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Abstract: Semi-active vehicle suspension with magnetorheological dampers is a promising technology for
improving the ride comfort of a ground vehicle. However, the magnetorheological damper always exhibits
nonlinear hysteresis between its output force and relative velocity, and additional nonlinear stiffness owing to
the state transition from liquid to semi-solid or solid, so that the semi-active suspension with magnetorheolog-
ical dampers features nonlinearity by nature. To control such nonlinear dynamic systems subject to random
road roughness, in this paper we present a neural network control, which includes an error back propaga-
tion algorithm with quadratic momentum of the multilayer forward neural networks. Both the low frequency
of road-induced vibration of the vehicle body and the fast response of the magnetorheological damper en-
able the neural network control to work effectively on-line. The numerical simulations and an experiment for
a quarter-car model indicate that the semi-active suspension with a magnetorheological damper and neural
network control is superior to the passive suspensions in a range of low frequency.

Key Words:~Semi-active control, neural networks, magnetorheological damper, vehicle suspension, vibration isola-
tion

1. INTRODUCTION

Ground vehicles are always subject to the random excitation of an irregular road profile
and undergo random vibrations. The random vibrations are harmful to ride comfort and the
durability of the vehicle itself. To reduce random vibrations, great efforts have been made
to develop various vehicle suspensions. However, a passive suspension without automatic
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control only reaches the optimal reduction of vibration for certain road profiles, and does not
work well for a vehicle running at different speeds and for a wide variety of road profiles
(Taghirad Hamid and Esmailzadeh, 1998). Hence, the techniques of both active suspensions
and semi-active suspensions (Krtolica and Hrovat, 1992; Ha¢, 1992) have received much
attention since the 1980s. The active suspension compensates the motion of vehicle body
through the use of hydraulic actuators and controllers, and consumes a large amount of energy.
In a semi-active suspension, nevertheless, the dynamic properties of a few components are
adjusted on-line and much less energy is required. Many studies have indicated that a well-
designed semi-active suspension could achieve similar dynamic performances of an active
one, but save a great deal of cost and energy (Spencer et al., 2000). Thus, the semi-active
suspension is a promising technique.

The dashpot with adjustable orifices, which has been widely used in passive vehicles,
may be problematic in terms of reliability and maintenance owing to‘the mechanical factors
in the systems, such as friction, saturation, and nonlinearity. To speed up the response of a
semi-active suspension to the variation of an irregular road profile, magnetorheological (MR)
dampers have been used to replace the dashpots with adjustable orifices. The MR damper
is a special actuator, which utilizes the MR fluid to produce the controllable damping force.
The essential characteristic of an MR fluid is its ability in the reversible change of states
from a linear viscous fluid to a semi-solid with controllable yielding strength within a few
milliseconds when it is subject to a controlled magnetic field (Winslow, 1949). Thus, an MR
damper is able to alter its apparent viscosity in a few milliseconds with the variation of control
voltage so that the output force follows the control strategy very well. Because of the primary
advantage of MR fluids that the ancillary power can be directly supplied from common and
low-voltage sources, MR fluids appear to be a promising alternative to electrorheological
fluids for use in semi-active suspensions (Spencer et al., 2000).

An MR damper usually exhibits two types of nonlinearity. One is the hysteresis between
the output force and relative velocity.. The soft iron particles dispersed in an MR fluid are
magnetized due to the alternated current, and the magnetism of the particles cannot vanish
immediately when the current disappears. Hence, the MR damper exhibits a nonlinear
hysteretic property between the output force and the relative velocity. The other is the
additional nonlinear stiffness owing to the state transition from liquid to semi-solid or solid.
This additional stiffness increases the equivalent fundamental frequency of a controlled
suspension such that the dynamic performance of controlled suspension may be poorer than
expected. As aresult, the semi-active suspension with any MR damper is a nonlinear dynamic
system bynature. It is not easy, and even impossible, to apply the traditional control strategies
on the basis of precise mathematical models to the semi-active suspension equipped with MR
dampers subject to random road roughness.

