
IET Computer Vision
Research Article
Invariant foreground occupation ratio for
scale adaptive mean shift tracking
IET Comput. Vis., 2015, Vol. 9, Iss. 4, pp. 489–499
& The Institution of Engineering and Technology 2015
ISSN 1751-9632
Received on 12th June 2014
Accepted on 24th November 2014
doi: 10.1049/iet-cvi.2014.0150
www.ietdl.org
Yi Song1, Shuxiao Li1, Chengfei Zhu1 ✉, Sheng Jiang2, Hongxing Chang1

1The Integrated Information System Research Center, Institute of Automation Chinese Academy of Sciences, 95 Zhongguancun East

Road, Beijing, People’s Republic of China
2New Technology Lab, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun Institute of Optics, Changchun, People’s

Republic of China

✉ E-mail: chengfei.zhu@ia.ac.cn

Abstract: The mean shift algorithm has been introduced successfully into the field of computer vision to be an efficient
approach for visual tracking but the tracker has been awkward in handling the scale change of the object. This study
addresses the scale estimation problem of the mean shift tracker, and proposes a novel method which is based on
invariant foreground occupation ratio to solve this problem. The foreground occupation ratio is defined as the
proportion of the foreground pixels in an image region. By taking an analysis of the foreground occupation ratio, the
authors obtain its three simple properties. With its property of scale invariance, an iterative approximation approach is
employed to estimate the scale of the foreground in the current image. The scale value is modified by a weighting
function, and it is adjusted along the two axes with respect to the width and the height of the target. The scale
estimation algorithm is then employed in the mean shift tracker to obtain the ability of scale adaptation for tracking.
Experimental results show that, using the authors method for object scale estimation, the mean shift tracker performs
well in tracking the target efficiently when its scale continuously changes.
1 Introduction

Real-time object tracking is a fundamental but a very important task
in many computer vision applications such as video surveillance [1,
2], human–computer interaction [3, 4], robotics [5] and driver
assistance [6]. Algorithms for visual object tracking are designed
to tackle the difficulties existing in real applications such as
occlusions, illumination variation and changes in the foreground or
background [7]. In recent years, various tracking approaches have
been proposed to handle these difficulties and strive for a better
performance in tracking [8].

In the domain of real-time visual object tracking, the mean shift
tracker [9] has achieved great success in the past decade for its
good efficiency and robustness. Given the object in the previous
frame, the mean shift algorithm is applied by locally shifting the
kernel window to seek the most similar candidate in the current
frame, with an iterative procedure. However, a drawback of the
algorithm for tracking is that it uses fixed kernel window to do the
shifting, resulting in the lack of its scale adaptability.

To handle this problem, one of the main approaches is to search in
the scale space for the best scale of the target. In the original tracker
proposed in [9], three different sizes of window are used for the
shifting procedure, and the scale of the target is calculated based
on the size of the window by which it obtains the most similar
candidate. Collins [10] generates three-dimensional (3D) scale
space using the difference-of-Gaussian spatial filters, and exploits
the mean shift algorithm through the 3D space to obtain both the
spatial position and the scale of the target. The scale searching
approach may find a good scale for the target if sufficient scale
values are searched. It brings about a large computational burden.
On the contrary, if a small number of the scale values are searched
(for example, three), the approach could not give a satisfying scale
estimation.

Another approach is to calculate the covariance matrix of the
distribution of the target pixel samples for scale estimation.
Zivkovic and Krose [11] treat the mean shift algorithm as an
expectation-maximisation (EM)-like algorithm, and use Gaussian
kernels to approximate the distribution of the target pixels.
By iteratively calculating the covariant matrix within the Gaussian
kernel, the location and the scale of the target are estimated. In
contrast, Ning et al. [12] combine the moment features within the
shift window to obtain the covariance matrix of the samples, and
make an adjustment to the matrix to estimate the scale of the
target. These methods obtain a good estimation of the target scale
if the target pixel samples are well distributed and few noise
samples exist within the candidate region. If a distracter, such as a
similar object, comes near the real target, then the approach may
obtain a wrong result for the target scale.

The third approach estimates the scale by optimising the scale
parameter in mean shift algorithm. Jiang et al. [13] substitute the
kernel bandwidth into the density estimator. By maximising the
lower bound of a likelihood function they deduced, the bandwidth
matrix that gives the scale value of the target is obtained. Recently
Vojir et al. [14] propose a gradient method to simultaneously
optimise the scale parameter as well as the location in the shifting
procedure, and the target scale is updated in tracking. Other than
the scale optimisation, these methods consider many extra
constraints to restrict the obtained scale value, which might not
yield the best scale estimation for the target.

In this paper, we propose a novel method based on invariant
foreground occupation ratio to solve the problem of the scale
estimation of the object in tracking. For an image region
containing both foreground pixels and background pixels, its
foreground occupation ratio is defined as the proportion of the
foreground pixels (i.e. the pixels of the target) in this region, as
Fig. 1b shows. We take an analysis of the foreground occupation
ratio, and acquire its three properties. On the basis of the scale
invariance of the foreground occupation ratio, an iteration
approximation algorithm is developed to estimate the scale of the
target. The scale value is modified by a weighting function to be
more accurate, and then it is adjusted along the two axes with
respect to the width and the height of the target. Finally, the
scale estimation algorithm is embedded into the mean shift
procedure to obtain a scale adaptive tracker. In our method, the
blob image (i.e. the sample weight image), as shown in Fig. 1c,
is used to calculate the foreground occupation ratio. Two main
489

