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Abstract—To uncover an appropriate latent subspace for data representation, in this paper we propose a novel Robust Structured

Subspace Learning (RSSL) algorithm by integrating image understanding and feature learning into a joint learning framework. The

learned subspace is adopted as an intermediate space to reduce the semantic gap between the low-level visual features and the

high-level semantics. To guarantee the subspace to be compact and discriminative, the intrinsic geometric structure of data, and the local

and global structural consistencies over labels are exploited simultaneously in the proposed algorithm. Besides, we adopt the ‘2;1-norm

for the formulations of loss function and regularization respectively to make our algorithm robust to the outliers and noise. An efficient

algorithm is designed to solve the proposed optimization problem. It is noted that the proposed framework is a general one which can

leverage several well-known algorithms as special cases and elucidate their intrinsic relationships. To validate the effectiveness of the

proposedmethod, extensive experiments are conducted on diversity datasets for different image understanding tasks, i.e., image

tagging, clustering, and classification, and themore encouraging results are achieved compared with some state-of-the-art approaches.

Index Terms—Data representation, latent subspace, image understanding, feature learning, structure preserving

Ç

1 INTRODUCTION

FOR many pattern recognition and computer vision prob-
lems, images are always represented by a variety of

visual features, which are often quite different from each
other [1]. The dimension of data feature space is becoming
increasingly large. It is inevitable to introduce noisy and/or
redundant features. The effectiveness and efficiency of
learning methods drop exponentially as the dimensionality
increases, which is commonly referred to as the “curse of
dimensionality”. Therefore, it is a fundamental problem to
find a suitable representation of high dimensional data [2],
which can enhance the performance of numerous tasks, such
as classification and multimedia analysis. To address these
problems, a number of different methods have been devel-
oped, such as feature selection (i.e., select a subset of most
discriminative features from the original features) [3], [4], [5]
and subspace learning (i.e., transform the original features to
a lower dimensional subspace) [2], [6]. In this paper, we
focus on learning an appropriate representation of data by
uncovering a latent subspace for the purposes of image
understanding, which is referred to assigning proper high-
level semantic meaning (labels or tags) to given images (nor-
mally represented by low-level visual features), including
image tagging, clustering1 and classification in this paper.

Recent years have witnessed a widespread interest in
subspace learning. A variety of subspace learning models
and techniques have been widely used for the representa-
tion of high dimensional data, such as principal component
analysis (PCA) [2], linear discriminant analysis (LDA) [2]
and locality preserving projection (LPP) [6]. Despite the
different motivations of these algorithms, they can be
interpreted in a general graph embedding framework [7].
Some manifold learning algorithms such as ISOMAP [8],
Laplacian Eigenmap (LE) [9] and locally linear embedding
(LLE) [10] are designed to find a low dimensional subspace
in a nonlinear manner. There are many other subspace lean-
ing approaches to find suitable representations of data, such
as nonnegative matrix factorization (NMF) [11].

Nonetheless, these methods only focus on low-level
features of data, which are independent of the follow-up
tasks and ignore the high-level semantic information. As
is known to all, there exists the so-called semantic gap
between the low-level features and the high-level semantics,
which often degrades the performance [12]. To alleviate the
semantic gap, we try to uncover proper representations of
data by integrating image understanding and feature learn-
ing into a joint learning framework. For this purpose, in
this paper we propose a novel robust structured subspace
learning (RSSL) framework to discover a compact and
more informative feature representation and builds a bridge
between the low-level features and high-level semantics
with the learned subspace by exploiting image understand-
ing, feature learning and feature correlation simultaneously.
Specifically, unlike previous subspace learning models, the
proposed framework learns a latent discriminative repre-
sentation of images by considering the image understand-
ing task in the procedure of feature learning, which makes
the uncovered representations well predict the labels. To
guarantee that the latent subspace is more compact and dis-
criminative, the intrinsic geometric structure of data, and
the local and global structural consistencies over labels are

1. For clustering, the cluster indicators of samples can be deemed as
the pseudo labels of samples.
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exploited simultaneously and incorporated into the pro-
posed framework. To make our algorithm robust to the out-
liers and noise, we introduce the ‘2;1-norm into the loss
function and regularization. To solve the proposed prob-
lem, an effective and efficient iterative algorithm is pro-
posed. Finally, we apply the proposed method to the tasks
of social image tagging, unsupervised learning (i.e., cluster-
ing), semi-supervised and supervised learning (i.e., classifi-
cation). Extensive experiments are conducted on social
image tagging data, face data, handwritten digit data and
document data to verify the effectiveness of the proposed
framework. Experimental results show that compared with
several representative algorithms, the proposed approach
achieves outstanding performance for all the tasks.

Our key contributions are summarized as follows.

� We propose a novel data representation learning
algorithm by jointly exploiting image understanding,
feature learning and feature correlation. Moreover,
our framework explores the intrinsic geometric struc-
ture, and the local and global structural consistencies
over labels to learn a underlying subspace, which is
robust to noise and outliers by using ‘2;1-norm.

