties, are described. There
are 37 gerunds, 38 nouns of objects and 27 adjectives in the
vocabulary. The diversity of the tags makes an important influence
on the complexity of the dataset. The tag numbers of one image
varies from 3 to 37 (15.5 on average). For each tag of an image, the
votes from three AMT annotators are provided [2]. The more votes
a tag receives, the more relevant the tag will be. Finally, each tag is
scored into 4 levels: 0 (irrelevant), 1 (weakly relevant), 2 (rele-
vant), and 3 (most relevant). The ranking groundtruth is based on
these relevance levels. There are 4 types of features extracted for
each image, namely gist [27], hog2�2 [28], ssim [29], bag of
words [30] and geometry specific histograms [25]. As far as we
know, SUNAttribute is the most complex and largest public-
released dataset for image tag-ranking.

Labelme [3] database is collected by a powerful web-based tool3

for image annotation. Since it is a big collection of images with
related tags and is still growing, we only take a subset of Labelme
which was released by Hwang et al. [31]. In this subset, there are
3825 images and 209 tags. However, we find that 19 tags are
absent for all images, so the vocabulary size is reduced to 190. All
the tags are nouns of objects. Each image has 7.0 tags on average,
1 at least and 26 at most. The tag relevance scores provided in [31]
are continuous values, so we quantize these values into the same
4 levels as for SUNAttribute. The features for each image are gist,
color histogram in HSV color space [32] and bag of words.

MSRC [4] is a small dataset for image segmentation. There are
591 images and 23 classes (tags of objects). We find that there are
many images containing only one tag, which is not appropriate in
the scenario of tag-ranking. So these images are removed. As a
result, the final dataset contains 461 images. In this dataset, each
image has 2.9 tags on average, 2 at least and 7 at most. The tag
relevance scores are generated from the segmentation ground-
truth: the scores are computed as the object area percentage of the
images in the pixel level. These relevance scores are also quantized
into 4 levels as for SUNAttribute. As for the features, gist, color
histogram and bag of words are extracted for each image. Notice
that, MSRC is a toy dataset for image tag-ranking.

Since our model is semi-supervised, three datasets are ran-
domly split into supervised and unsupervised parts:

� On SUNAttribute, supervised: 4340 images; unsupervised:
10,000 images.

� On Labelme, supervised: 1500 images; unsupervised: 2325
images.

� On MSRC, supervised: 230 images; unsupervised: 231 images.

Our goal is to leverage both the supervised and unsupervised parts
to rank the tags of images in the unsupervised parts.

4.2. Experimental settings

Due to the multiple types of features are used when calculating
the image similarities, metric (7) is modified as

sn;i ¼ exp �
PK

k ¼ 1 dkðxk
n; x

k
i Þ

σ � log 2ð2þjT n \ T i j Þ

 !
; ð22Þ

where K is the number of feature types, xk
n is the kth type of

feature, and dkð�; �Þ is a feature-related distance measurement.
Specifically, ℓ2 distance is for gist, and χ2 distance is for hog
2�2, ssim, bag of words and color histogram.

Table 1
Summary of the characteristics of three datasets.

Name # of images # of tags # of tags per image Properties of tags Features

SUNAttribute [25,2] 14,340 102 Min: 3 Gerunds: 37 Gist, hog2�2, ssim,
Max: 37 Nouns: 38 geometry specific histograms,
Average: 15.5 Adjectives: 27 bag of words

Labelme [3] 3825 190 Min: 1 Gerunds: 0 Gist,
Max: 26 Nouns: 190 color histogram,
Average: 7.0 Adjectives: 0 bag of words

MSRC [4] 461 23 Min: 2 Gerunds: 0 Gist,
Max: 7 Nouns: 23 color histogram,
Average: 2.9 Adjectives: 0 bag of words

3 http://labelme.csail.mit.edu/Release3.0/index.php
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The following methods are taken as the baselines:
Unsupervised methods:

� Probabilistic and Random Walk based Tag Ranking (PRWTR) [1]:
This method requires that the number of images for each tag
should be 50. The dataset SUNAttribute is the only one that
satisfies this requirement. Thus, the experiment of PRWTR is
only carried out on SUNAttribute.

� Learning Relevance by Neighbor Voting (LRNV) [5]: The tag
relevance is simply accumulated by neighbor voting in this
method.