Fig. 1 Simple illustration of the foreground occupation ratio

a Original image
Contour of the foreground is highlighted with a white curve
b Foreground region and the background region of the original image
The target (inner) rectangle and the ROI (outer) rectangle are shown. If the area of the foreground region is SF and the area of the ROI is SR, then the foreground occupation ratio of the
ROI can be calculated by rf = SF/SR
c Generated blob image of the original image
Some pixels in the background are falsely labelled as foreground pixels
improvements for scale adaptive tracking are included in our
method. One is that the foreground occupation ratio is exploited to
estimate the scale of the object. Since the scale space calculation
is avoided and replaced with direct scale calculation, our method
is more efficient and accurate to estimate the scale compared with
the first approach. The other improvement is that the scale value is
modified using a weighting function and further adjusted. Thus,
our method is more robust and it has a better scale adaptability
compared with the second and the third approaches.

The remaining contents of this paper are organised as follows.
Section 2 reviews some works about the blob image for mean shift
tracking methods. In Section 3, an analysis of the foreground
occupation ratio is taken, and the scale estimation method for the
target is described in details. Section 4 depicts the scale adaptive
mean shift algorithm using the proposed scale estimation method.
Experimental results and the evaluation of the proposed tracker are
given in Section 5. Conclusions are made in Section 6.
2 Blob image for mean shift tracking

As for visual object tracking, the target to be tracked is usually
bounded by a rectangle or an ellipse in the first frame, and we use
the rectangle in our study. In the original mean shift tracker [9],
the appearance model of the target is represented by a kernel
weighted histogram q̂ = {q̂u}u=1, ...,m with m bins

q̂u = C
∑n
i=1

k x∗i
∥∥ ∥∥2()

d[b(x∗i)− u] (1)

where {x∗i }i=1, ..., n denotes the normalised positions of the pixels
inside the target rectangle, b(x∗i) denotes the index of its bin in the
histogram and δ is the Kronecker delta function. Similarly, the
target candidate histogram p̂(y) = {p̂u(y)}u=1, ...,m is calculated
within the candidate rectangle centred at y

p̂u(y) = Ch

∑nh
i=1

k
y− xi
h

∥∥∥ ∥∥∥2()
d[b(xi)− u] (2)

where k(·) denotes the spatial kernel in the equations above. The
mean shift algorithm is developed to locate the most similar
candidate to the target by iteratively shifting from the old position
ŷ0 to a new location ŷ

ŷ =
∑nh

i=1 xiwig ŷ0 − xi
()

/h
∥∥ ∥∥2()

∑nh
i=1 wig ŷ0 − xi

()
/h

∥∥ ∥∥2() (3)
490
with the weight value

wi =
∑m
u=1

�������
q̂u

p̂u(ŷ0)

√
d[b(xi)− u] (4)

and the function g(·) =−k′(·). The iteration process ends when the
distance between ŷ0 and ŷ is tiny.

From another perspective, the mean shift locating procedure is
employed in the sample weight image to seek the centroid of the
blob, see (3). Each pixel in the candidate window at xi is a
weighted sample point, with its weight value wi. From (4), we find
that the sample weight value indicates the likelihood that the pixel
belongs to the target. That is to say, the pixel which belongs to the
target has a higher weight value. The sample weight image
presents the blob image for the mean shift tracking.

The blob image could be utilised to help estimate the scale of the
target in mean shift tracking. Since the foreground blob itself
represents the target, the target scale can be estimated by obtaining
the scale of the foreground blob. Collins [10] generates blob
images in scale space, and employs the mean shift algorithm
through these images to obtain the scale of the foreground blob.
Bradski [15] and Ning et al. [12] calculate the moments of the
foreground data distribution in the blob image. With the moments,
they obtain the area and the eigenvalues of the distribution, by
which the scale can be estimated. In [16], Liang et al. apply four
correlation templates to the blob image, and find the locally
maximal response to acquire the four boundaries of the target. In
our method, the blob image is processed to separate the
foreground pixel from the background, by thresholding the weight
value. The pixel is labelled as the foreground pixel where the
weight value is above the threshold, otherwise it is labelled as the
background pixel. Then it is used to calculate the foreground
occupation ratio, which is further used to estimate the target scale.

Various approaches can be taken to produce the blob image, such
as using (4) or using a specific colour histogram for backprojection
[15]. A more typical approach is introduced in [17], where Collins
et al. calculate the object histogram in the target window, as well
as the background histogram around the target. Then the log value
of the object/background histogram for each bin is computed to
generate the weight value for each colour. In this way, colours
distinctive for the target have positive weight values, and those
distinctive for the background have negative ones. The blob image
is obtained by backprojecting the log likelihood values into the
original image. It should be noted that weight values computed by
(4) at the same position are changed in each iteration of the shift
procedure, thus the blob image is changed in each iteration. In
contrast, for our tracking method, a fixed blob image for
representing the current image is needed to obtain the correct
IET Comput. Vis., 2015, Vol. 9, Iss. 4, pp. 489–499
& The Institution of Engineering and Technology 2015

foreground occupation ratio of a local image region. With the
background information in the previous frame, we employ the
method in [17] to produce the fixed blob image for the current
frame. The details are described in Section 4.
3 Foreground occupation ratio for scale
determination

The foreground scale estimation problem in blob images could be
briefly described as follows. In the reference blob image, the
foreground (i.e. the target) is bounded by a rectangle, called the
target rectangle. The scale of the foreground can be measured by
the size of the target rectangle, which is presented by a vector h =
(hx, hy)

T. In the current blob image, assuming that the location of
the foreground remains but the scale of the foreground is changed,
the goal is to estimate the scale of the foreground in the current
image.