To attack the above problem, this study aims at the neural network control of a quarter-car
model of semi-active suspension with an MR damper. The paper begins with the description
of a quarter-car model with an MR damper and the random road roughness in Section 2. In
Section 3, we present a neural network control strategy, that is, an indirect adaptive neural
controller, which incorporates a neural identifier and an error estimator (Ghaboussi, 1995;
Mistry et al., 1996). This control strategy can well estimate the back propagation error for
the neural network controller in virtue of the neural network identifier. In Sections 4 and 5 we
give the numerical simulations and experimental results of the new control strategy to verify
the efficacy of the control strategy.
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Figure 1. A quarter-car model of semi-active suspension.

2. THEORETICAL MODEL

2.1. Quarter-Car Model for Semi-Active Suspension

The ride comfort of a vehicle mainly depends on the vertical vibration of the vehicle body.
In studying the vertical vibration, the vehicle is usually simplified as a quarter-car model of
two degrees of freedom, as shown in Figure 1, where an RD-1005 MR damper made in Lord
is introduced to generate the control force so‘as to reduce the vibration of the vehicle body.

In this quarter-car model, M and m representing the mass of the vehicle body and the
unsprung mass, such as the wheel and axle, can only move vertically under the excitation of
road roughness y. The corresponding displacements are z; and z,, respectively. The passive
suspension, i.e. the uncontrolled suspension, consists of a linear spring of stiffness & and a
linear dashpot of damping c. In addition, £; is the stiffness of the tire, and the damping of the
tire is negligible. Furthermore, F (v) is the output force of the MR damper corresponding to
input voltage v. The dynamic equation of this model reads

(1

M21+C(21»22)+k(21*22):F(V),
mEQ—C(él—22)—k(21—22)+kt22:k,y—F(V).

Figure 2 shows the configuration of the RD-1005 MR damper, where a piston with
the throttle orifices and surrounding windings is the mobile part in the damper. When the
piston moves up or down, the volume difference caused by the single-pole cylinder for the
MR fluid may produce an instantaneous hydraulic impact. To avoid this impact, a nitrogen
accumulator is installed at the bottom of the damper to compensate the volume difference.
As experimentally identified in Weng et al. (2000), the output force F'(v) of the RD-1005
MR damper at input voltage v yields

1.51
PO = 2104 g e ron”
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where z = z; — z5 is the input relative displacement between the two ends of the damper.
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Figure 2. Configuration of a Lord RD1005 MR damper.

Given the road roughness y in the time domain and the input voltage v from the controller,
it is easy to compute the dynamic response of the quarter-car model of semi-active suspension
through the use of any available numerical solver, such as the Runge—Kutta algorithm, of
ordinary differential equations.

2.2. Excitation Due to Road Roughness

The simple road profiles, such as sinusoidal waves and saw-tooth waves, provide basic inputs
to a ground vehicle for the evaluation of road disturbances in most studies on active or
semi-active suspensions, but they do not offer any information about the effect of irregular
road ‘profiles on the actual dynamic behavior of a vehicle suspension. In this subsection,
therefore, we present a brief description of irregular road profiles based on the International
Organization for Standardization (ISO).

Figure 3 shows the classification of road roughness proposed by the ISO using the statistic
power spectrum density (PSD). As most energy of a typical road spectrum falls into the range
of low frequency, the PSD of road-test roughness denoted by y is usually expressed as

Syy (Q) = Csp 9727 (3)

where Csp represents the coefficient of road roughness, and €2 is the space frequency of road
roughness, namely, the reciprocal of wavelength, which is usually in the interval of 0.01—
2.83m™ .