� We develop an efficient algorithm to solve the pro-
posed formulation. The theoretical and empirical
analysis demonstrate that the designed optimization
algorithm is efficient and effective, and converges
quickly.

� The proposed formulation is competent to the tasks
of social image tagging, unsupervised clustering
and semi-supervised/supervised classification, and
achieves state-of-the-art results.

� The proposed framework is a general one that lever-
ages several existing methods as special cases and
their intrinsic relationships are elucidated.

The remainder of this paper is arranged as follows. We
introduce the related work in Section 2. Then we elaborate
our proposed formulation in Section 3 followed with its
optimization algorithm in Section 4. How to apply the
proposed method to various image understanding tasks is
addressed in Section 5. Extensive experiments are con-
ducted and analyzed in Section 6. We present discussions
about the proposed method in Section 7. Section 8 concludes
this work with future work.

2 RELATED WORK

In this section, we briefly review the related research on fea-
ture learning including feature selection [3], [4], [5], [13] and
subspace learning [2], [14].

2.1 Feature Selection

Feature selection is a process of obtaining a subset of rele-
vant features for model construction and removing
redundant or irrelevant features. According to the avail-
ability of label information, there are three broad catego-
ries: supervised [4], [13], [15], semi-supervised [16] and
unsupervised feature selection methods [5], [17], [18].
Traditional feature selection usually ignores the correla-
tions among features, such as Fisher Score [13] and
Laplacian Score (LS) [17]. To this end, some sparsity-

based approaches have been studied to exploit the feature
correlation [1]. ‘2;1-norm has been shown effective for
sparse feature selection [4] and gains increasing interest
[1], [5], [19]. Ma et al. [1] proposed a supervised feature
selection algorithm to improve the image tagging perfor-
mance. In [5], clustering and feature selection are incorpo-
rated into a joint framework to select a feature subset
having strong discriminative power. Different from them,
the proposed algorithm is an integrated framework which
leverages feature learning and image understanding.
In addition, several feature selection algorithms can be
deemed as special cases of our framework.

2.2 Subspace Learning

Subspace learning sheds light on various tasks in computer
vision and multimedia. It projects the original high-
dimensional feature space to a low-dimensional subspace,
wherein specific statistical properties can be well preserved.
The most popular methods include PCA [2], LDA [2], LPP
[6] and neighborhood preserving embedding (NPE) [20].
These approaches with different motivations can be inter-
preted in a general graph embedding framework [7]. The
learned projections of these methods are linear combina-
tions of all the original features. Recently, sparse subspace
learning has attracted considerable interests. Sparse PCA
[21] was proposed based on “Elastic Net” regularization.
Cai et al. [22] proposed a unified sparse subspace learning
framework based on ‘1-norm regularization spectral regres-
sion. Some manifold learning approaches are studied to
uncover the underlying nonlinear subspace, such as
ISOMAP [8], LE [9] and LLE [10]. Factor analysis is another
type subspace learning algorithm, such as singular value
decomposition (SVD) and NMF [11]. However, these meth-
ods only explore the visual features of images to mine
the underlying subspace whereas the low-level features and
the high-level semantics are not linked. Due to the semantic
gap, the learned data representations can not be ensured
to well predict labels. In [23], a latent semantic space is
uncovered by learning a transformation to link the visual
features and tags directly based on low rank approximation.
Different from previous work, the proposed method learns
a discriminative representation by incorporating image
understanding and feature learning into a unified frame-
work. A hidden subspace, which is an intermediate space
between the low-level visual space and high-level semantic
space, is uncovered to well predict labels. Besides, by intro-
ducing the row sparse model, our method is robust to out-
liers and noise.

3 THE PROPOSED RSSL FRAMEWORK

In this section, we introduce a novel subspace learning
method for image understanding, called robust structured
subspace learning, which can find a suitable representation
of data.

3.1 Preliminary

Throughout this paper, we use bold uppercase characters
to denote matrices, bold lowercase characters to denote
vectors. For any matrix A, ai means the ith column vector

of A, ai means the ith row vector of A, Aij denotes the
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ði; jÞ-element of A and Tr½A� is the trace of A if A is square.

AT denotes the transposed matrix of A. We define for q � 1,

the ‘q-norm of a vector a 2 Rm as kakq ¼ ð
Pm

i¼1 jaijqÞ1=q. We

consider the Frobenius norm of a matrix A 2 Rm�n:
kAk2F ¼

Pm
i¼1

Pn
j¼1 A

2
ij ¼ Tr½ATA�. The ‘2;1-norm for A is

defined as

kAk2;1 ¼
Xm
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
j¼1

A2
ij

vuut ¼ 2Tr½ATDA�; (1)

where D is a diagonal matrix with Dii ¼ 1
2kaik2. Note that in

practice, kaik2 could be close to zero. For this case, we can
follow the traditional regularization way and define