In this section, the definition and the properties of the foreground
occupation ratio are firstly introduced, and then the foreground scale
estimation algorithm based on the foreground occupation ratio is
described in details.

3.1 Definition and properties of the foreground
occupation ratio

As shown in Fig. 1b, for an image region R which contains both
foreground region F and background region B, the foreground
occupation ratio of the region is defined as rf = SF/SR, where SR
denotes the area of the whole region, and SF denotes that of the
foreground region within. Practically, SR can be calculated as the
total number of pixels in the whole image region, and SF can be
calculated as the number of the foreground pixels within the image
region. Therefore, the foreground occupation ratio rf is calculated by

rf =
∑N

i=1 df (xi)

N
(5)

where N denotes the number of pixels in the whole region and δf
indicates whether the pixel xi belongs to the foreground

df (x) = 1, x [F
0, x [B

{
(6)

The foreground occupation ratio has two obvious properties with
respect to the change of the foreground, which are the translational
invariance and the rotational invariance. The translational
invariance means that, when the foreground moves inside the
image region, the foreground occupation ratio stays invariant, as in
Fig. 2a. The rotational invariance means that, when the foreground
takes an in-plane rotation, the foreground occupation ratio stays
invariant, as in Fig. 2b. These two properties are found on the
Fig. 2 Properties of the foreground occupation ratio

a Translational invariance, SF/SR = SF′ /SR
b Rotational invariance, SF/SR = SF′ /SR
c Scale invariance, SF/SR = SF′ /SR′
d If SF/SR = SF′ /SR, then SF = SF′

IET Comput. Vis., 2015, Vol. 9, Iss. 4, pp. 489–499
& The Institution of Engineering and Technology 2015
condition that the whole foreground region lies within the image
region after it translates or rotates. However, the ratio do not
possess the property of the scale invariance directly, since the ratio
value will change when the scale of the foreground region changes.

Consider using a rectangle to bound the foreground, and keep the
size ratio between the rectangle and the image region rectangle a
constant when the bounding rectangle changes scale. It means that
the image region for calculating the foreground occupation ratio
changes with the foreground rectangle, by the same factor of the
scaling. In this case, as long as the ratio of the foreground area to
the area of its bounding rectangle remains invariant, the
foreground occupation ratio stays the same. Typically, the property
stands when the foreground isotropically changes scale, as shown
in Fig. 2c. Therefore, the property of the scale invariance is obtained.

3.2 Scale estimation for the foreground

The scale invariance property of the foreground occupation ratio
could be utilised to estimate the scale of the foreground in the
current image. Assuming the target changes scale isotropically,
then the scaling factor can be represented by a scalar s. In the
reference image, the size of the foreground is denoted by
hp = (hpx , h

p
y)

T. We bound an enlarged rectangle with the same
centre of the target rectangle outside the target, as the region of
interest (ROI) rectangle. Then, the reference foreground
occupation ratio of the ROI can be calculated as r0. In the current
image, we resize the ROI rectangle with the variable s, and
calculate the foreground occupation ratio of the ROI, denoted as
rf(s). It is easy to know that rf(s) generally decreases as s
increases. According to the scale invariance property, when the
ratio value rf(s) equals to r0, the corresponding scaling factor s
indicates the scaling of the foreground between the two images.

A simple experiment is performed to test the method. In the
reference blob image, the target is given by the target rectangle,
and an enlarged rectangle is manually assigned as the ROI
rectangle for calculating the foreground occupation ratio r0, as
shown in Fig. 3a. In the current blob image, as the ROI rectangle
changes scale by the factor s along each axis, each value of the
foreground occupation ratio is recorded as rf(s), and drawn as
the function of s, as shown in Fig. 3c. Let rf(s) equals to r0, the
corresponding factor sr is obtained, as the scaling factor of the
foreground between the two images. As shown in Fig. 3b, when
rf(s) equals to r0, we obtain a satisfying scaling value sr for the
foreground in the current blob image.

To acquire the scale of the foreground efficiently, we propose to
use an iterative approximation approach. Consider an ideal
situation as shown in Fig. 2c. In the reference blob image,
assuming the foreground area within the ROI is denoted by SF,
and the area of the ROI is denoted by SR, then we obtain r0 = SF/
SR. In the current image, the foreground area changes into
SF′ = s2r SF, and the foreground occupation ratio of the same ROI
becomes r1 = SF′/SR. The objective is to obtain the new ROI with
the area SR′ = s2r SR to have the foreground occupation ratio r0,
491

Fig. 3 Test for foreground scale estimation

a Target in the reference blob image, r0 = 0.1787
b Estimation results of the foreground in the current blob image, using the scaling factor
sr obtained in (c)
c Function value rf(s) as the size of ROI changes by the scaling factor s in the current
blob image. With rf (s)=. r0, a satisfying estimation sr = 1.426 is obtained
satisfying r0 = SF′/SR′ . Then it is easy to obtain that the area of the
new ROI could be calculated as SR′ = SF′/r0

() = r1/r0
()

SR.
Therefore, the scaling of the foreground sr can be calculated as

s2r =
r1
r0

⇒ sr =
���
r1
r0

√
(7)

This equation means that the scaling value sr can be determined by
two foreground occupation ratio values r0 and r1. However, in real
blob images, when the ROI rectangle is updated for r0, the area of
the foreground pixels within the new ROI may not remain as the
previous value SF’. It may increase as the ROI is enlarged and may
decrease otherwise. Thus, the new ROI is smaller (when sr > 1) or
bigger (when sr < 1) than the one which has the foreground
occupation ratio r0. Hence, to obtain the ROI that has the ratio r0,
we recalculate the foreground occupation ratio of the new ROI,
denoted by r2, and apply (7) again using r2 and r0 to update the
new ROI. This step is iteratively taken until the ROI remains
unchanged, and the scaling sr is obtained.

