
Evolved neural network ensemble by multiple heterogeneous
swarm intelligence

Zeng-Shun Zhao a,c,n, Xiang Feng a, Yan-yan Lin a, Fang Wei a, Shi-Ku Wang a, Tong-Lu Xiao a,
Mao-Yong Cao a, Zeng-Guang Hou b

a College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao 266590, PR China
b State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, PR China
c School of Control Science and Engineering, Shandong University, Jinan, 250061, China

a r t i c l e i n f o

Article history:
Received 30 June 2013
Received in revised form
30 November 2013
Accepted 23 December 2013
Available online 1 August 2014

Keywords:
Neural network ensemble
Particle swarm optimization
Differential evolution
Artificial bee colony
Chaotic search

a b s t r a c t

The neural network ensemble (NNE) is a very effective way to obtain a good prediction performance by
combining the outputs of several independently trained neural networks. Swarm intelligence is applied
here to model the population of interacting agents or swarms that are able to self-organize. In this paper,
we combine NNE and multi-population swarm intelligence to construct our improved neural network
ensemble (INNE). First, each component forward neural network (FNN) is optimized by chaotic particle
swarm optimization (CPSO) and gradient gescending (GD) algorithm. Second, in contrast to most
existing NNE training algorithm, we adopt multiple obviously different populations to construct swarm
intelligence. As an example, one population is trained by particle swarm optimization (PSO) and the
others are trained by differential evolution (DE) or artificial bee colony algorithm (ABC). The ensemble
weights are trained by multi-population co-evolution PSO–ABC–DE chaotic searching algorithm
(M-PSO–ABC–DE–CS). Our experiments demonstrate that the proposed novel INNE algorithm is superior
to existing popular NNE in function prediction.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Much work has been devoted to finding the optimal or near
optimal neural network architecture [1–5]. However, many real
world problems are too complicated for any single neural network
to deal in practice. There are many successesful instances from
both natural and artificial systems to support that an integrated
system consisting of several subsystems can fulfil a difficult duty
satisfactorily. The development of multiple classifier systems
(MCS) has gained lots of success as such systems can be more
robust [3]. The success of neural network ensembles (NNE) in
improving the generalization of the classifiers is a typical example
[1,2].

Neural network ensemble (NNE) is a learning mechanism
which has a collection of a finite number of neural networks
trained for the same task. It was first proposed in Hansen and
Salamon’s work [6]. Its main idea is that the predicting ability of a
neural network system could be significantly improved by assem-
bling a set of neural networks, for example, training many neural
networks and then combining their predictions in some way [2,7].

Neural network ensembles (NNE) are more robust than a single
neural network, and can show graceful performance in situations
where only a subset of neural networks can accomplish correctly
[8]. There have been many evidences to support that ensembles
generalize better than any single individuals in the ensemble [2]. It
is wise to exploit the whole ensemble, rather than just the “best”
single neural network.

However, how to construct such a neural network ensembles is
still one open problem. One simple way to utilize the population
information is to combine all individuals into an integrated system
[2]. But the combined prediction would not be effective only by
averaging, because in some cases, some components may behave
unsatisfactorily. Various algorithms could be used to generate
weights for such combination. In [9], the authors thought that it
might be better to ensemble partial components other than all the
trained neural networks; they introduced Genetic algorithm based
selective ensembles (GASEN) to evolve the weights assigned to
each forward neural network (FNN) for the best appropriate
prediction. The binary particle swarm optimization (BiPSO) put
forward by Kennedy and Eberhart in [10] could be utilized to
optimize the NNE. In the BiPSO, the weight assigned to each
individual FNN could be 0 or 1; and the ensemble problem of NNE
is transferred into selecting several better appropriate FNNs by
PSO. Another version of PSO, denoted as DePSO, is a little different
from BiPSO, in which the weight of each individual FNN could be

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2013.12.062
0925-2312/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author at: College of Electronics, Communication and Physics,
Shandong University of Science and Technology, Qingdao 266590, PR China.

E-mail address: zhaozengshun@gmail.com (Z.-S. Zhao).

Neurocomputing 149 (2015) 29–38

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.12.062
http://dx.doi.org/10.1016/j.neucom.2013.12.062
http://dx.doi.org/10.1016/j.neucom.2013.12.062
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.12.062&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.12.062&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2013.12.062&domain=pdf
mailto:zhaozengshun@gmail.com
http://dx.doi.org/10.1016/j.neucom.2013.12.062


decimal number. Minku [11] introduced an approach by explicitly
partitioning the input variable space through a clustering method,
which allowed a reduction in the number of nodes of the neural
networks which compose the ensemble, thus reducing the execu-
tion time of the learning process. But how to determine the
clustering parameters remains a problem. In [12], the authors
Soares S. compared genetic algorithm and simulated snnealing
based approaches for NNE. Their work aimed at selecting the best
subset of models to be aggregated taking into account. Thus the
diversity of whole populations may be weakened largely. In the
literature [8], the authors presented the regularized negative
correlation learning algorithm for the whole ensemble. Adding a
correlation penalty term to the cost function of each individual
network, each neural network could minimize its mean square
error together with the correlation of the ensemble. In [1], Symone
Soaresa introduced genetic algorithm to select both the best
subset of FNN and the optimal combination strategy to ensure
the accuracy and the robustness of the ensemble.

The FNN often adopts GD algorithm to optimize its parameters
since GD could achieve higher convergent accuracy and faster
convergent speed around the global optimum. But it should be
noticed that the GD algorithm has its own disadvantage: it would
easily get trapped in its local minima, especially for the non-linear
pattern classification problems or complex function approxima-
tion problem. As a result, GD may lead to a failure in finding a
global optimal solution [13]. The PSO algorithm is shown to
converge rapidly during the initial stages of a global search. But
around global optimum, the search process may become very
slow, which makes the improvement decrease gradually with
more searching iterations [14,15]. In [16,17], authors utilized DE
to optimize PSO to improve the efficiency and precision.

In [18], the authors proposed to couple PSO and BP to train the
weights of FNN, where the hybrid algorithm could make use of both
global search ability of the PSO and local search ability of the BP
algorithm. The authors in [19] presented the tent mapping chaotic PSO
to avoid trapping into local minima and improve the performance of
neural network for predictive control. The authors in [20] also put
forward an improved chaotic PSO which applied the chaotic mapping
and the adaptive inertia weight factor to enhance the precision of PSO.
The authors in [21] proposed a hybrid method which combined the
fuzzy set theory and PSO–BP algorithm to determine the weight of the
component FNNs, then utilized the weights to synthesize their
assessment result to form the final output.