Dii ¼ 1
kaik2þ�

, where � is very small constant. When �! 0, it

is easy to verify that 1
kaik2þ� approximates 1

kaik2. Furthermore,

let us use Im to denote the identity matrix in Rm�m.
Consider a data set consisting of n data points fxigni¼1

assigned with c-dimensional binary-valued label vectors
fyigni¼1, yi 2 f0;1gc. Here c is the cardinality of the label set
C ¼ ft1; t2; . . . ; tcg. Let X ¼ ½x1; . . . ;xn� denote the data

matrix, in which xi 2 Rd is the feature descriptor of the ith

sample, and Y ¼ ½y1; . . . ;yn�T be the label matrix of size
n� c. The jth column vector of Y corresponds to a labeling
configuration with respect to the tag j and Yij ¼ 1 indicates
that xi is associated with the label j, and Yij ¼ 0 otherwise.
We also introduce a predicted label matrix F 2 Rn�c, where

each row f i 2 Rc is the predicted label vector of the ith data
xi. The local structure graph S is defined as follows [24], [25]

Sij ¼ exp
�
� kxi�xjk

2

s2

�
xi 2 N kðxjÞ or xj 2 N kðxiÞ

0 otherwise;

(
(2)

where N kðxÞ is the set of k-nearest neighbors of x.

3.2 Formulation

Obtaining a good performance in image understanding
tasks always requires to find a good data representation.
Features are correlated to represent the semantic informa-
tion and combinations of features are more discriminative
than individual features. We present a formulation to learn
appropriate representations of images embedding in a
latent subspace. In this work, the underlying subspace is
expected to satisfy the two following properties.

1) It should be locally smooth, i.e., the local intrinsic
geometric structure should be consistent with that in
the original visual space.

2) It should be discriminative to well predict the proper
labels.

In light of these properties, it is reasonable to assume
that the latent subspace and the original space are linked
by a linear transformation Q 2 Rd�r, where r is the
dimensionality of the latent subspace. For each data point
xi, the corresponding representation in the latent subspace

is QTxi. To satisfy the first property, we assume that the
neighboring data in the original feature space ought to be
close to each other in the latent subspace, which is analo-
gous to the Laplace-Beltrami operator on manifolds [26].

This introduces a smooth regularization on the underlying
geometric structure between samples in the latent sub-
space, which is formulated as

min
QTQ¼Ir

1

2

Xn
i;j¼1

Sij
QTxiffiffiffiffiffiffiffi
Eii

p �QTxjffiffiffiffiffiffiffi
Ejj

p
�����

�����
2

2

¼ Tr½QTXLXTQ�; (3)

where E is a diagonal matrix with Eii ¼
Pn

j¼1 Sij and

L ¼ E�1=2ðE� SÞE�1=2 is the normalized graph Laplacian

matrix. Note that the orthogonal constraint QTQ ¼ Ir is
imposed to make the problem tractable.

To fulfil the second property, we introduce predictive
functions to find a proper predicted label matrix F 2 Rn�c

with the following attributes.

i) The predicted labels are supposed to be locally con-
sistent. That is, the labeling information should be
consistent among the nearby points.

ii) The predicted labels should be globally consistent,
i.e., they should be consistent with the groundtruth
labels.

iii) The predictive functions should be robust to the out-
liers and noise.

For simplicity, the linear function is adopted to predict
the mapping relationship between the latent space and the
label space, i.e.,

hjðxiÞ ¼ pT
j Q

Txi: (4)

Denoting P ¼ ½p1; . . . ;pc�, we obtain

hðXÞ ¼ PTQTX: (5)

The least squares loss function is always used to learn the
predictive functions. However, it is very sensitive to outliers
and noise. ‘2;1-norm has been confirmed to be robust to out-
liers and noise [1], [4]. Therefore, we propose the following
objective function to learn the predictive functions:

min
P
kF�XTQPk2;1 þ �kPk2;1: (6)

� is a nonnegative regularization parameter. In the above

objective function, the loss function kF�XTQPk2;1 is

robust to outliers and noise. Meanwhile, the regularization
term kPk2;1 guarantees that P is sparse in rows, which

requires to select discriminative features in the latent sub-
space to predict F.

The idea of local and global consistency, i.e., the attrib-
utes (i) and (ii), can be generalized as follows:

min
F

1

2

Xn
i;j¼1

Sij
f iffiffiffiffiffiffiffi
Eii

p � f jffiffiffiffiffiffiffi
Ejj

p
�����

�����
2

þ
Xn
i¼1

Uii

Xc

l¼1
ðFil � YilÞ2

, min
F

Tr½FTLF� þ Tr½ðF�YÞTUðF�YÞ�:
(7)

HereU is a diagonal matrix defined as

Uii ¼ z if xi is tagged;
0 otherwise:

�
(8)

z is a large constant. The first term and the second term in
the optimization problem (7) guarantee the local and global
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structural consistency, respectively. Note that F is the pre-
dicted label matrix. It is natural and reasonable to impose a
nonnegative constraint on F, i.e., all the elements of F are
required to be nonnegative. Consequently, the optimization
problem (7) becomes:

min
F�0

Tr½FTLF� þ Tr½ðF�YÞTUðF�YÞ�: (9)