If substituted r1 = SF′/SR and r0 = SF/SR into (7), one could find the
scaling value sr is actually associated with the ratio of the two area
values of the foregrounds SF and SF’. It means that, for the ideal
situation, the iterative approximation approach is equivalent to
directly using the area ratio of the foreground within their
respective ROI rectangles in the two images to estimate the scaling
value. However, in real blob images, our approach is more stable
than directly using the area ratio, since it always takes the
foreground pixels in the background region into consideration
when the ROI is updated. Furthermore, if the scaling value is large
enough for the target to exceed out of the range of the same ROI
rectangle in the reference image, our approach still works well but
the other one will fail.
492
Scale modification: In real generated blob images, some pixels in
the target may be represented as background pixels, and some
background pixels may be falsely labelled as foreground pixels, as
can be seen by comparing Figs. 1b and c. Affected by the falsely
labelled pixels, the scale estimation approach presented above
gives a rough scale for the target. In some extreme cases, large
numbers of background pixels are falsely labelled as foreground
pixels or the target pixels falsely labelled as the background pixels
in the current blob image, thus the iterative approximation
approach might converge to a much larger (when sr > 1) or a much
smaller (when sr < 1) scaling value than the real one.

A weighting approach is developed in our method to reduce the
impact of the falsely labelled pixels for a better estimation of the
scale. Let sr denote the scaling value obtained by the iterative
approximation approach. The rate of the foreground area change
between the ROI in the reference image and the one estimated in
the current image could be computed as

Drc = s2r − 1
∣∣ ∣∣ (8)

If the scale estimation approach is seriously affected by the falsely
labelled pixels, the value of Δrc intend to be abnormally large (i.e.
very close to 1 when sr < 1 or much larger than 1 when sr > 1).
For obtaining a reasonable scale, a weighting function with respect
to Δrc should be developed to indicate if the estimated scaling
value is reliable. Numerous options exist for the function, and we
pick up the sigmoid-like function in our method

w(Drc) = 1− 1

1+ ea(Drc−b)
(9)

where a and b are two constants that determine the characters of the
function. The constant b indicates the maximum rate of the area
change that is reliable for the scaling, and the constant a indicates
the declining rate of the weight value around b. With the
weighting function, the scaling value is modified to acquire a more
reasonable one

sc =
���������������������
1+ w(Drc)(s2r − 1)

√
(10)

To obtain an effective weighting function, the parameter a in (9) is
set to give a steep declining rate around b. The value chosen for
parameter b is important, since it determines the upper bound of
the scale adaptability of the tracker. A smaller b declines the scale
adaptability of the tracker, whereas a larger b declines the
effectiveness of the scale modification. In practice, b should be set
as the supposed maximum area change rate of the foreground. For
visual object tracking, two consecutive frames are captured in
quite a short time (for example, 40 ms). Thus, in most cases the
scale of the target is smoothly changed between the reference
image (i.e. the previous image) and the current image. Therefore,
the parameter b in the weight function is set to be 0.2 indicating
that the change rate of the foreground area should be <20%, and
the parameter a is set to be 50. This function works well in most
of tracking sequences in our experiments. As shown in Fig. 4c,
affected by the falsely labelled pixels in the current blob image,
the scaling value estimated by the iterative approximation
approach becomes inappropriate for the foreground. After it is
modified by the weighting function, the impact of the falsely
labelled pixels is reduced and a better scale estimation for the
foreground is obtained, as shown in Fig. 4d.

3.3 Foreground scale adjustment

Above, the foreground is assumed to change scale isotropically, and
the scaling value sc is acquired. Mostly, the scale of the foreground
changes in an anisotropic manner along the two axes with respect to
the width and the height of the target. Since the same foreground
occupation ratio is used, the area of the obtained foreground
region within the ROI should be the same as the one that is
IET Comput. Vis., 2015, Vol. 9, Iss. 4, pp. 489–499
& The Institution of Engineering and Technology 2015

Fig. 4 Illustration for scale modification

a Foreground (in white, bounded by the inner rectangle) and the ROI (bounded by the outer rectangle) in the reference blob image
b Foreground pixels in the current blob image, within the same ROI in (a)
Pixels in grey are background pixels but they are falsely labelled as the foreground pixels, the area of which equals 75% of the real foreground region
c Target rectangle estimated by the approximation approach
d Target rectangle obtained after the scale modification procedure
This scale is a better one than that in (c) to bound the foreground
isotropically changed, as shown in Fig. 2d. On the basis of this
inference, we make an adjustment to the width and the height of
the candidate rectangle to obtain the final scale of the foreground.