� Two-view Learning for Tag Ranking (TLTR) [6]: This method
learns tag scores within a tag–image relevance matrix.

For these unsupervised methods, the entire datasets are used, not just
on the split unsupervised parts, since all images are annotated with
tags. The final performances are based on the split unsupervised parts.

Semi-supervised methods:

� Learning to Rank Tags (L2RT) [8]: As far as we know, this method
is the only semi-supervised method for image tag-ranking.
Therefore, it is meaningful to compare our method with L2RT.

Recall that, two variations (PSTR-S and PSTR-US) of the pro-
posed model are also taken as comparative methods. Notice that,
PSTR-S is a fully supervised method.

4.3. Experiments of image tag ranking

To verify the effectiveness of the proposed model, we first compare
it with other approaches in terms of image tag-ranking. The measure-
ment for evaluating the performance is Normalized Discounted
Cumulative Gains (NDCG) [33] which is widely used to measure the
performance of tag ranking. Here we use the top K NDCG scores

NDCG@K ¼ 1
Z

XK
i ¼ 1

2relðiÞ �1
log ð1þ iÞ; ð23Þ

where K indicates that NDCG scores are calculated using the top K
ranked tags (K is taken from 1 to 10 in image tag-ranking), Z is the
normalization constant that guarantees the optimal NDCG score is 1.
rel(i) is the relevance score of the tag in the ith position. If the top K
ranked tags are more relevant, the NDCG scores are higher.

The final performances of all methods are described in Table 2.
We can make some observations from the results.

On SUNAttribute ((a) in Table 2): The proposed method and its
variations are consistently better than the unsupervised methods
PRWTR, LRNV, TLTR and the semi-supervised method L2RT, showing
that the proposed model is adaptable to deal with different and
complex scenes appearing in the images. PSTR and PSTR-US can
perform equally well, but PSTR-S is marginally lower. As for the
unsupervised methods, TLTR performs better than LRNV, and the two
methods achieve satisfactory results benefitting from the training on
thewhole dataset as unsupervised information. Surprisingly, L2RT, as a
semi-supervised method, shows a relatively low performance which is
even worse than the unsupervised methods. The reason may lie on
that a simple linear projection from visual feature space to tag
relevance space is not enough to capture the complexity of the
dataset. It can be seen that L2RT is able to predict good ranking
results on the smaller and simpler datasets in the following.

On Labelme ((b) in Table 2): L2RT obtains comparable results
with our methods, achieving marginally higher NDCG scores when
K¼2,3. However, the proposed method PSTR shows a 12% NDCG
score improvement compared with L2RT when K¼1. PSTR, PSTR-S
and PSTR-US have similar performances. In this dataset, L2RT
shows good ability to predict the relevance of noun tags. In
general, semi-supervised methods are better than the unsuper-
vised methods. LRNV gains more satisfactory results than TLTR.

On MSRC ((c) in Table 2): Since it is a toy dataset and each
image has less tags (2.7 tags on average), NDCG scores stop
changing when K46. L2RT gains the highest NDCG scores when
K¼1,2, which further indicates its superiority in ranking the tags
of nouns. When K42, the proposed method PSTR performs the
best among all compared methods. LRNV is also good at ranking
the noun tags. Since there are only 23 tags in this dataset, some
tags are absent in the supervised set, the performance gap
between PSTR-S and PSTR is more evident.

Table 2
Image tag-ranking performances on (a) SUNAttribute, (b) Labelme and (c) MSRC. K is taken from 1 to 10. On three datasets, our approach outperforms all other compared
baselines.

Method K¼1 K¼2 K¼3 K¼4 K¼5 K¼6 K¼7 K¼8 K¼9 K¼10

(a)
PRWTR 0.418 0.438 0.464 0.494 0.525 0.555 0.583 0.610 0.635 0.657
LRNV 0.647 0.654 0.693 0.705 0.716 0.730 0.745 0.760 0.775 0.788
TLTR 0.678 0.675 0.696 0.707 0.721 0.737 0.753 0.771 0.787 0.801
L2RT 0.639 0.649 0.681 0.692 0.703 0.717 0.731 0.747 0.761 0.776
PSTR 0.712 0.716 0.724 0.735 0.747 0.761 0.775 0.790 0.804 0.817
PSTR-S 0.694 0.707 0.716 0.722 0.732 0.746 0.760 0.776 0.791 0.804
PSTR-US 0.715 0.720 0.727 0.737 0.748 0.762 0.776 0.790 0.805 0.817