By jointly modelling (3), (6) and (9), we obtain

min
P;Q;F

kF�XTQPk2;1 þ aðTr½FTLF�

þ Tr½ðF�YÞTUðF�YÞ�Þ þ bTr½QTXLXTQ�
þ �kPk2;1

s:t: QTQ ¼ Ir;F � 0;

(10)

where a and b are two trade-off parameters. From the above
objective function, we can see that the predictive functions
are robust to outliers and noise and can preserve the local
and global structural consistency. The third term can avoid
the overfitting problem induced by sparse context links Y,
and also incorporate the content links into modeling the
latent space geometry [23]. By jointly learning the predictive
functions and the latent subspace with ‘2;1-norm regulariza-
tion, the proposed formulation ensures that features in the
underlying subspace are combinations of original features
and reflect semantic information. Thus, they are discrimina-
tive to predict labels.

4 OPTIMIZATION

The optimization problem (10) involves the ‘2;1-norm which
is non-smooth and cannot have a close form solution. Con-
sequently, we propose an iterative algorithm. To facilitate

the optimization, by defining W ¼ QP 2 Rd�c, we rewrite
the problem (10) as minimizing the following equation.

O ¼ kF�XTWk2;1 þ aðTr½FTLF�
þ Tr½ðF�YÞTUðF�YÞ�Þ þ bTr½QTXLXTQ�
þ gkW�QPk2F þ �kPk2;1

s:t: QTQ ¼ Ir;F � 0:

(11)

In the following, we introduce the proposed update rules
in brief and the elaborated inference procedure please
refer to the supplemental material, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2015.2400461.

4.1 Update P As GivenW andQ

By setting the derivative @O=@P ¼ 0 and using the property

thatQTQ ¼ Ir, we obtain

gðQTQP�QTWÞ þ �DP ¼ 0

) P ¼ gðgIþ �DÞ�1QTW ¼ gV�1QTW:
(12)

where V ¼ gIr þ �D and D is a diagonal matrix with Dii ¼
1

2kpik2
, i ¼ 1; . . . ; r.

4.2 UpdateW As Given P,Q and F

Now, by substituting P in O with Eq. (12), the objective
function O is written as follows:

O ¼ kZk2;1 þ fðFÞ þ gðQÞ þ gkW� gQV�1QTWk2F
þ �Tr½g2WTQV�1DV�1QTW�
¼ fðFÞ þ gðQÞ þ Tr½ðF�XTWÞT �DðF�XTWÞ�
þ gTr½WT ðId � gQV�1QT ÞW�;

(13)

where Z ¼ F�XTW, fðFÞ ¼ aðTr½FTLF� þ Tr½ðF� YÞTUðF�
YÞ�Þ and gðQÞ ¼ bTr½QTXLXTQ�. �D is a diagonal matrix

with �Dii ¼ 1
2kzik2

and we use the property that

kAk2F ¼ TrðATAÞ for any arbitrary matrix A. By setting the
derivative @O= @W ¼ 0, we get

X �DðXTW� FÞ þ gðId �QV�1QT ÞW ¼ 0

, ðX �DXT þ gðId � gQV�1QT ÞÞW ¼ X �DF

, W ¼ ðG� g2QV�1QT ÞÞ�1X �DF

, W ¼ H�1X �DF:

(14)

HereG ¼ X �DXT þ gId andH ¼ G� g2QV�1QT .

4.3 UpdateQ As Given P,W and F

First, we rewrite Eq. (13) as follows:

O ¼ Tr½ðXTW� FÞT �DðXTW� FÞ� þ fðFÞ
þ gðQÞ þ gTr½WT ðId � gQV�1QT ÞW�
¼ Tr½WTHW� � 2Tr½WTX �DF�
þ Tr½FT �DF� þ fðFÞ þ gðQÞ:

(15)

By substituting the expression for W in Eq. (14) into

Eq. (15), sinceH ¼ HT , we obtain the following equation:

O ¼ Tr½FT �DXT ðH�1HH�1 � 2H�1ÞX �DF�
þ Tr½FT �DF� þ fðFÞ þ gðQÞ
¼ �Tr½FT �DXTH�1X �DF�
þ Tr½FT �DF� þ fðFÞ þ gðQÞ:

(16)

By substituting Eq. (16) into the problem (11), we have the
following optimization problem w.r.t.Q:

max
QTQ¼Ir

Tr½FT �DXTH�1X �DF� � gðQÞ: (17)

To compute the matrix inverse, using the Sherman-
Morrison-Woodbury formula [27]: AþUCVð Þ�1¼ A�1�
A�1U C�1 þVA�1U

� ��1
VA�1, we have

H�1 ¼ ðG� g2QV�1QT Þ�1

¼ G�1 þ g2G�1QðV� g2QTG�1QÞ�1QTG�1:
(18)

Thus, by using the property that Tr½AB� ¼ Tr½BA�, the
optimization problem (17) is equivalent to
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max
QTQ¼Ir