This procedure is implemented as follows. First, we generate N
different rectangles centred at the same location of the candidate
rectangle. These rectangles have different sizes

hic = sixh
p
x , s

i
yh

p
y

()T
, i = 1, 2, . . . , N , yet with the same area as

the candidate, which means sixs
i
y = s2c . Then, the one that contains

most foreground pixels is picked up as the final estimated

rectangle of the target, with the size hc = sxh
p
x , syh

p
y

()T
. A larger

N might yield a more accurate estimate but with a heavier
computational burden. In our implementation, N is chosen to be
five to obtain satisfying results. One is the candidate rectangle, and
the widths of the other four rectangles are adjusted by ±5%,
±10% with respect to the width of the candidate rectangle. The
procedure of the scale adjustment could be efficiently realised
using the integral image [18].

When the number of the falsely labelled pixels in the background
is large, the scale adjustment procedure might be seriously affected
and obtain a wrong size of the foreground. Therefore, the
procedure should be restricted by a condition with respect to the
number of the pixels labelled as foreground in the background
window. This condition may be dependent on the size of the ROI
rectangle. In our algorithm, the area of the ROI rectangle is three
times larger than that of the target rectangle. If the number of the
labelled foreground pixels in the background window, denoted as
Sfb, is less than 50% of that in the target candidate window,
denoted by Sft, then the procedure is employed. On the other side,
if Sfb exceeds Sft, we consider that the scale should also be
adjusted. For this situation in practice, the number of the correctly
labelled pixels in the background window probably exceeds the
IET Comput. Vis., 2015, Vol. 9, Iss. 4, pp. 489–499
& The Institution of Engineering and Technology 2015
number of the falsely labelled pixels, so that the scale adjustment
procedure could also be employed. Moreover, it could compensate
the estimation error of the scale modification procedure in the case
that the scale of the target quickly changes in the tracking.

The whole scale estimation algorithm is referred in Algorithm 1
(see Fig. 5).
4 Scale adaptive mean shift tracker

As previously mentioned, for the visual tracking, the target in the
first frame is assumed to be bounded by a target rectangle. In our
method, the appearance model of the target is represented by the
background weighted histogram [19], q̂b = {q̂bu}u=1, ...,m. It is
calculated relating to the ratio of the normalised object histogram
ĥob and the normalised background histogram ĥbk for each bin,
where ĥob is computed within the target window, and ĥbk is
computed in a background window around the target window.

The blob image is generated using a likelihood ratio technique
[17]. The log likelihood ratio indicates the probability of a pixel
for which it belongs to the foreground, computed by

Lf (u) = log
max(q̂bu, 1)

max(ĥbk(u), 1)
(11)

With the log likelihood ratio, the value for each pixel in the blob
image can be given as

Ib(x) = Lf (b(x)), Lf (b(x)) . Lu
0, Lf (b(x)) ≤ Lu

{
(12)
493

Fig. 5 Scale estimation based on foreground occupation ratio
where the function b(x) gives the corresponding histogram bin for
the pixel at position x and Lθ is a threshold with positive value
indicating if this pixel is labelled as foreground. In our method,
the threshold is set to be Lθ = lLmax, where Lmax denotes the
maximum value of Lf(u). Hence, in the blob image, pixels which
have positive values are labelled as foreground, and those with
zero are labelled as background. Note that the background
histogram ĥbk has been used twice to generate the blob image,
which makes it more discriminative for separating the foreground
from the background, thus more robust to employ the proposed
scale estimation algorithm.

The mean shift algorithm is employed to locate the target, where
the Gaussian kernel is used as the spatial kernel k(·). The algorithm is
exploited in the same way as the original tracker [9] using (3) and (4)
for the locating, independent from the blob image generated by (12).
Actually, the mean shift procedure could be exploited in the blob
image to locate the target. However, it is not taken in our method.
The reason is that, in the blob image, the pixel value outstands
where the colour feature is distinctive from the background. The
shifting procedure applied in the blob image will converge to the
distinctive part of the target rather than the centre of it, which
makes the tracker easier to lose the target. The blob image is
utilised to calculate the foreground occupation ratio only, for
estimating the scale of the target. Actually, the scale estimation
algorithm could be easily employed into other trackers for their
scale adaptability, since the scale estimation procedure and the
target locating procedure are relatively independent. Our method
embeds the method into a mean shift tracker since the tracker is
the most efficient one among state-of-the-art trackers [8].

After the mean shift locating converges, the scale estimation
algorithm is employed. Then the obtained scaling value is used to
update the shift window for a new round of locating. The
procedure is iteratively taken until the converged location obtained
by the mean shift locating of two rounds remains unchanged.

After localisation, the log likelihood ratio is recalculated using the
target model and the background window in the current frame, and
the blob image is recomputed for updating the foreground
occupation ratio r0. This value is then applied in the next frame
494
for the scale estimation. The whole tracking algorithm is
summarised in Algorithm 2 (see Fig. 6).
5 Experiments and discussion

In this section, the experiments on establishing and evaluating our
proposed tracker are given in detail. The proposed tracker can be
named as IFORMS, which is short for the invariant foreground
occupation ratio based mean shift tracker. In the implementation of
the IFORMS tracker for real-time object tracking, the target
histogram is calculated in the red–green–blue colour space
quantised in 16 × 16 × 16 bins. The image region for calculating
the target histogram should contain sufficient background pixels,
so that the size of the region is chosen to be 3 × 3 times the size of
the target window. Note that the image region for calculating the
histogram is not necessarily the same with the ROI which is used
for computing the foreground occupation ratio, for which we use
2 × 2 times the size of the target window.
5.1 Datasets and evaluation metric

The image sequences ‘CarScale, Woman, Boy, Doll and Lemming’
from [20] and ‘jump, Vid_B, Vid_C, Vid_E and Vid_K’ from [21]
are used in our experiments as the evaluation datasets, where the
target changes scale a lot. Additionally, some other challenges for
tracking are included in these sequences, such as the background
clutter (in ‘Vid_K, Vid_B, Vid_C, Doll and Lemming’), the
partial occlusion (in ‘Vid_E, CarScale, Woman, Doll, Lemming
and jump’) and the illumination change (in ‘Doll, Woman, Boy,
jump and Vid_K’).