In this paper, we concentrated on introducing a novel evolved
neural network ensemble (NNE) framework, which incorporated the
multiple evolution algorithms, would be more superior than the
traditional NNE. In other words, our purpose is that optimizing the
weights of the NNE could largely improve the prediction of NNE.
Actually, all kinds of the evolution algorithm can be integrated in such
a framework, and their differences only lie in the respective evolving
types. In this paper, we implement PSO, DE and ABC as the concrete
cases of the multiple heterogeneous evolution algorithms. PSO, DE and
ABC are similar to the Genetic Algorithm (GA) and Ant Colony (AC) in
the sense that these two evolutionary heuristics are population-based
search methods, but the algorithms we selected are more computa-
tionally efficient than the rest. Another desirable characteristic is that
PSO, DE and ABC require minimal parameters to tune.

Hence, in our paper, we propose the improved CPSO–GD–NNE
mode, where we couple the chaotic PSO (CPSO) and GD algorithm
to train each component FNN, and then use the multiple popula-
tion co-evolution to optimize the weights of NNE. There are two
stages: In the FNN training stage, we firstly use CPSO to train each
component FNN to quickly find the global minimum yet the coarse
solutions. When the constriction condition is satisfied, we apply
the GD algorithm until the new termination condition reached.
In the NNE training stage, we integrate chaotic searching into

multiple population co-evolution algorithm, which uses PSO, DE
and Artificial bee colony (ABC), and present the multi-population
co-evolution chaotic search (M-PSO–ABC–DE–CS) to train weights
of the ensemble.

This paper is organized as follows: Section 2 briefly describes the
principle of GD algorithm, PSO, chaotic mapping and the CPSO–GD
couple algorithms. Section 3 outlines the principle of DE, ABC and the
multi-population co-evolution algorithm (M-PSO–ABC–DE–CS). The
simulation results and comparison are presented in Section 4. Finally,
Section 5 provides some concluding remarks.

2. Component neural network optimized by CPSO
and GD algorithms

2.1. Principle of gradient descending algorithm

The gradient descending technique proposed by Werbos [22], is
widely used in optimizing and training neural networks [4,5]. But its
disadvantage which is sensitive to the initial weight vector, often
leads to a different result by virtue of different weight vector. This
disadvantage makes troubles in trapping in a local solution which is
bias to the best solution, but it could achieve faster convergent speed
around global optimum. Due to the reasons above, we couple the
CPSO and GD algorithm to optimize the FNN. The detailed gradient
descending technique is described in [22,23].

If we suppose that X ¼ fx1; x2⋯xmg has m input samples and
Y ¼ fy1; y2⋯yng has n output results. There are p neurons in
hidden-layer and q neurons in output-layer. The thresholds of
hidden neurons are θ1 ¼ fθ11; θ12⋯θ1pg and thresholds of the output-
layer are θ2 ¼ fθ21; θ22⋯θ2qg. We represent the weights between
input-layer and hidden-layer as V ¼ fv11; v12⋯v21⋯vnpg, weights
between hidden-layer and output-layer as W ¼ fw11;w12⋯w21

⋯wpqg. The transition function of hidden-layer is f ðUÞ and the
transition function of output-layer is gðU Þ (Fig. 1).

Consider the error between final output and the expected
output is E given by

E¼ 1
2

∑
n

k ¼ 1
fyk�g½ ∑

p

j ¼ 1
wkjf ð ∑

m

i ¼ 1
vijxi�θ1j Þ�θ2k �g2 ð1Þ

We could get the updating formula of the two weights, as follows:

vjiðtþ1Þ ¼ vjiðtÞþΔvji ¼ vjiðtÞ�η1
∂E
∂vji

ð2Þ

wkjðtþ1Þ ¼wkjðtÞþΔwkj ¼wkjðtÞ�η2
∂E
∂wkj

ð3Þ

Fig. 1. The forward neural network architecture.

Z.-S. Zhao et al. / Neurocomputing 149 (2015) 29–3830



The two thresholds can be updated as follows,

θ1j ðtþ1Þ ¼ θ1j ðtÞþΔθ1j ¼ θ1j ðtÞþη1
∂E
∂θ1j

ð4Þ

θ2k ðtþ1Þ ¼ θ2k ðtÞþΔθ2k ¼ θ2k ðtÞþη2
∂E
∂θ2k

ð5Þ

where η1; η2 is the learning rate. But it should be noticed that the
learning rate, which controls the convergence to a local optimal
solution, is often determined by experiments or experience. If it is
not ideal enough, it would easily result in oscillating of the
network and could not converge rapidly.

2.2. Particle swarm optimization algorithm

The PSO algorithm could be described as a swarm of birds or
pigeons hovering in the sky for food. We assume the pigeon swarm
as a random particle swarm, each particle as one bird. Each bird has
its own location and flying velocity. One n dimensional swarm with
m particles is denoted as Xi ¼ ðxi1; xi2⋯xinÞ and Vi ¼ ðvi1; vi2⋯vinÞ
where Xi and Vi are the position and velocity of the ith particle in n
dimensional space. At each step of iterations, the particles adjust
their trajectories and velocities according to their own previous best
value Pi ¼ ðpi1; pi2⋯pinÞ and the best global value of all particles in
the population Gi ¼ ðg1; g2⋯gnÞ up to the current step. After having
obtained the two best values, each particle updates its position and
velocity according to the following rules:

vkþ1
i;d ¼w � vki;dþc1 � r1 � ðpbestki;d�xki;dÞþc2 � r2

�ðgbestkd�xki;dÞ ð6Þ

xkþ1
i;d ¼ xki;dþvkþ1

i;d ð7Þ

Here, r1 and r2 are two uniformly distributed random numbers in
the interval of [0, 1]. In the general PSO, c1 and c2 are the cognitive
and social learning factor respectively. They could determine the
magnitude of the random forces in the direction of the personal best
pbesti and the swarm best gbest , usually c1 ¼ 2:8, c2 ¼ 1:3. wt is the
inertial weight used to balance the global and local searching. The
detailed description could be referred in [24,25].

2.3. Chaotic local searching

Chaos is a bounded unstable dynamic behavior that exhibits
sensitive dependence on initial conditions and includes infinite
unstable periodic motions. Although it appears to be stochastic, it
occurs in a deterministic non-linear system under deterministic
conditions [20]. By following chaotic ergodic orbits, the chaotic
searching could traverse every state in a certain region by its own
regularity. Especially every state could be visited only once.