Tr½FT �DXTH�1X �DF� � bTr½QTXLXTQ�

, max
QTQ¼Ir

g2Tr½ðgIr þ �D� g2QTG�1QÞ�1QTTQ�

� bTr½QTXLXTQ�
, max

QTQ¼Ir
g2Tr½QT ðgId þ �QDQT � g2G�1Þ�1TQ�

� bTr½QTXLXTQ�
, max

QTQ¼Ir
Tr½QTN�1Q�;

(19)

where T ¼ G�1X �DFFT �DXTG�1 and N ¼ ð1
g
Idþ

�
g2
QDQT �G�1Þ�1T� bXLXT . Q can be relaxedly

obtained by the eigen-decomposition of N�1. Note that
although N needs Q as input, the above solution is effective
and empirically validated since our algorithm converges
very quickly to makeQ stable.

Algorithm 1. The Proposed RSSL Algorithm

Input:
Data matrixX 2 Rd�n and Tag matrixY 2 Rn�c;
Parameters a, b, g, �, k and r

Output:
Converged F, P,Q andW.

1: Construct the k-nn graph and calculate L;
2: Compute the selection matrixU 2 Rn�n;
3: Set t ¼ 0; Initialize F0 2 Rn�c andQ0 2 Rd�r, and set

�D0 2 Rn�n andD0 2 Rr�r as identity matrices;
4: repeat
5: Gt ¼ X �DtX

T þ gId;

6: Tt ¼ G�1t X �DtFtF
T
t
�DtX

TG�1t ;

7: Nt ¼ ð1g Id þ �
g2
QtDtQ

T
t �G�1t Þ�1Tt � bXLXT ;

8: GetQtþ1 by the eigen-decomposition ofN�1t ;

9: Ht ¼ Gt � g2Qtþ1ðgIr þ �DtÞ�1QT
tþ1;

10: Mt ¼ �Dt þ aL� �DtX
TH�1t X �Dt;

11: ðFtþ1Þij ¼ ðFtÞij
ðaUYtÞij

ðMtFtþaUFtÞij;

12: Wtþ1 ¼ H�1t X �DtFtþ1;
13: Ztþ1 ¼ Ftþ1 �XTWtþ1;
14:

�Dtþ1 ¼
2kz1tþ1k2

� � �
1

2kzn
tþ1k2

2
64

3
75;

15: Ptþ1 ¼ gðgIr þ �DtÞ�1QT
tþ1Wtþ1;

16:

Dtþ1 ¼
2kp1

tþ1k2
� � �

1
2kpr

tþ1k2

2
64

3
75;

17: t ¼ t þ 1;
18: until Convergence criterion satisfied

4.4 Update F As Given P,W andQ

We substitute the expression in Eq. (16) into Eq. (11) and get
the following optimization problem w.s.t. F.

min
F�0

Tr½FT ð �Dþ aL� �DXTH�1X �DÞF�

þ aTr½ðF�YÞTUðF�YÞ�:
(20)

Letting M ¼ �Dþ aL� �DXTH�1X �D, fij be the Lagrange
multiplier for constraint Fij � 0 and F ¼ ½fij�, the Lagrange

function is

Tr½FTMF� þ aTr½ðF�YÞTUðF�YÞ� þ TrðFFT Þ: (21)

Setting its derivative with respect to Fij to 0 and using the
Karush-Kuhn-Tuckre (KKT) condition [28] fijFij ¼ 0, we

obtain the updating rules:

MFþ aUðF�YÞ þF ¼ 0

) Fij  Fij

ðaUYÞij
ðMFþ aUFÞij

:
(22)

From the above analysis, we can see thatD and �D related
to W is required to solve Q and F and it is still not straight-
forward to obtain W, Q and F. To this end, we design an
iterative algorithm to solve the proposed formulation,
which is summarized in Algorithm 1. The convergence cri-
terion used in our experiments is that the number of itera-
tions is more than 20 or jOt�1 �Otj=Ot�1 < 0:001, where Ot

is the value of the objective function in the tth iteration.
Once Q and W are obtained, given a testing image x, its
latent representation and label prediction vector are com-

puted by b ¼ QTx and f ¼ ½f1; . . . ; fc�T ¼WTx, respec-
tively. Besides, P can be deemed as a feature selection
matrix in the latent subspace.

4.5 Computational Complexity Analysis

In this section, we discuss the computational cost of the pro-
posed method. The common way to express the complexity
of one algorithm is using big O notation

As stated in Algorithm 1, the k-nn graph is first con-
structed based on the euclidean distance in the original

space. The corresponding cost is Oðdn2Þ, where n is the
number of images and d is the dimension of features. Then,
the proposed optimization problem is solved iteratively. In

each iteration, G is computed with the cost of Oðdn2 þ d2nÞ
while the complexity to obtain G�1 is Oðd3Þ. The cost for

computing Q is Oðd3 þ d2nþ dn2 þ dncÞ, in which the time
complexities to compute T, N and the eigen-decomposition

are Oðd2nþ dn2 þ dncþ d3Þ, Oðd3 þ d2nþ dn2Þ and Oðd3Þ,
respectively, where c is the number of tags. Since gIr þ �Dt

is a diagonal matrix and its inversion cost OðrÞ, it needs

Oðdr2 þ d2rÞ to obtain H, where r is the dimension of the

subspace. Then H�1 is computed with the cost of Oðd3Þ.
With H�1 obtained, it costs Oðd2nþ dn2Þ, Oðn2cÞ and

Oðd2nþ dnþ dncÞ to calculate M, F and W, respectively.