The measurement used for evaluation is the dice coefficient metric
[22], calculated as

D = 2 · Area(VX >VG)

Area(VX)+ Area(VG)
(13)
IET Comput. Vis., 2015, Vol. 9, Iss. 4, pp. 489–499
& The Institution of Engineering and Technology 2015

Fig. 6 Scale adaptive mean shift tracking
where ΩX denotes the estimated target rectangle and ΩG denotes the
groundtruth rectangle. This measurement indicates the tracking
accuracy by measuring the degree of the overlap between ΩX and
ΩG, which is suitable to evaluate scale adaptive trackers.
5.2 Parameter for blob image generation

As Section 4 mentioned, the blob image is generated by (12). A blob
image is robust if it can exactly separate the foreground from the
background. A robust blob image to represent the original image
is required for the proposed tracker, since the performance of the
scale estimation algorithm is dependent on whether the foreground
occupation ratio can be well computed. Thus, an experiment is
designed for obtaining a proper value of l. The basis of the
experiment is that, for the same object (especially non-rigid)
appearing in different backgrounds, the foreground occupation
ratio of the ROI calculated using the groundtruth target rectangle
should be approximately the same. Image sequences ‘Vid_B,
CarScale, and Boy’ are used in the experiment. For each sequence,
the foreground occupation ratio of the ROI in each frame is
computed with respect to variable l, using the groundtruth target
rectangle. Then the mean value and the standard deviation of the
ratio in the sequence are calculated as a function of l. If the blob
images are well generated, the foreground occupation ratio
computed in each frame should be about the same, which is close
to the target-to-ROI area ratio. Therefore, a good l yields a small
standard deviation value, meanwhile a large mean value for the
ratio. As Fig. 7 shows, l could be properly chosen in the interval
[0.2, 0.3], where the minimum value of the standard deviation is
obtained.
5.3 Scale adaptability discussion

To demonstrate the scale adaptability of the new tracking algorithm,
an experiment is carried out by comparing our proposed tracking
algorithm with an EM-like tracker (EMShift) [11] in a real
generated blob image. The blob image for testing is the same
image as in Fig. 3b. The performance of EMShift and IFORMS is
IET Comput. Vis., 2015, Vol. 9, Iss. 4, pp. 489–499
& The Institution of Engineering and Technology 2015
shown in Figs. 8a and b. The estimated results for the foreground
in each iteration are exhibited in the two subimages. For the
EMShift tracker, the results are exhibited in ellipse as the
algorithm requires, and the final estimation is exhibited in the
bounding rectangle for comparing.

As the figure illustrates, IFORMS can give better estimation results
of the foreground than EMShift, with a few iterations. The EMShift
tracker performs well when the distribution of the foreground data
is Gaussian, otherwise it is easily trapped into a local optimal
solution, especially when the number of the outliers is large.

As mentioned in Section 3.2, parameter b determines the upper
bound of the scale adaptability. A simple illustration of the
effectiveness of parameter b for the scale adaptability of IFORMS
is shown in Fig. 8c. The area change rate between the initial
rectangle and the final rectangle is about 3.24, so that b could be
set to 4 to indicate that the maximum area change rate is 4. As
shown in Figs. 8b and c, with a larger b value, the IFORMS could
handle larger scale change of the target. Note that the objective of
this experiment is to clearly illustrate how the parameter b affects
the scale adaptability of the tracker, and how the algorithm
estimates the scale in each iteration. In normal applications of
visual tracking, parameter b is set to 0.2 to balance the scale
adaptability with the effectiveness of the scale modification, and it
works well in most cases.
5.4 Tracking results

The IFORMS tracker is compared with various scale adaptive
trackers using the ten image sequences to evaluate its performance.
The trackers for the comparison are the original scale modified
mean shift tracker (MS3) [9], the scale adaptive blob tracker
(BLOBT) [10], the EM-like tracker (EMShift) [11], the
scale-estimated mean shift (SEMS) tracker [13], the scale and
orientation adaptive mean shift tracker (SOAMST) [12] and the
MSfb tracker [14]. For the trackers to be compared, the parameters
are set in default as their works introduced.

The tracking results are shown in Table 1. For each sequence, the
dice coefficient generated in each frame is calculated, and then the
495

Fig. 8 Performance of the two trackers in a real blob image

a EMShift iterations
b IFORMS iterations with b = 0.2
c IFORMS iterations with b = 4.0
Green rectangle in each subimage shows the convergence of each tracker. Even the position and the scale of the initial rectangle is far different from the groundtruth value, IFORMS can
give a satisfying result of the foreground estimation both in location and scale, with a quick convergence