From the relation between the PSD S,, (£2) and the corresponding Fourier spectrum
Y () of y in the spatial frequency domain, the amplitude |Y (€2)| of the Fourier spectrum
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Figure 3. Spatial spectrum of road roughness.

of the road roughness can be determined. The random characteristic of a road profile
requires that the phase arg[Y(2)] of the Fourier spectrum of the road roughness must
be stochastic since the corresponding amplitude |Y/(2)| is deterministic. In this study, a
uniformly distributed random phase arg [Y (€2)] is assumed in the interval [, 7]. Therefore,
the time history y (¢) of road disturbance can be computed by using the inverse Fourier
transform as follows

h
w6y =D (fye A, (4)
f=1

where f, the frequency of road roughness in time domain, is the product of the space frequency
Q) and the speed V of the vehicle. The lower and upper limits / in 4 the integral give the
frequency range. In the following sections, the time series of road roughness y (¢) will be
used as the road excitation applied to the tire of the vehicle model.

3. CONTROL STRATEGY

3.1. Neural Network Control

The adaptive control focuses on the determination of the input signal of control in comparison
with the reference signal. As is well known, it is extremely difficult to establish an accurate
and simple mathematical model for a ground vehicle subject to the random road roughness.
Thus, it is almost impossible to determine the input of control for reducing the random
vibration of a semi-active suspension. One way of solving this tough problem is neural
network control. Direct neural network control takes the error between the ideal reference
signal and the system response as the error of back propagation. However, this error does
not offer good information for updating the weights of neural networks. It is inaccurate and
even uncontrollable to use the output errors as the errors of back propagation because of
possible uncertainty of the nonlinear quarter-car model with semi-active suspension subject
to the random road roughness.
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Figure 4. Structure of indirect adaptive control based on neural networks.

In this section we present an indirect adaptive control strategy based on the dynamic
neural networks to well approximate the input error. Figure 4 shows the structure of the
neural network control, where NNC is the abbreviation for neural network controller, NNI is
the abbreviation for neural network identifier, and TDL is the abbreviation for tapped delay
line. The NNC here has a single output since the input voltage of the MR damper is a unique
control variable. As is well known, it is almost impossible to determine the ideal input u,
of control because the inverse model of a nonlinear dynamic system is usually not available.
Hence, the error u; — u for training the NNC cannot be achieved directly. In this study, the
NNI not only traces the system response, but also computes the back propagation error for
NNC units. Hence, the indirect adaptive strategy differs from the direct adaptive strategy.

The topological structure of the NNC consists of three layers with 4 X 9 X 1 nodes,
including one hidden layer only, while the NNI has the same structure as the NNC. The inputs
to the networks are Zy (k— 1), Z; (k), u (k — 1), u (k), which are the system output and the
control input at the previous sampling instant. The Sigmoid function serves as the activation
function of the hidden and output layers. In Figure 4, the bold path indicates the direction of
the training errors of the NNC.

In Figure 4, the output error e, between the reference signal g, and the system response
q reads e, =g, — q. Hence, the control process diverges when the following performance
index

1

& ==(q—q) )

J=
2

| =

approaches the minimum. To minimize J, e, can be inversely propagated from the output
layer to the input nodes of the NNI. Thus, the training control error ¢, becomes available. As
a control error, e, is a better approximation than the direct difference between the reference
and the response. Therefore, it is used to train and correct the NNC in control.

In the process of computing the control error ¢, , the weights of NNI are updated on-line
according to the error e; between the system response and the NNI output ¢ — g, in order to
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identify and trace the vehicle suspension. Because the NNI can be trained in advance, less
correction is needed in the control process. This procedure, therefore, does not take much
more time than the training process of using the error g, — g, directly. For comparison, the
strategy, which takes g, — ¢, directly as the training error, is called a direct NNC for short.

For a neural network control, the control error ¢, in an indirect NNC is more accurate
than the direct error and is a better approximation to the truer value. While the NNI is trained
successfully, the errors propagated back to its input layer are indeed the training errors of the
NNC.