(b)
LRNV 0.527 0.571 0.630 0.682 0.718 0.743 0.762 0.777 0.788 0.795
TLTR 0.486 0.551 0.612 0.663 0.701 0.728 0.749 0.765 0.778 0.786
L2RT 0.517 0.596 0.656 0.698 0.731 0.755 0.774 0.787 0.796 0.803
PSTR 0.579 0.594 0.653 0.698 0.733 0.759 0.777 0.791 0.800 0.808
PSTR-S 0.577 0.593 0.652 0.697 0.732 0.758 0.776 0.790 0.800 0.807
PSTR-US 0.573 0.591 0.650 0.696 0.731 0.758 0.775 0.789 0.799 0.806

(c)
LRNV 0.678 0.776 0.876 0.884 0.885 0.886 0.886 0.886 0.886 0.886
TLTR 0.631 0.752 0.854 0.871 0.872 0.872 0.872 0.872 0.872 0.872
L2RT 0.711 0.820 0.866 0.871 0.871 0.870 0.870 0.870 0.870 0.870
PSTR 0.701 0.807 0.884 0.896 0.897 0.898 0.898 0.898 0.898 0.898
PSTR-S 0.613 0.739 0.846 0.865 0.866 0.866 0.866 0.866 0.866 0.866
PSTR-US 0.688 0.802 0.881 0.892 0.894 0.894 0.894 0.894 0.894 0.894
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In summary, compared with the other methods, the proposed
method shows the superior performances on the three benchmark
datasets, particularly it is capable of dealing with complex situations.
The improvements of PSTR compared with PSTR-S on SUNAttribute
and MSRC demonstrate that introducing the unsupervised data is
essential and makes sense. Furthermore, the similar performances of
PSTR and PSTR-US validate that using both the supervised and
unsupervised data in the binary-relevance regression term may be
somewhat redundant. LRNV and L2RT show the potential to rank
noun tags. Generally, the semi-supervised methods are better than the
unsupervised methods.

In addition, we also calculate the top one average relevance
levels for each method on the three datasets, verifying that
whether the most relevant tags are ranked on the top positions.
The results are presented in Fig. 3. Some exemplary ranking results
on SUNAttribute are shown in Fig. 4.

4.4. Experiments of tag-based image search

In this subsection, we carry out experiments of tag-based
image search, which is an important real world application. The

goal of tag-based image search is to retrieve the images whose
tags have been ranked when users provide some keywords (tags).
The performance of tag-based image search is directly rely on how
well the tags are ranked.

We choose the unsupervised part (10,000 images) of SUNAt-
tribute as the dataset for image search, since SUNAttribute is the
largest and most complex dataset. Each tag in the vocabulary is
taken as the query, and all images containing the query tag are
ranked based on the tag-ranking results. The criteria for measuring
the relevance between the query tag q and the image xi are
formulated as follows [1]:

relðxiÞ ¼ �piþ1=ni; ð24Þ

where pi is the ranking position of q in the ranked tag list of image
xi, and ni is the number of tags of image xi. From (24), we can see
that the ranking position determines the relevance score: the
higher the rank is, the higher the score will be. When the query
has the same ranking position in the two images, the one with less
tags results in a higher relevance score. In this time, the images are
ranked based on the different query tags. To evaluate the perfor-
mance of tag-based image search, we also use the top K NDCG

Fig. 3. Top one average relevance levels. Optimal means that the most relevant tags are ranked on the first place. Our method is better than the other methods on
(a) SUNAttribute and (b) Labelme. On (c) MSRC, L2RT and our method are comparable, and both are better than the unsupervised methods.

Fig. 4. Some exemplary ranking results on SUNAttribute. We compare our method with the other methods. Different levels are labeled in different colors. We can observe
that the results of our method approaches the groundtruth most. (For interpretation of the references to color in this figure caption, the reader is referred to the web version
of this paper.)
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scores, and K varies from 1 to 200. As for the groundtruth
relevance of all images, we label each image into four levels based
on the relevance scores of its tags.