Finally, Z, �D, P and D are got with the time complexity of

OðdncÞ, Oðncþ nÞ, Oðrþ dr2 þ drcÞ and Oðrcþ rÞ, respec-
tively. Thus the total cost of our method is OðT ðd2nþ dn2þ
d3 þ dncþ dr2 þ d2rþ n2cþ drcÞ þ n2dÞ, where T is the
number of iterations in our algorithm. Since r� n and

r� d, the whole cost of the proposed method is OðT ðdn2þ
d2nþ d3 þ dncþ n2cÞ þ dn2Þ.

5 IMAGE UNDERSTANDING TASKS

We now elaborate how to apply the proposed learning
framework to different image understanding tasks, i.e.,
social image tagging, clustering and classification.
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5.1 Social Image Tagging

For social image tagging, the raw correspondences between
social images and their associated tags are available to define
Y, but it is possibly imprecise since the community contrib-
uted tags annotated by web users could be noisy, irrelevant,
and often incomplete for describing the image contents [29],
[30]. As a consequence, the goal of social image tagging is to
remove noisy and irrelevant tags, complement relevant tags,
and add tags to untagged images. It is observed from the
aforementioned analysis that the proposed formulation is
adaptive to the social image tagging task in nature. The ‘2;1
norm in the loss function makes it enable to refine the raw
tags. That is, for the learning data, i.e. in-sample, the learned
F is used to refine the raw tags. For the new image x, i.e., out-

of-sample, its tag vector is computed by f ¼WTx.

5.2 Clustering

The proposed formulation can be applied to clustering. It
enables to find an appropriate representation of data to
improve the performance of clustering.

For unsupervised learning, all the diagonal elements of
the selection matrix U are all zeros since there exists no

labeled data. The term Tr½ðF�YÞTUðF�YÞ� in the prob-
lem (11) is equal to 0. In the clustering task, each sample is
assigned to one cluster. The matrix F is deemed to be the
scaled cluster indicator matrix and required to be orthogo-
nal [5], [19]. Consequently, the problem (11) becomes

minkZk2;1 þ aTr½FTLF� þ bTr½QTXLXTQ�
þ gkW�QPk2F þ �kPk2;1

s:t: QTQ ¼ Ir;F
TF ¼ Ic;F � 0:

(23)

We can see that it is nature and reasonable to impose orthog-
onal constraint on F for clustering, which makes the learned
F more accurate. When both nonnegative and orthogonal
constraints are satisfied, there is only one element in each
row of F is greater than zero and all of the others are zeros.
The solutions ofP,Q andW are consistent with those in Sec-
tion 4. To obtain the solution of F, we relax the orthogonal
constraint and the Lagrange function (21) becomes

min
F�0

Tr½FTMF� þ h

2

��FTF� Ic
��2
F
þ TrðFFT Þ: (24)

h > 0 is a parameter to control the orthogonality condition.
In practice, h should be large enough to insure the orthogo-
nality satisfied. Setting its derivative with respect to Fij to 0
and using the KKT condition [28] fijFij ¼ 0, we obtain the

updating rules:

MFþ hFðFTF� IcÞ þF ¼ 0

) Fij  Fij

ðhFÞij
ðMFþ hFFTFÞij

:
(25)

Then we normalize F with ðFTFÞii ¼ 1; i ¼ 1; . . . ; c. The
clustering results are obtained from the learned F. In addi-
tion, the proposed method can be treated as an unsuper-
vised feature selection method. We first map data into the
latent subspace by Q and then select features in the sub-
space using P.

5.3 Classification

Similar to the above analysis, the proposed formulation is
also adaptive to semi-supervised and supervised classifica-
tion. For semi-supervised and supervised classification, we
still use the definition of the selection matrix U in Eq. (8),
that is, Uii is set to a large enough constant if xi is labeled.
The changes in the extension to clustering are still applied
to classification. That is, we impose orthogonal constraint
on F. As a consequence, we obtain the following problem:

minkZk2;1 þ aðTr½FTLF� þ Tr½ðF�YÞTUðF�YÞ�Þ
þ bTr½QTXLXTQ� þ gkW�QPk2F þ �kPk2;1

s:t: QTQ ¼ Ir;F
TF ¼ Ic;F � 0:

(26)

Note that for consistency to F, Y is made orthogonal by

Y YðYTYÞ�12.
The solutions of P, Q and W are consistent with those in

Section 4. To obtain the solution of F, by relaxing the
orthogonal constraint and using the Lagrange function and
the KKT condition, we obtain

Fij  Fij

ðhFþ aUYÞij
ðMFþ aUFþ hFFTFÞij

: (27)

Note that in semi-supervised classification, the unlabeled
learning data are labeled by the learned F. The testing data
are labeled using the learned matrix W in semi-supervised
and supervised classification.