Due to its easy implementation and excellent property to avoid
trapping in local optima, in our paper, we employ the logistic
mapping to construct our improved chaotic PSO algorithm where
the chaotic dynamic searching would enhance the PSO global
optimization ability.

The logistic equation is defined as follows:

znþ1 ¼ μ� znð1�znÞ; 0rz0r1 ð8Þ
where μ is the control parameter. zn indicates the nth iteration
decision variable. The value of μ and z0 are defined by experiments.

We obtain the chaotic variable by the following equation,
which could travel over the whole search space using the property
of chaos ergodicity.

skj ¼
xkj �xmin ;j

xkj �xmax ;j
; j¼ 1;2;…;m ð9Þ

Here skj and xkj denote the respecive chaotic variable and the
decision variable of the jth dimension in the kth iteration. What’s
more, 0rskj r1. xmin ;j and xmax ;j represent the lower and the
upper bound value of the jth dimension.

The chaotic variable is updated according to the following
logistic equation:

skþ1
j ¼ 4� skj ð1�skj Þ; j¼ 1;2;…;m ð10Þ

Next, we would convert the chaotic variables skj to decision
variable xkj by the following equation:

xkþ1
j ¼ xmin ;jþskþ1

j ðxmax ;j�xmin ;jÞ; j¼ 1;2;…;m ð11Þ

By virtue of above Eqs. (9)–(11), we could accomplish the
chaotic local searching process.

2.4. Coupled CPSO–GD to optimize the component FNN

The CPSO is proposed by fusing the advantages of both PSO and
chaotic search to avoid the pre-maturity and easily trapping in local
optimum. In addition, the GD algorithm could further optimize the
FNN which has been improved by CPSO. The procedures for coupled
CPSO–GD algorithm could be summarized as follows:

Step 1: Initialize the swarm of PSO: For m particles, set the
initial weight w, the learning factor c1,c2, the maximal iterative
generations Tmax �pso and Tmax �GD.
Step 2: Update each particles by Eqs. (6) and (7), and evaluate
the fitness of each particle in PSO, compute the previous best
value of the ith particle up to the current step pbesti and the
global best value of all particles in the population gbest.
Step 3: Memorize the 30% excellent particles, then perform the
chaotic local searching via Eqs. (9)–(11) for MaxC iterations.
Step 4: Evaluate the novel solutions with decision variables and
update the gbest and pbesti.
Step 5: Shrink the search space by the following equation, and
then produce the residual 70% particles.

xmin ;j ¼ max fxmin ;j; xg;j�r � ðxmax ;j�xmin ;jÞg; 0oro1

xmax ;j ¼ min fxmax ;j; xg;jþr � ðxmax ;j�xmin ;jÞg; 0oro1

Here, xg;j represents the value of the gbest in the jth dimension.
Step 6: Do Step 2–5 until t4Tmax �pso or do Step 7 if the best
position has not changed for several iterations.
Step 7: Do GD algorithm untilt4Tmax �GD.
Step 8: if f itnessðgbestÞoE (E is the given threshold)

Output the prediction and the best solution.
else Continue to do GD for several iterations.
Output the prediction and the best solution.
endif

3. Neural network ensemble optimized by multi-population
co-evolution algorithm

3.1. Principle of neural network ensemble

Network ensemble is usually made up of a linear combination
of several networks which have been trained by same data set (the
actual sample used by each component to learn could be differ-
ent). Especially, each network within the ensemble is endowed
with a potentially different weight to form the output of the
ensemble.

Z.-S. Zhao et al. / Neurocomputing 149 (2015) 29–38 31



After having obtained each refined component FNN as
described in Section 2, we would concentrate on how to combine
the output of each component FNN.

f ðxÞ ¼ ∑
n

i ¼ 1
ŵif iðxÞ ð12Þ

ŵi ¼
wi

∑
n

i ¼ 1
wi

;0owio1 ð13Þ

where f iðxÞ represents the output of the ith FNN and ŵi is the
importance weight associated to the ith FNN. More detailed
descriptions of network ensemble can be referred in [2,26,27].

Our idea is to apply multiple heterogeneous intelligent swarms
to optimize ŵi of each individual component network, hence to
obtain the best appropriate prediction as formula (12). We define
ŵ¼ fŵ1; ŵ2;…; ŵng as one ‘bird’ of PSO, one ‘chromosome’ of DE,
or one ‘bee’ of ABC. Moreover, given the testing condition or the
objective requirement, the weights of NNE would be transferred to
the optimization problem in the integration of PSO, DE or ABC.

3.2. Differential evolution algorithm

Here, we introduce another global searching algorithm, differ-
ential evolution algorithm [28]. DE is also a floating point encoded
evolutionary algorithm for global optimization over continuous
spaces, but it creates new candidate solutions by combining the
parent individual and several other individuals of the same
population. It consists of selection, crossover and mutation
operations.

The procedures for DE algorithm are as following:

Step 1: Initialization
Initial population fxið0ÞjxLj;irxj;ið0ÞrxUj;i; i¼ 1;2;…;NP; j¼ 1;
2;…;Dg (NP represents the size of population and D denotes
dimensionality) is produced as below:

xj;ið0Þ ¼ xLj:iþr � ðxUj;i�xLj;iÞ ð14Þ
where xið0Þ represents the ith individual and xj;ið0Þ represents
the jth gene of the ith individual in initialized generation. r is the
uniformly distributed random number in the range [0, 1]. xL and
xU represent the lower and upper bound value of corresponding
dimensionality.
Step 2: Mutation
DE realizes the individual mutation by differential strategy. Its
main idea is to using the scaled differential vector to increase
diversity into the new generation. The simple method is to
choose two individuals randomly and obtain the mutated
individual as below:

viðgþ1Þ ¼ xr1ðgÞþF � ðxr2ðgÞ�xr3ðgÞÞ; iar1ar2ar3 ð15Þ
where viðgÞ represents the ith mutated individual in the gth
generation. Meanwhile fviðgþ1ÞjvLj;irvj;iðgÞrvUj;i; i¼ 1;2;…;

NP; j¼ 1;2;…;Dg, that is to say the boundary condition for
each gene of the individual should be satisfied. F indicates a
amplification factor.
Step 3: Crossover
Crossover operation is implemented between the gth indivi-
dual xiðgÞ and mutated variable viðgþ1Þ.

uj;iðgþ1Þ ¼
vj;iðgþ1Þ; if rrCR

xj;iðgÞ; otherwise

(
; ð16Þ

where CR denotes the crossover probability, and r is the
uniformly distributed random number in the range [0, 1]

Step 4: Selection

xiðgþ1Þ ¼
uiðgþ1Þ; if f ðuiðgþ1ÞÞr f ðxiðgÞÞ
xiðgÞ; otherwise

(
ð17Þ

where xiðgþ1Þ is the offspring of the ðgþ1Þth generation.