Fig. 7 Standard deviation and the mean value of the foreground occupation ratio with respect to l in the test sequences

a Standard deviation
b Mean value

Table 1 Accuracy of different trackers

Seq. IFORMS MS3 BLOBT EM Shift SEMS SOAMST MSfb

CarScale 0.7972 0.4285 0.6851 0.6296 0.4751 0.5989 0.7967
Woman 0.5736 0.3215 0.152 0.0399 0.469 0.4671 0.691
Boy 0.7985 0.8307 0.1059 0.4729 0.7665 0.8124 0.8166
Doll 0.6965 0.6685 0.3356 0.6809 0.7203 0.6356 0.7881
Lemming 0.8373 0.7522 0.2605 0.7738 0.7628 0.8127 0.8175
Jump 0.4882 0.4083 0.2777 0.4945 0.1376 0.5866 0.0933
Vid_B 0.8051 0.823 0.1553 0.8306 0.726 0.8214 0.7485
Vid_C 0.6891 0.7438 0.1194 0.3922 0.4202 0.5935 0.4335
Vid_E 0.8941 0.8043 0.6931 0.8232 0.8456 0.7057 0.8662
Vid_K 0.7577 0.8473 0.5191 0.7307 0.2796 0.6698 0.5691
mean 0.7337 0.6628 0.3304 0.5868 0.5603 0.6704 0.6621

The highest value in each row is shown in bold, and the second highest value is underlined
average value over the sequence is recorded. The IFORMS tracker
and the MSfb tracker perform well in most sequences. However,
MSfb could not work well when the size ratio of the target
496
changes quickly, as its bad performance in the sequence jump.
The average performance of our proposed tracker is more
satisfying compared with other trackers.
IET Comput. Vis., 2015, Vol. 9, Iss. 4, pp. 489–499
& The Institution of Engineering and Technology 2015

5.4.1 Fast scale change: In the CarScale sequence shown in
Fig. 9, the target undergoes fast scale change. BLOBT, SEMS,
SOAMST and MSfb can give a good scale estimation when the
scale change is relatively small at the beginning, as shown in
frames 62 and 108. However, when the target scale changes
quickly in consecutive frames, the scale value estimated by these
trackers becomes very poor, as shown in frame 232. Note that
SEMS loses the target when it goes through partial occlusion.
EMShift, MS3 could not accurately estimate the target scale even
Fig. 9 Sample images of the tracking results in CarScale

Frame number of each image in the sequence is labelled in the bottom-left

Fig. 10 Sample images of the tracking results in Vid_K

Frame number of each image in the sequence is labelled in the bottom-left

IET Comput. Vis., 2015, Vol. 9, Iss. 4, pp. 489–499
& The Institution of Engineering and Technology 2015
when the scale change is small, partly because the target location
is not well estimated. On the contrary, our proposed tracker could
give accurate estimations in both scale and the location for the
target, even the scale of the target changes fast.

5.4.2 Background clutter: In addition to the small scale change
of the target, the background clutter is a challenge in the ‘Vid_K’
sequence, as shown in Fig. 10. EMShift and SOAMST are easily
distracted by similar colour features in the background and give
497

Fig. 11 Sample images of the tracking results in Vid_E

Frame number of each image in the sequence is labelled in the bottom-left

Fig. 12 Sample images of the tracking results in Doll

Frame number of each image in the sequence is labelled in the bottom-left

IET Comput. Vis., 2015, Vol. 9, Iss. 4, pp. 489–499
498 & The Institution of Engineering and Technology 2015

Table 2 Average time cost of different trackers

Trackers IFORMS MS3 BLOBT EMShift SEMS SOAMST MSfb

time per frame, ms 1.98 0.41 54.83 1.85 5.06 1.1 3.15
unsatisfying scale estimations, as shown in frames 102, 510 and 837.
The reason is that the covariance matrix-based methods are easily
affected by the pixel sample distribution around the target. SEMS,
MSfb and BLOBT may expand their bounding rectangles for the
target when similar colour feature exists around the target. In
comparison, our proposed tracker, as well as the MS3 tracker, does
not expand the estimated rectangles and gives good scale
estimation. This benefits from the scale modification strategy in
our method.

5.4.3 Partial occlusion: The scale change in the ‘Vid_E’
sequence is caused by partial occlusion, as shown in Fig. 11. In
this case, the target width changes quickly while the target height
remains the same, which means that the aspect ratio is changed
during the tracking. The figure shows that SEMS gives better
results than EMShift, MS3, SOAMST, BLOBT but not as good as
our tracker, which can also be seen in Table 1. MSfb can give
good estimations when the target can be totally observed but it
loses accuracy of the scale when the aspect ratio of the target
greatly changes, as shown in frame 177. In contrast, our tracker
could handle the scale change by partial occlusion much better
than MSfb, as the scale adjustment procedure helps the tracker to
obtain the accurate size for the target.

5.4.4 Illumination change: The target in the ‘Doll’ sequence
goes through illumination change in addition to the scale change,
as shown in Fig. 12. In frame 915, the target appears near the
screen and becomes brighter than the target in the first frame. In
frame 1290, the man turns on the light and the target reflects
different colours. In both cases, our proposed tracker fails to give
good estimations for the target. The reason is that the blob image
for estimating the location and the scale is generated based on the
initial target model. When the colour of the target changes, the
foreground pixels in the blob image could not represent the target
well. Like our tracker, the other trackers could not give good
estimations in case one, as shown in frame 915. In case two, MSfb
yields a better result than our tracker, as shown in frame 1290.
When the colour of the target returns similar to the target model,
our tracker again gives accurate estimation, as shown in frame 1895.