6 EXPERIMENTAL VALIDATION

We present extensive experiments to validate the effective-
ness of our method for image understanding tasks, in-
cluding image tagging, clustering and classification. The
experiments are discussed in details in terms of image tag-
ging and briefly analyzed for clustering and classification.
Statistical significance test is also performed with a signifi-
cance level of 0:05. The student t-test is employed in our
experiments.

6.1 Image Tagging

6.1.1 Data Set

Social photo sharing sites allow users to post, tag and com-
ment on images. Therefore, social images cover almost
all the concepts people are interested in, which makes
researchers collect images to build social image data sets for
experimental purpose. In this work, we conduct our experi-
ments on two large scale publicly-available social image
data sets: MIRFlickr [31] and NUS-WIDE [32]. Table 1 sum-
marizes some statistics of these data sets.

MIRFlickr [31]. It contains 25,000 images from Flickr. It
contains 1,386 tags and provides the ground-truth
annotation of 38 concepts. We kept the tags that appear at
least 50 times, resulting in a vocabulary of 457 tags, which
only contains 18 concepts of those 38 concepts. Thus, we
adopt these 18 concepts to validate the performance. We
adopt two types of global image descriptors: Gist features
and color histograms with 16 bins in each color channel for
LAB and HSV representations and one type of local feature:
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SIFT feature. The features are available at http://lear.
inrialpes.fr/data/.

NUS-WIDE [32]. It contains 55;615 images from Flickr
associated with 5;018 tags annotated by amateur users. The
data set provides the ground-truth annotations of 81 con-
cepts, which are used to evaluate the performance. Note
that these 81 concepts are different from the user tags with
much irrelevant noise information while the ground-truth
labels are manually labeled. To reduce too noisy tags, we
removed tags whose occurrence numbers are below 25 and
obtained 2;892 unique tags. We download five types of fea-
tures: 144D color correlation, 73D edge direction histogram,
128D wavelet texture, 64D color histogram and 225D block-
wise color moments.

6.1.2 Experimental Setting

In our experiments, data are partitioned into two groups:
the learning data and the testing data. The learning data is
used for model estimation and evaluate the performance of
noisy tagged data while the testing data is utilized to test
the performance of new data. We randomly select n samples
as learning data and the remaining samples are used as test-
ing data. In our experiments, we set n ¼ 5;000, n ¼ 10;000,
respectively, and report all of the results. During the parti-
tion process, each label is guaranteed to be associated with
at least one images. To alleviate the instability introduced
by the randomly selected training data, we independently
repeat experiments 10 times to generate different learning
and testing data, and report the average results. The results
on the noisy tagged learning data and the testing data are
both reported.

6.1.3 Compared Scheme

To validate the effectiveness of RSSL, we compare it with
one baseline and a number of related state-of-the-art
approaches, which are enumerated as follows. The parame-
ters of these methods are tuned within the candidate set

½10�6; 10�3; 1; 103; 106�.
1) Baseline. The rigid regression is utilized as the base-

line algorithm.
2) ASO [33]. It learns predictive structures from multi-

ple tasks and unlabeled data.
3) LapRLS [34]. With the manifold assumption, it uses

the least square loss to seek a decision function
which is smooth over the whole data distribution
according to the graph Laplacian.

4) SDA [35]. It reduces the dimension of the input
visual features and then rigid regression is per-
formed as a classifier.

5) MPMF [36]. Multiple correlations are jointly
exploited by multi-correlation probabilistic matrix
factorization algorithm for image annotation.

6) SSLF [37]. It discovers the correlation information
among multiple labels by a low-dimensional sub-
space learning framework.

7) LSCCA [38]. The least-squares formulation of canoni-
cal correlation analysis is used to predict labels for
samples.

8) SFSS [39]. It predicts labels by considering both label
consistence with the training data labels and mani-
fold fitting on the data structure.

9) SFUS [1]. It annotates images by uncovering the
shared subspace of original features based on a spar-
sity-based model.

10) LMGE [40]. Images are annotated by integrating
shared structure learning and graph-based learning
into a joint framework.

11) C2MR [23]. The underlying latent semantic space is
learned by mining both context and content links in
social media networks.

6.1.4 Evaluation Metric

The area under the receiver operating characteristic (ROC)
curve, known as the AUC, is currently considered to be the
standard method for model comparison. It is well known
that it is a more faithful criterion used in many applications.
Following [37], [40], in our experiments we adopt area
under cures (AUC) as evaluation metric. As done in [40],
both the microaveraging and macroaveraging measures are
utilized to evaluate both the global performance across mul-
tiple concepts and the average performance of all the con-
cepts. To calculate the microaveraging result, we first
concatenate the concept indicator vectors of all concepts as
a long vector and then compute the average AUC. For the
macroaveraging result, we first compute the mean AUC of
each concept and then average the mean AUC values of all
the concepts.