By virtue of Eqs. (14)–(17), we could accomplish the DE
evolution process.

3.3. Artificial bee colony algorithm

As a swarm intelligence algorithm, the idea of artificial bee
colony algorithm (ABC) is to imitate the behavior of honeybee
swarms for foraging nectar source. The basic model of ABC consists
of three essential groups: employed bees, onlookers and scouts. In
a bee colony, half of them could be onlookers and the others are
the employed bee. For each nectar source, there is one employed
bee. In other words, the number of employed bee is equal to the
number of food source [29]. The employed bee which has abandoned
an over-exploiting nectar source could immediately be a scout. The
employed bees could share their information with onlookers by
waggle dancing and then the onlookers select one of the food
sources. For more detailed descriptions of artificial bee colony
algorithm are referred in [29–31].

The procedures for ABC algorithm are as following:

Step 1: Initialization
Initialize the population fX1;X2;…;Xsg,Xi ¼ ðxi1; xi2;…; xidÞ
represent not only an employed bee, but also the i�th nectar
source, which means the solution vector of the optimization
problem in d dimensional space. s denotes the size of swarm.

xij ¼ xmin
ij þr � ðxmax

ij �xmin
ij Þ ð18Þ

where r is the uniformly distributed random number in the
range [0, 1]. xmin

ij and xmax
ij represent the lower and upper bound

value of corresponding dimensionality.
Step 2: Employed bee phase
Each employed bee performs local searching within its neigh-
bor to forage a better nectar source by the following equation.

vij ¼ xijþϕijðxij�xkjÞ ð19Þ
where vij represents an updated location by the local search
mechanism and ϕij is a random number which is used to
control the search radius.
Then we calculate the fitness value of the new location and
compare it with the previous one.

xiðtþ1Þ ¼
XiðtÞ; trial¼ trialþ1 if f itðViÞr f itðXiÞ

ViðtÞ; trial¼ 0 otherwise

(
; ð20Þ

The notion trial represents the frequency of exploiting in a
same food source.
Step 3: Onlooker phase.
The employed bees store the food source information and share
with onlookers by the waggle dances.

pi ¼
f it

∑
s

j ¼ 1
f itj

; ð21Þ

where Pi presents the probability value associated with the ith
nectar source. The onlookers select the nectar source by the
greedy selection mechanism according to the probability,
which means that the new location with equal or better
solution will replace the previous source [23].

Z.-S. Zhao et al. / Neurocomputing 149 (2015) 29–3832



Step 4: Scout phase
If trial4 max _trial, it means that the current food source has
been exhausted. The employed bee would be a scout and
produce a new location by Eq. (18), then memorize the best
nectar source so far.

The ABC evolution process would accomplish by virtue of
Eqs (18)–(21).

3.4. Multiple population co-evolution to optimize neural network
ensemble

In this paper, we introduce the multiple population co-evolution
algorithmwhich could not only avoid trapping into the local solution,
but also increase the diversity of the entire population. The coopera-
tive algorithm tends to compensate for disadvantage of individual
method and could be apt to the best solution. At the end of each
iteration, we compare the offsprings of two or three populations
optimized respectively by heterogeneous search algorithms, and
select several better appropriate solutions which determines the
evolution direction, finally execute the chaotic searching.

Here, we describe the architecture of multi-population co-
evolution PSO–ABC–DE chaotic searching algorithm (M-PSO–
ABC–DE–CS) and multi-population co-evolution PSO–ABC–DE
algorithm (M-PSO–ABC–DE). In the architecture, we suppose that
population A would be evolved by PSO, population B would be
evolved by DE and population C would be evolved by ABC,
moreover, each population has same size of solution vectors.
Actually, all kinds of the evolution algorithm can be integrated in
such a framework, and their differences only lie in the respective
evolving types. That is to say, of course, here the evolution
algorithm may be replaced by Genetic Algorithm (GA), Ant Colony
(AC) or other kinds. In this paper, we implement PSO, DE and ABC
as the concrete cases of the multiple heterogeneous evolution
algorithms. PSO, DE and ABC are similar to the Genetic Algorithm
(GA) and Ant Colony (AC) in the sense that these two evolutionary
heuristics are population-based search methods, but the algo-
rithms we selected are more computationally efficient than the
rest. Another desirable characteristic is that PSO, DE and ABC
require minimal parameters to tune.

Our architecture is as following (Figs. 2 and 3)

Fig. 2. M-PSO-ABC-DE mode of multiple population co-evolution optimized neural network ensemble.

Z.-S. Zhao et al. / Neurocomputing 149 (2015) 29–38 33



4. Experiments and results

In this section, we first compare the optimization performance
of multiple heterogeneous swarm intelligence algorithm against
single evolution algorithm over benchmark functions. Next, to test
the efficiency of the improved NNE, we perform the comprehen-
sive experiments to compare different NNE based on various
optimization methods.

4.1. Optimization comparison on benchmark functions

To demonstrate the advantage of the multiple heteroge-
neous swarm intelligence algorithm, we have presented several

algorithms for comparative experiments, such as artificial bee
colony (ABC), standard PSO (SPSO), chaotic PSO (CPSO), differential
evolution (DE), multi-population co-evolution SPSO (M-SPSO),
multi-population co-evolution CPSO (M-CPSO), multi-population
co-evolution DE (M-DE), multi-population co-evolution PSO–DE
chaotic searching algorithm (M-PSODE–CS), multi-population co-
evolution PSO–DE (M-PSODE), multi-population co-evolution
PSO–ABC–DE chaotic searching algorithm (M-PSO–ABC–DE–CS)
and multi-population co-evolution PSO–ABC–DE algorithm
(M-PSO–ABC–DE). Each algorithm contains 30 particles or 30
solution-vectors in their population, and runs 100 iterations before
termination. We select two well known benchmark function with
multiple peaks, Ackley function and Rosenbrock function, to
validate the proposed method.

Fig. 3. M-PSO–ABC–DE–CS mode of multiple population co-evolution optimized neural network ensemble.