5.5 Efficiency comparison

To compare the computing efficiency of all the trackers, the Vid_K
sequence is used for evaluation. The sequence contains 1020 frames
with the image size 320 × 240, and the average size of the target is
about 33 × 35. The experiments are conducted in C++
implementation on a desktop computer with an Intel Core 2 Duo
2.66 GHz central processing unit, 2 GB random access memory.
The time cost per frame for all the trackers are shown in Table 2.
IFORMS performs more efficient than MSfb and much more
efficient than BLOBT, while MS3 takes the lead. The good
efficiency of our tracker makes it competent for real-time
processing tasks.
6 Conclusions

A novel scale adaptive mean shift tracker based on invariant
foreground occupation ratio is described in this paper. The
foreground occupation ratio has three simple but useful properties.
With its property of the scale invariance, the scale change of the
IET Comput. Vis., 2015, Vol. 9, Iss. 4, pp. 489–499
& The Institution of Engineering and Technology 2015
target between frames could be safely estimated, thus an accurate
tracking can be achieved by the proposed tracker. Experimental
results show that the proposed tracker has a good performance in
handling the scale change of the target, with a real-time efficiency.
Our future work includes a better way to generate the blob image
for tracking. Since the scale estimation algorithm is relatively
independent from the target locating procedure of the tracker, the
employment of the algorithm for other visual trackers is also worth
studying.
7 Acknowledgment

This work is supported by the National Natural Science Foundation
of China (grant nos. 61175032, 61302154 and 61304096).
8 References

1 Benfold, B., Reid, I.: ‘Stable multi-target tracking in real-time surveillance video’.
IEEE Conf. Computer Vision and Pattern Recognition, Providence, USA, June
2011, pp. 3457–3464

2 Cao, X., Gao, C., Lan, J., Yuan, Y., Yan, P.: ‘Ego motion guided particle filter for
vehicle tracking in airborne videos’, Neurocomputing, 2014, 124, pp. 168–177

3 Oikonomidis, I., Kyriazis, N., Argyros, A.A.: ‘Tracking the articulated motion of
two strongly interacting hands’. IEEE Conf. on Computer Vision and Pattern
Recognition, Providence, USA, June 2012, pp. 1862–1869

4 Prisacariu, V.A., Reid, I.: ‘3D hand tracking for human computer interaction’,
Image Vis. Comput., 2012, 30, (3), pp. 236–250

5 Grigorescu, S.M., Pozna, C.: ‘Towards a stable robotic object manipulation
through 2D-3D features tracking’, Int. J. Adv. Robot. Syst., 2013, 10, p. 200

6 Avidan, S.: ‘Support vector tracking’, IEEE Trans. Pattern Anal. Mach. Intell.,
2004, 26, (8), pp. 1064–1072

7 Yilmaz, A., Javed, O., Shah, M.: ‘Object tracking: a survey’, ACM Comput. Surv.
(CSUR), 2006, 38, (4), pp. 1–45

8 Wu, Y., Lim, J., Yang, M.: ‘Online object tracking: a benchmark’. IEEE Conf.
Computer Vision and Pattern Recognition, Oregon, USA, June 2013,
pp. 2411–2418

9 Comaniciu, D., Ramesh, V., Meer, P.: ‘Kernel-based object tracking’, IEEE Trans.
Pattern Anal. Mach. Intell., 2003, 25, (5), pp. 564–577

10 Collins, R.T.: ‘Mean-shift blob tracking through scale space’. IEEE Conf.
Computer Vision and Pattern Recognition, 2003, pp. II: 234–240

11 Zivkovic, Z., Krose, B.: ‘An EM-like algorithm for color-histogram-based object
tracking’. IEEE Conf. Computer Vision and Pattern Recognition, 2004, p. I–798

12 Ning, J., Zhang, L., Zhang, D., Wu, C.: ‘Scale and orientation adaptive mean shift
tracking’, IET Comput. Vis., 2012, 6, (1), pp. 52–61

13 Jiang, Z., Li, S., Gao, D.: ‘An adaptive mean shift tracking method using multiscale
image’. Proc. Int. Conf. Wavelet Analysis and Pattern Recognition, Beijing, China,
November 2007, pp. 1060–1066

14 Vojir, T., Noskova, J., Matas, J.: ‘Robust scale-adaptive mean-shift for tracking’,
Image Anal., 2013, 7944, pp. 652–663

15 Bradski, G.R.: ‘Real time face and object tracking as a component of a perceptual
user interface’. IEEE Proc. Applications of Computer Vision, Princeton, USA,
October 1998, pp. 214–219

16 Liang, D., Huang, Q., Jiang, S., Yao, H., Gao, W.: ‘Mean-shift blob tracking with
adaptive feature selection and scale adaptation’. IEEE Int. Conf. Image Processing,
San Antonio, USA, September 2007, pp. 369–372

17 Collins, R.T., Liu, Y., Leordeanu, M.: ‘Online selection of discriminative tracking
features’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (10), pp. 1631–1643

18 Viola, P., Jones, M.: ‘Rapid object detection using a boosted cascade of simple
features’. IEEE Conf. Computer Vision and Pattern Recognition, 2001, p. I–511

19 Jeyakar, J., Babu, R.V., Ramakrishnan, K.R.: ‘Robust object tracking with
background-weighted local kernels’, Comput. Vis. Image Underst., 2008, 112,
(3), pp. 296–309

20 Visual Track Benchmark. Available at http://www.cvlab.hanyang.ac.kr/
tracker_benchmark_v10.html, accessed November 2014

21 Tracking Dataset. Available at http://www.cmp.felk.cvut.cz/~vojirtom/dataset,
accessed November 2014

22 Suryanto, Kim, D., Kim, H., Ko, S.: ‘Spatial color histogram based center voting
method for subsequent object tracking and segmentation’, Image Vis. Comput.,
2011, 29, (12), pp. 850–860
499