The proposed method is compared to the other methods with
the performances shown in Fig. 5. It can be observed that our
method outperforms the other methods. TLTR obtains higher
average NDCG scores than PRWTR, LRNV and L2RT when KZ10,
although it is lower than LRNV when Ko10. PRWTR has similar
performance with TLTR when Ko10, and it is close to LRNV when
KZ10. For all methods, the average NDCG scores increase stably
when K430. In the scenario of image search, users only care the
top ranked images in many cases. Therefore, from the perspective
of users, the performances of five methods are ranked in this
order: PSTR4LRNV4TLTR¼ PRWTR4L2RT.

4.5. Parameter selection

In this subsection, we investigate the problem of parameter
selection. There are three hyper parameters in the proposed
model, namely σ, β and λ. σ controls the contributions of low-
level visual features and high-level semantic features for comput-
ing the image similarity. β is to penalize the unsupervised term. λ
is a penalty parameter of the regularization term.

Before conducting a great deal of experiments for parameter
selection, we make a brief analysis of the parameters. Different σ
and the number of features used will influence the scale of
the image similarities, and a proper similarity scale is important
for relevance propagation. In the experiments, σ is set to
f0:1;0:2;0:3;…;0:9g. As for β, it is to penalize the unsupervised
term, and the optimal values should be empirically studied. β is
also set to f0:1;0:2;0:3;…;0:9g. In our view, the main responsi-
bility of λ is to guarantee the matrix in (17) is invertible. Besides, λ
should be set to a relatively small value to reduce the penalty of M
for the purpose of better fitting the data, but not too small for
avoiding over fitting. Accordingly, we select λ from f0:001;0:005;
0:01;0:05;0:1;0:2g. To plot the results in 3D meshes, we have to set
K to a fixed value (K¼1 for all plots).

We take the experiments on SUNAttribute as an example to
make parameter selection. The final results are shown in Fig. 6.
From (a) to (c) in Fig. 6, we can see that when λ is small, the
average NDCG scores vary greatly with σ. However, in Fig. 6(d)–(f),
σ makes less influences when λ is relatively large. It is observed
that the σ value within the interval ½0:1;0:4� shows better perfor-
mances than the other situations in all plots. In all plots, β has a
little influence on the performances when λ and σ are fixed, and it
still shows a weak tendency that small values (½0:1;0:5�) can
achieve slightly better results than those large values (½0:6;0:9�).
In summary, σ and λ are more important than β, and they should
be set to proper values. The optimal parameter setting on
SUNAttribute is σ ¼ 0:2, β¼ 0:4 and λ¼ 0:01. Actually, we continue
to increase λ till 0.9, but no further improvement is gained. Based
on the analogous analysis, we set the parameters for the other two
datasets as follows: On Labelme, σ ¼ 0:2, β¼ 0:1 and λ¼ 0:2; On
MSRC, σ ¼ 0:1, β¼ 0:7 and λ¼ 0:05.

5. Conclusion and future work

In this paper, we proposed a semi-supervised model to address
image tag-ranking problem. The proposed model takes both the
pairwise supervision and the unsupervised information into con-
sideration. The pairwise supervision can reveal the inner ranking
structures by decomposing the ranked tag lists into image–tag pair

Fig. 5. Average NDCG scores of five methods for tag-based image search on the
unsupervised part of SUNAttribute.

Fig. 6. Average NDCG scores with different parameters on SUNAttribute. K is fixed to 1, σ and β vary in f0:1;0:2;0:3;…;0:9g, λ is assigned to f0:001;0:005;0:01;0:05;0:1;0:2g
(from (a) to (f) respectively). The high performances can be achieved with σ in ½0:1;0:4�, β in ½0:1;0:5� and λ in ½0:01;0:2�.
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tuples as instances for model learning. Furthermore, the unsuper-
vised data is viewed as the weak ranking information to facilitate
the model. The resulting objective function can be elegantly solved
in closed form. The experiments of image tag-ranking and tag-
based image search are conducted on three benchmark datasets:
SUNAttribute, Labelme and MSRC. The final results firmly demon-
strate the better effectiveness of the proposed method over the
other state-of-the-art methods.

In our view, listwise supervision in L2R techniques is a more
natural way to deal with ranking information. The essential point
is to model the ranked list as a whole instead of pair tuples. Thus,
next we attempt to design a listwise based loss function for
the model.
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