Z.-S. Zhao et al. / Neurocomputing 149 (2015) 29–3834



Functioin #1 (Ackley function):f ðx1; x2Þ ¼ �20Ue�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2∑

2
i ¼ 1x

2
i

p
�

e
1
2∑

2
i ¼ 1 cos ð2π UxiÞ þ20þe, with �30rxir30 and e¼ 2:71282 with

the global minimum at the orgin (0,0).
Functioin #2 (Rosenbrock function): f ðx1; x2Þ ¼ ð1�x1Þ2þ100�

ðx2�x21Þ2.
The optimization comparison of multiple heterogeneous

swarm intelligence algorithm(in this case, denoted by M-PSO–
DE–ABC–CS)against various swarm intelligence algorithms over
Ackley function and Rosenbrock function, are summarized in
Tables 1 and 2, respectively. The best solution in each test has
been displayed in bold.

As shown in Table 1, in the optimization test of the multi-
model Ackley functions, the proposed algorithm (M-PSO–DE–
ABC–CS) and its variants, M-PSO–DE–ABC, M-PSO–DE–CS could
always obtain the best solutions compared against the existing
PSO, DE, CPSO etc.

Compared Table 1 with Table 2, for optimization on different
benchmark function, all the algorithms exert their efforts, but each
individual single algorithm reflect different predominance by
reason of diversity in multiple peak function. For example, ABC
and DE on Rosenbrck function outperform themselves on Ackley
function. That is to say, each individual single algorithm with
different evolution mechanism cannot perform consistently to
handle various optimzation problem.

The multiple heterogeneous swarm intelligence algorithm, in
this case, denoted by M-PSO–DE–ABC–CS, outperforms all the
other variants according to the quality of the best solution. The
combination of these different intelligent optimization methods
using various evolving manners tends to compensate for any
deficiencies of the individual swarm. Within the multiple hetero-
geneous swarm intelligence, this idea could absorb the advantage
and remedy the disadvantage of respective algorithm, so that the
architecture having multiple heterogeneous swarms could get rid
of the sub-optimum more easily and obtain the best result. It can
perform more complex tasks than any of its component (i.e., PSO,
DE, ABC). It is more robust than a single component swarm
strategy, and can show graceful performance degradation
in situations where single swarm cannot perform correctly.

4.2. Performance comparison for NNE

First, we define the mean square error (MSE) between the real
output and the predicted output, as the evaluating function.

MSE¼
∑
m

j ¼ 1
ðyj� ∑

n

i ¼ 1
wiŷ

j
iÞ2

m
ð22Þ

where yj represents the real output of the jth sample, ŷji denotes
the predicted yj of the ith component FNN. wi denotes the weight
of each component FNN. The less the MSE is, the better the
precision of INNE is.

We select the single-dimensionality function y¼ 1:1�
ð1�xþ2� x2Þ � eð� x2=2Þ as the benchmark function #3, then select
100 training samples from x¼ f�4 : 0:08 : 4g and select 100
testing samples from x̂¼ f�3:96 : 0:08 : 3:96g.

In addition, we also select the multi-dimensionality function

y¼ 0:5þð sin 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þx22

q
Þ�0:5Þ=ðð1þ0:001ðx21þx22ÞÞ2Þ which is the

Schaffer’s F6 function as the second benchmark function #4, then
select 100 samples randomly from xiAf�4 : 4g for training and
100 samples from x̂iAf4 : 12g for testing.

Further more, we suppose that the NNE is comprised of 6 basic
neural networks, each basic FNN has 3 layers (input–hidden–
output), and there are 4 neurons in hidden-layer. In the training of
INNE, to manifest the principles of fairness, each algorithm would
incorporate 100 particles or solution-vectors, for the multi-
population co-evolution algorithm, each sub-population would
incorporate 50 particles or solution-vectors.

The NNE within each component FNN optimized by GD is
trained by different algorithms, and the comparison is displayed in
Table 3. The train-MSE represents the mean square error of the
train set and also test-MSE represents of the test set. The precision
of train-MSE and test-MSE could manifest the predicting ability of
neural network ensemble.

The NNE in which the component FNN optimized by CPSO is
trained by different algorithms, and the comparison is displayed in
Table 4.

The NNE in which the component FNN optimized by CPSO–GD
is trained by different algorithms, and the comparison is displayed
in Table 5.

In Table 3, the SAV algorithm results in the largest MSE, no
matter the train-MSE or test-MSE of function #3 and function #4.
This is to say only by averaging, the combined prediction would
not be effective. In some case, some component of NNE may not
behave satisfactorily.

In ABC algorithm, as shown in Fig. 4, when somewhere has
been exploited for a long time, the bee-colony would migrate to
another place randomly, which leads to the excessive diversity and
could not converge to a global solution.

Table 1
The optimization comparison of swarm intelligence algorithms over Ackley
function.

The optimized
method

Functioin #1 (Ackley function)

Global optima point (0,0) Global optimum
value¼0

SPSO (0.0085146, �6.8746e�005) 0.026013
DE (0.017979, 0.012996) 0.04182
ABC (0.010271, 0.014724) 0.059339
CPSO (�0.0015835, 0.00024026) 0.0045985
M-PSO (�0.0012415, 0.0013141) 0.0052001
M-DE (�0.0029124, 0.0025104) 0.0058888
M-ABC (�0.0011618, �0.00032021) 0.0034473
M-CPSO (�0.00038407, �0.00051755) 0.001834
M-PSO–DE–ABC–CS (5.8284e�017, 2.3011e�016) �8.8818e�016
M-PSO–DE–ABC (4.0114e�016,

�1.8302e�015)
2.6645e�015

M-PSO–DE (�9.4369e�007,
�7.9471e�007)

1.0168e�008

M-PSO–DE–CS (1.8754e�017, �3.3154e�017) 2.1635e�009

Table 2
The optimization comparison of swarm intelligence algorithms over Rosenbrock
function.