3.2. Selecting and Updating Weights

To start the control, the initial weights are randomly selected from the interval [0, 1]. The
algorithm of updating weights is the following BP algorithm with quadratic momentum terms

Aw (k) = —77% +alAw (k— 1)+ pAw (k — 2) (6)

where 7 is the learning rate, and o and S are the momentum factors. All these parameters
are assumed to be positive. The function of quadratic momentum terms here is as follows.
For the controller without any momentum terms, the weights to be updated increase with
an increase of parameter #. Thus, excessively large # will make the activation function
saturated. Otherwise, the convergence may become very slow if # is too small. The quadratic
momentum terms can enlarge the learning rate, but hardly lead to oscillation. In particular,
the quadratic momentum term f can serve as a simulated process of annealing to speed up the
convergence rate for neural networks. Thus, the proportional value of a previously updated
weight is added to the weight to be updated. That is, this weight updating procedure includes
the information of previous updating of weights. In addition, the entire computations for
error back propagation and weight updating are similar to the general BP algorithm.

In addition, the successive control process and the very large assemblage of input samples
require selecting pattern manners. That is, the weights are updated and the weight errors
are computed while each pattern is dealt with. Before handling the next pattern, the varied
weights are added to the previous weights.

4. NUMERICAL SIMULATIONS

In order to verify the efficacy of the new control strategy, a number of numerical simulations
were made for the quarter-car model equipped with an MR damper. To obtain an agreement
with further experiment, the fundamental natural frequency of the quarter-car model was
chosen as 1.8 Hz. In the simulations, the Runge—Kutta algorithm written in Turbo-C code
was used to compute the dynamic response of vehicle subject to the road disturbance of C
grade. The random excitation of an irregular road profile is given by equation (4) on the basis
of the road classification of the ISO database.

Figure 5 shows the vertical accelerations of the vehicle body in the time domain
for the quarter-car model without control and with indirect NNC, as well as the control
voltage input to the MR damper in semi-active suspension. Compared with Figure 5(a), the
vertical acceleration in Figure 5(c) was considerably reduced. The root-mean-square (rms)
accelerations of the vehicle body in these two cases were 4.11 and 2.02 m s—2, respectively.
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Figure 5. Comparison of time histories of uncontrolled and controlled responses of a vehicle body in
a numerical simulation: (a) without control; (b) control voltage of an MR damper; (c) under indirect NNC;
(d) under indirect NNC without quadratic momentum.

Figure 5(d) shows the time history of vertical acceleration under indirect NNC without
quadratic momentum and the corresponding rms acceleration is 2.98 m s~2. This result
obviously validated the conclusion that the quadratic momentum is able to optimize the
control error and increase the control effect. Therefore, the new control strategy is superior
to the traditional ones.

5. AN EXPERIMENTAL STUDY

5.1. Experimental Setup

Although the neural network control has proved its applicability to many industrial processes,
the computational time of control strategy for acceptable convergence often becomes a
bottleneck in the application of active control of vibration. However, the low frequency of
road excitation and the quick response of MR dampers make a real-time NNC possible for
the semi-active suspension with an MR damper.
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Figure 6. Circuit of current amplifier for an MR damper.

In the experiment, the computer works in a multi-task circumstance with the help of a
counter/timer 8253. The entire process of control begins with a sampling step. When the
sampling step terminates, the counter/timer 8253 calls an interruption of the CPU so that
the CPU reads the sampled data. As soon as the reading step is over, the CPU turns to the
computation of control strategy. During the computation, the next sampling step is being
on. For the vibration control of vehicle suspension, the interval of sampling is long enough
to compute the convergent weighs of neural networks. For example, when the sampling
frequency is selected as 200 Hz, i.e. 10 times as high as the maximal excitation frequency,
an interval of 5 ms is available for the computation of the NNC. Once the neural networks
converge in computation of control strategy, the control signal is output simultaneously to
the MR damper. Consequently, the acceleration of the vehicle body tends to be reduced at
this control step. The acceleration of the vehicle body is reduced step by step with the above
procedure being repeated.