The optimized method Functioin #2 (Rosenbrock function)

Global optima point (1,1) Global optimum value¼0

SPSO (0.87654, 0.75262) 0.039932
DE (0.65133,0.40074) 0.0050814
ABC (0.7115, 0.44608) 0.0077588
CPSO (0.89646, 0.79567) 0.017074
M-PSO (0.92627, 0.85707) 0.0055185
M-DE (0.78409, 0.54509) 0.0035202
M-ABC (0.84923, 0.747) 0.0065982
M-CPSO (0.89422, 0.78314) 0.0038398
M-PSO–DE–ABC–CS (1, 1) 4.1995e�024
M-PSO–DE–ABC (1, 1) 5.6554e�020
M-PSO–DE (0.9998, 0.99961) 4.2936e�008
M-PSO–DE–CS (1, 1) 2.1635e�009

Z.-S. Zhao et al. / Neurocomputing 149 (2015) 29–38 35



In SPSO algorithm, it is showed to be premature around global
optimum, and the improvement decreasing gradually with the
searching iterating. Compared with SPSO, the CPSO algorithm in
which the chaotic searching could improve the global converging
ability of the SPSO, and the result is more precise than SPSO as
Fig. 4 shows.

DE algorithm is famous for its ability to get rid of local solution
by its mutation mechanism. In addition, we could see that for the
single-algorithm to train, DE and CPSO could be more efficient
than others. Last but not least, the multi-population co-evolution
algorithms are all superior to their corresponding single-algo-
rithms, especially our proposed algorithm M-PSO–ABC–DE–CS and
M-PSO–DE–CS could be testified the best ones.

Compared with Table 3, each component FNN of Table 4 is
optimized by CPSO and the result is obviously superior to Table 3.
Because GD algorithm has its own disadvantage: it would easily
get trapped in local optimization and lead to a failure in finding a
global optimal solution. Whereas, chaotic searching could perform
local searching as PSO traps in the local area. What’s more, multi-
population co-evolution algorithm could remedy the drawback
which the single-algorithm could be apt to the local solution.
Similar to Table 3, the multi-population co-evolution algorithms
are all superior to their corresponding single-algorithms, espe-
cially our proposed algorithm M-PSO–ABC–DE–CS and M-PSO–
DE–CS could be testified the best ones.

From Table 5, we could see that each component FNN opti-
mized by CPSO and GD couple algorithm get the most excellent
precision. Moreover, our proposed M-PSO–DE–CS also obtain the
most accurate result. Compared with Tables 3 and 4, the M-PSO–
DE–CS and M-PSO–ABC–DE–CS could converge to global solution

Table 5
The train-MSE and test-MSE comparison between several ensemble ways with each FNN optimized CPSO–GD couple algorithm.

The optimized method of NNE Function #3 Function #4

The train-MSE The test-MSE The train-MSE The test-MSE

SAV 3.3194e�007 3.3024e�007 2.5564e�004 2.5739e�004
ABC 3.2146e�007 3.2110e�007 2.5182e�004 2.5372e�004
SPSO 1.9895e�007 1.9723e�007 1.8568e�004 1.8817e�004
CPSO 1.3811e�007 1.3721e�007 1.7412e�004 1.7757e�004
DE 6.4246e�008 6.3243e�008 1.5211e�004 1.5263e�004
M-ABC 2.4132e�007 2.4073e�007 2.1193e�004 2.1402e�004
M-SPSO 1.3127e�007 1.2790e�007 1.6549e�004 1.6511e�004
M-CPSO 8.0708e�008 8.1377e�008 1.6016e�004 1.6189e�004
M-DE 5.0594e�008 5.0650e�008 1.4775e�004 1.4871e�004
M-PSO–DE–ABC–CS 3.0218e�008 3.0420e�008 1.3447e�004 1.3456e�004
M-PSO–DE–ABC 3.4422e�008 3.4237e�008 1.3662e�004 1.3662e�004
M-PSO–DE 3.4501e�008 3.4622e�008 1.4035e�004 1.4101e�004
M-PSO–DE–CS 3.0016e�008 3.0498e�008 1.3432e�004 1.3156e�004

0 10 20 30 40 50 60 70 80 90 100
0.09

0.095

0.1

0.105

0.11

0.115

0.12

Iteration Cycle

M
S

E

MSE Converging Tendency ABC
PSO
CPSO
DE

Fig. 4. MSE converging tendency of single-algorithm algorithm.

Table 3
The train-MSE and test-MSE comparison between several ensemble ways with
each FNN optimized by GD.

The optimized
method
of NNE

Function 3# Function #4

The train-
MSE

The test-
MSE

The train-
MSE

The test-
MSE

SAV 0.4806 0.4789 0.1366 0.1370
ABC 0.2530 0.2550 0.1176 0.1173
SPSO 0.2154 0.2174 0.1067 0.1067
CPSO 0.1972 0.1985 0.0932 0.0939
DE 0.1292 0.1287 0.0925 0.0925
M-ABC 0.2217 0.2228 0.1052 0.1053
M-SPSO 0.2069 0.2087 0.0985 0.0992
M-CPSO 0.1772 0.1786 0.0898 0.0900
M-DE 0.1136 0.1121 0.0749 0.0755
M-PSO–DE–ABC–CS 0.0450 0.0449 0.0707 0.0709
M-PSO–DE–ABC 0.0457 0.0461 0.0716 0.0716
M-PSO–DE 0.0441 0.0445 0.0709 0.0711
M-PSO–DE–CS 0.0391 0.0394 0.0710 0.0712

Table 4
The train-MSE and test-MSE comparison between several ensemble ways with
each FNN optimized by CPSO.

The optimized method of
NNE

Function #3 Function #4

The train-
MSE

The test-
MSE

The train-
MSE

The test-
MSE

SAV 0.0311 0.0312 0.0625 0.0625
ABC 0.0165 0.0166 0.0500 0.0502
SPSO 0.0092 0.0086 0.0411 0.0415
CPSO 0.0077 0.0076 0.0405 0.0408
DE 0.0048 0.0046 0.0377 0.0339
M-ABC 0.0110 0.0109 0.0450 0.0450
M-SPSO 0.0052 0.0051 0.0395 0.0398
M-CPSO 0.0048 0.0047 0.0355 0.0357
M-DE 0.0044 0.0043 0.0354 0.0356
M-PSO–DE–ABC–CS 0.0028 0.0029 0.0335 0.0336
M-PSO–DE–ABC 0.0034 0.0034 0.0338 0.0339
M-PSO–DE 0.0033 0.0034 0.0337 0.0338
M-PSO–DE–CS 0.0030 0.0030 0.0340 0.0341

Z.-S. Zhao et al. / Neurocomputing 149 (2015) 29–3836



and outperform other single-algorithms or multi-population co-
evolution algorithms.