An important issue in the experimental setup is the design of a practical current amplifier
for the MR damper. Figure 6 shows the circuit of current amplifier for the RD-1005 MR
damper, where the cement resistance R, acts as the output pole to boost the capability of
loading. This current amplifier worked well for the fast intensity change of magnetic field
for the MR damper in the experiment, but is still subject to further improvement so as to be
powered by batteries of 12 V on vehicles.

5.2. Experimental Results

To verify the applicability of the control strategy and real-time realization, an experiment
was made on a test rig of the quarter-car model. The fundamental natural frequency of the
model is 1.8 Hz, and the corresponding stiffness of passive suspension is 17500 N m~!. As
a comparison, the direct NNC was also applied to the model. In the direct NNC, the control
errors ¢, are defined as the difference between the desired ¢, and the output of the identified
model g,, 1.e. &, = g4 — q,, which is not similar to the indirect control error e, .
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Figure 7. Comparison of Fourier spectra of uncontrolled and controlled responses of a vehicle body:
(a) without control; (b) under direct NNC; (c) under indirect NNC.

Figure 7 shows the Fourier spectra of the acceleration of the vehicle body without control,
with direct NNC and indirect NNC, respectively. Figures 7(b) and (c) indicate that the semi-
active suspension under indirect NNC with quadratic. momentum is superior to the direct
strategy in the entire frequency range we are concerned with. The isolation performance is
particularly pronounced at the resonant frequency of the vehicle body. Compared with the
numerical simulations, the isolation performance in the experiment was not so good. The
main cause might come from the extra harmonic components of excitation produced by the
hydraulic shaker.

When the winding current of the MR damper increases, the MR fluid changes its state
from liquid into semi-solid or solid. Meanwhile, the additional stiffness accompanying the
hysteretic damping force occurs so that the stiffness of an MR damper under control becomes
much larger than the traditional vibration damper, where the additional stiffness is negligible.
Thus, the vehicle body can be rigidly joined together with the unsprung mass when the
winding current of MR damper is excessively large. As a result, the kinetic status of the
vehicle body and the tire will tend gradually to be in-phase. In this case, the additional
stiffness increases the stiffness of whole suspension, and the fundamental frequency of
suspension system as well.

Figure 8 shows the Fourier spectrum of vertical acceleration for the vehicle body
excited at a resonant frequency of 1.8 Hz. Figure 8 shows that the harmonic component of
tripled fundamental frequency was considerably strengthened under control. Especially, the
harmonic components of fundamental frequency and the corresponding multiple frequencies
in Figure 8(b) were all enlarged due to the additional nonlinear stiffness of the MR damper.
Therefore, the additional nonlinear stiffness of the MR damper decreases the control effect
and worsens the effect of vibration isolation.

6. CONCLUSIONS

In this paper we present a semi-active suspension on the basis of neural network control and
MR damper for the vibration control of a quarter-car model of vehicle suspension. The new
control strategy works very fast since the neural networks include a single hidden layer only
and the neural network identifier receives good training prior to the control. The numerical
simulations and an experiment show that the semi-active suspension with new control strategy
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Figure 8. Effect of additional nonlinear stiffness of an MR damper: (a) without control; (b) under control.

is superior to the passive suspensions and the semi-active suspensions with current neural
network control. Compared with a passive suspension, for example, the rms acceleration of
the vehicle body subject to the random road disturbance of C grade was reduced by 38.2%
when the direct neural network control was used, and by 55% when the indirect adaptive
neural network control was implemented in numerical simulations. In comparison with
the passive suspension, the semi-active suspension with indirect adaptive control of neural
networks reduced the acceleration of the vehicle body under the sinusoidal road excitation of
C grade by 41% in an experiment.
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