Figs. 4–6 have showed the MSE converging tendency of single-
algorithms and multi-population algorithms. Form Fig. 4, we could
see that the PSO and CPSO may be easily trapped in the sup-
optimum and could not move forward to explore, but ABC and DE
could exploit deeply with the iterations. DE has outperformed the
other single-algorithms, especially it has more superior conver-
ging velocity and precision than ABC and CPSO. From the compar-
ison of Figs. 4 and 5, we could see that the multiple-population
algorithms would be more superior than their respective single-
algorithms, especially the comparison of ABC and MABC, DE and
MDE. PSO with chaos mapping could be improved in some degree,
but it does not always work prominently. In addition, we could see
that the PSO, CPSO, MPSO, MCPSO could acquire the constant MSE
but may be not the optimum. Compared with Figs. 4–6 shows that
multiple heterogeneous swarm intelligence algorithm could have
superior converging veloctiy but the approximate precision. Last
but not the least, we could draw a conclusion that multiple
heterogeneous swarm intelligence could be more excellent than

the single-algorithms or multiple homogeneous swarm intelli-
gence (MABC, MPSO, MDE, etc.).

5. Conclusion

Unlike most previous studies just on training the component
FNN or the ensemble mechanism, in our paper, the improved
model has not only optimized the component FNN, but also
meliorated the ensemble mechanism. The construction of our
improved NNE model is made up with two phases. The first is
adopting CPSO–GD couple algorithm to train each component
FNN. The second is optimizing the ensemble mechanism by multi-
population co-evolution swarm intelligence.

To demonstrate the superiority of co-evolution algorithm based
on multiple heterogeneous swarm intelligence, we have presented
the experiments to compare the optimization performance over
benchmark functions. In addition, we select 200 samples for training
and testing, and make 3 compared tables in which different training
algorithms and different ensemble ways have been listed. The
superiority of individual networks optimized by different algorithm
is analyzed, which reveals that in some cases the ensemble mechan-
ism is superior to the simplex neural network.

Experimental results show that Our M-PSO–ABC–DE–CS and
M-PSO–DE–CS algorithm could converge to the global solution and
outperform other single-algorithms or multi-population co-evolu-
tion algorithms.

Next step, we would research into how to reduce the operating
time and calculation scale, at the same time to improve the
computational efficiency.

Acknowledgments

This work was supported in part by the National Natural Science
Foundation of China (Grant nos. 60805028, 61175076, 61225017),
Natural Science Foundation of Shandong Province (ZR2010FM027),
China Postdoctoral Science Foundation (2012M521336), Open
Research Project under Grant 20120105 from SKLMCCS, SDUST
Research Fund (2010KYTD101), SDUST Graduate Innovation Founda-
tion (YC130218, YC140332).

References

[1] S. Soares, C. Antunes, R. Araújo. A genetic algorithm for designing neural
network ensembles, in: ACM Proceedings of the Fourteenth International
Conference on Genetic and Evolutionary Computation Conference, (2012)
681-688.

[2] X. Yao, M.M. Islam, Evolving artificial neural network ensembles, IEEE Comput.
Intell. Mag. 3 (1) (2008) 31–42.

[3] Zeng-Shun Zhao, Li Zhang, Meng Zhao, Zeng-Guang Hou, Chang-Shui Zhang,
Gabor face recognition by multi-channel classifier fusion of supervised kernel
manifold learning, Neurocomputing 97 (2012) 398–404.

[4] L. Cheng, Z.-G. Hou, Y. Lin, M. Tan, W.J. Zhang, F.-X. Wu, Recurrent neural
network for non-smooth convex optimization problems with application to
the identification of genetic regulatory networks, IEEE Trans. Neural Networks
21 (5) (2011) 714–726.

[5] L. Cheng, Z.-G. Hou, M. Tan, Y. Lin, W.J. Zhang, Neural-network-based adaptive
leader-following control for multi-agent systems with uncertainties, IEEE
Trans. Neural Networks 21 (8) (2010) 1351–1358.

[6] L.K. Hansen, P. Salamon, Neural network ensembles, IEEE Trans. Pattern Anal.
Mach. Intell. 12 (10) (1990) 993–1001.

[7] M.P. Perrone, L.N. Cooper, When networks disagree: ensemble methods for
hybrid neural networks, Neural Networks Speech Image Proc. (1993) 126–142.

[8] H. Chen, X. Yao, Regularized negative correlation learning for neural network
ensembles, IEEE Trans. Neural Networks (2009) 1962–1979.

[9] Zhi-Hua Zhou, Jianxin Wu, Wei Tang, Ensembling neural networks: many
could be better than all, Artif. Intell. 137 (1-2) (2002) 239–263.

[10] J. Kennedy, R. Eberhart: A discrete binary version of the particle swarm
optimization. in: Proceedings IEEE International Conference on Computational
Cybernetics and Simulation, Piscatawat. (1997) 4104–4108.

0 10 20 30 40 50 60 70 80 90 100

0.08

0.09

0.1

0.11

0.12

0.13

Iteration Cycle

M
S

E

MSE Converging Tendency

MABC
MPSO
MCPSO
MDE

Fig. 5. MSE converging tendency of multi-population I algorithm.

0 10 20 30 40 50 60 70 80 90 100

0.08

0.09

0.1

0.11

0.12

0.13

Iteration Cycle

M
S

E

MSE Converging Tendency

PSO-DE
PSO-ABC-DE
PSO-DE-CS
PSO-ABC-DE-CS

Fig. 6. MSE converging tendency of multi-population II algorithm.

Z.-S. Zhao et al. / Neurocomputing 149 (2015) 29–38 37

http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref1
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref1
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref2
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref2
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref2
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref3
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref3
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref3
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref3
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref4
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref4
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref4
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref5
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref5
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref6
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref6
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref7
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref7
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref8
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref8


[11] F.L. Minku, T.B. Ludermir, Clustering and co-evolution to construct neural
network ensembles: an experimental study, Neural Networks 21 (9) (2008)
1363–1379.

[12] S. Soares, C.H. Antunes, R. Araújo, Comparison of a genetic algorithm and
simulated annealing for automatic neural network ensemble development,
Neurocomputing 121 (2013) 498–511.

[13] Marco Gori, Alberto Tesi, On the problem of local minima in back-propagation,
IEEE Trans. Pattern Anal. Mach. Intell. 14 (1) (1992) 76–86.

[14] Riccardo Poli, James Kennedy, Tim Blackwell, Particle swarm optimization: an
overview, Swarm Intell. 1 (2007) 33–57.

[15] Zengshun Zhao, Jizhen Wang, Qingji Tian, Maoyong Cao: Particle swarm-
differential evolution cooperative optimized particle filter. In: International
Conference on Intelligent Control and Information Processing. (2010) 485–490.

[16] Swagatam Das, Ajith Abraham, Amit Konar, Particle swarm optimization and
differential evolution algorithms: technical analysis, applications and hybri-
dization perspectives, Stud Comput. Intell. (SCI) 116 (2008) 1–38.

[17] Bipul Luitel, GaneshK. Venayagamoorthy, Differential evolution particle swarm
optimization for digital filter design, in: Proc. 2008 IEEE Congress on Evolutionary
Computation (CEC 2008) (2008) 3954–3961 (Crystal city, Washington, DC, USA).

[18] JingRu Zhang, Jun Zhang, TatMing Lok, MichaelR. Lyu, A hybird particle swarm
optimization-back-propagation algorithm for feedward neural netwrok train,
Appl. Math. Comput. 185 (2007) 1026–1037.

[19] Y. Song, Z. Chen, Z. Yuan, New chaotic PSO-based neural network predictive control
for nonlinear process, IEEE Trans. Neural Networks 18 (2) (2007) 595–601.

[20] Bo Liu, Ling Wang, Yi-Hui Jin, Fang Tang, De-Xian Huang, Improved particle
swarm optimization combined with chaos, Chaos, Solitons Fractals 25 (2005)
1261–1271.

[21] Hui Yuan, Jun Zhi, Jianyong Liu, Application of particle swarm optimization
algorithm-based fuzzy BP neural network for target damage assessment, Sci.
Res. Essays 6 (15) (2011) 3109–3121.

[22] P.J. Werbos, Beyond Regression: New Tools for Predictions and Analysis in the
Behavioral Science, Ph.D. Thesis, Harvard University. (1974).

[23] T.P. Vogl, J.K Mangis, A.K Rigler, W.T. Zink, D.L. Alkon, Accelerating the conver-
gence of the back-propagation method, Biol. Cybern. 59 (1988) 257–263.

[24] J. Kennedy, R. Eberhart, Particle swarm optimization, In: Proc. IEEE Conf.
Neural Networks, Piscataway (1995) 1942–1948.

[25] Zeng-Shun Zhao, Xiang Feng, Yan-yan Lin, Mao-Yong Cao, Zeng-Guang Hou,
Min Tan, Improved Rao-Blackwellized particle filter by particle swarm
optimization, J. Appl. Math. 2013 (2013) 1–7 (Article ID 302170).

[26] D. Optiz, J. Shavlik, Actively searching for an effectively neural network
ensemble, Connection Sci. 8 (3,4) (1996) 337–353.

[27] Giorgio Valentini, Francesco Masulli, Ensembles of Learning Machines. WIRN
VIETRI, LNCS (2002) 3–20.

[28] R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global
optimization over continuous spaces, J. Global Optim. 11 (4) (1997) 341–359.

[29] D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC)
algorithm, Appl. Soft Comput. 8 (2008) 687–697.

[30] Dervis Karaboga, Bahriye Basturk, A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC), J. Global Optim.
39 (2007) 459–471.

[31] MohdAfizi Mohd Shukran, YukYing Chung, Wei-Chang Yeh, Noorhaniza Wahid,
AhmadMujahid Ahmad Zaida, Artificial bee colony based data mining algorithms
for classification tasks, Mod. Appl. Sci. 5 (4) (2011) 217–231.

Zeng-Shun Zhao received the Ph.D. degree in control
engineering from the Institute of Automation, Chinese
Academy of Sciences, in 2007. He is currently an
associate professor at the College of Electrics Commu-
nication and Physics, Shandong University of Science
and Technology, Qingdao, China. In 2011, he worked as
a visiting scientist with Prof. C.S. Zhang. at Stinghua
University. His research interests include Machine
learning, Pattern Recognition, Computer vision and
intelligent robot.

Xiang Feng is master student in Shandong University
of Science and Technology. His research interests are
computataional intelligence and pattern recognition.

Yan-yan Lin is master student in Shandong University
of Science and Technology. Her research interests are
computational intelligence and pattern recognition.

Fang Wei is master student in Shandong University of
Science and Technology. Her research interests are
Image processing and pattern recognition.

Shi-Ku Wang is master student in Shandong University
of Science and Technology. His research interests are
Image processing and machine learning.

Mao-Yong Cao received the Ph.D. degree in optical
engineering from TianJin University China, in 2002. He
is a Full Professor at the Shandong University of Science
and Technology, Qingdao, China. His research interests
include image processing and pattern recognition.

Zeng-Guang Hou received the Ph.D. degree in electri-
cal engineering from Beijing Institute of Technology,
Beijing, China, in 1997. He is a Full Professor at the
Institute of Automation, Chinese Academy of Sciences,
Beijing, China. Professor Hou is currently serving as an
Associate Editor for IEEE Transaction on Systems, Man,
and Cybernetics and IEEE Transactions on Neural Net-
works. His research interests include neural networks,
optimization algorithms, robotics, and intelligent con-
trol systems.

Z.-S. Zhao et al. / Neurocomputing 149 (2015) 29–3838

http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref9
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref9
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref9
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref10
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref10
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref10
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref11
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref11
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref12
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref12
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref13
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref13
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref13
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref14
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref14
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref14
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref15
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref15
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref15
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref16
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref16
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref17
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref17
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref17
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref18
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref18
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref18
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref19
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref19
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref20
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref20
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref21
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref21
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref21
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref22
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref22
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref23
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref23
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref24
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref24
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref25
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref25
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref26
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref26
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref26
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref27
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref27
http://refhub.elsevier.com/S0925-2312(14)00955-2/sbref27

	Evolved neural network ensemble by multiple heterogeneous swarm intelligence
	Introduction
	Component neural network optimized by CPSO and GD algorithms
	Principle of gradient descending algorithm
	Particle swarm optimization algorithm
	Chaotic local searching
	Coupled CPSO–GD to optimize the component FNN

	Neural network ensemble optimized by multi-population co-evolution algorithm
	Principle of neural network ensemble
	Differential evolution algorithm
	Artificial bee colony algorithm
	Multiple population co-evolution to optimize neural network ensemble

	Experiments and results
	Optimization comparison on benchmark functions
	Performance comparison for NNE

	Conclusion
	Acknowledgments
	References