Besides, the performance for image tagging is also evalu-
ated by using F1 measure, which is defined as: F1 ¼ 2�R�P

RþP ,

where RRR ¼ jNcj
jNgj, and PPP ¼ jNcj

jNtj. Here jNgj be the number of

images tagged with one concept w in the ground truth, jNtj
be the number of images tagged with w of our algorithm,
and jNcj be the number of correct tagged images with w by
our algorithm. The mean F1 over concepts is presented.
Note that in our experiments we annotate each image with
five concepts. Furthermore, mean average precision (MAP)
is utilized to measure the performance for image retrieval.

6.1.5 Experimental Results

The mean MicroAUC, mean MacroAUC and mean F1 of
10 times independent experiments with standard devia-
tion of all the algorithms on the MIRFlickr and NUS-
WIDE data sets are presented in Tables 2 and 3, respec-
tively. Results that are significantly better than others
are indicated in boldface. From the results, we have the
following observations.

TABLE 1
Statistics of the Data Sets with Image and Tag Counts

in the Format Mean/Maximum

MIRFlickr NUS-WIDE

Tag size 457 2,892
Concept size 18 81
Image size 25,000 55,615
Tags per img. 2.7/45 9.4/199
Concepts per img. 4.7/17 4.2/13
Img. per tag 145.4/1,483 180.9/9,208
Img. per concept 3,102.8/10,373 2,891.5/38,098
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First, from the results in Tables 2 and 3, we can see that
the proposed method gains the best performances among
all of the compared algorithms in terms of mean MicroAUC,

MacroAUC and F1 on both the MIRFlicrk and NUS-WIDE
data sets. This indicates that the proposed RSSL enables to
effectively learn a robust structured subspace from data.

TABLE 2
Experimental Results (Mean Microauc 	 Standard Deviation, Mean Macroauc 	 Standard Deviation and Mean F1 	 Standard

Deviation) on the MIRFlickr Data Set

Method n ¼ 5;000 n ¼ 10;000

MicroAUC MacroAUC F1 MicroAUC MacroAUC F1

Baseline learn 0:555	 0:001 0:544	 0:001 0:195	 0:002 0:582	 0:003 0:588	 0:004 0:230	 0:004
ASO learn 0:590	 0:004 0:579	 0:002 0:229	 0:004 0:634	 0:005 0:613	 0:003 0:231	 0:002
LapRLS learn 0:578	 0:003 0:566	 0:003 0:211	 0:003 0:598	 0:005 0:590	 0:003 0:242	 0:006
SDA learn 0:561	 0:005 0:553	 0:006 0:204	 0:006 0:571	 0:004 0:550	 0:001 0:201	 0:003
MPMF learn 0:623	 0:003 0:624	 0:007 0:289	 0:008 0:592	 0:001 0:631	 0:001 0:292	 0:001
SSLF learn 0:667	 0:004 0:638	 0:003 0:369	 0:004 0:685	 0:002 0:649	 0:001 0:297	 0:002
LSCCA learn 0:574	 0:007 0:553	 0:010 0:247	 0:018 0:586	 0:006 0:566	 0:004 0:259	 0:003
SFSS learn 0:676	 0:005 0:658	 0:007 0:370	 0:014 0:708	 0:001 0:668	 0:001 0:380	 0:004
SFUS learn 0:677	 0:004 0:655	 0:003 0:369	 0:004 0:701	 0:003 0:674	 0:003 0:380	 0:003
LGME learn 0:688	 0:004 0:658	 0:005 0:369	 0:005 0:703	 0:002 0:673	 0:006 0:381	 0:002
C2MR learn 0:636	 0:002 0:616	 0:003 0:261	 0:002 0:671	 0:014 0:647	 0:005 0:286	 0:007
RSSL learn 0:703	 0:001 0:675	 0:002 0:498	 0:006 0:724	 0:002 0:685	 0:002 0:512	 0:001

Baseline test 0:524	 0:002 0:511	 0:003 0:162	 0:003 0:550	 0:003 0:536	 0:001 0:185	 0:001
ASO test 0:547	 0:003 0:5311	 0:002 0:188	 0:002 0:566	 0:005 0:562	 0:003 0:194	 0:002
LapRLS test 0:561	 0:002 0:540	 0:001 0:189	 0:008 0:570	 0:007 0:538	 0:001 0:189	 0:001
SDA test 0:557	 0:002 0:541	 0:001 0:192	 0:001 0:571	 0:003 0:541	 0:001 0:189	 0:002
MPMF test - - - - - -
SSLF test 0:634	 0:004 0:594	 0:002 0:191	 0:003 0:646	 0:002 0:623	 0:002 0:205	 0:002
LSCCA test 0:561	 0:003 0:516	 0:002 0:175	 0:006 0:563	 0:005 0:521	 0:002 0:179	 0:002
SFSS test 0:658	 0:013 0:603	 0:001 0:215	 0:002 0:681	 0:003 0:622	 0:003 0:218	 0:008
SFUS test 0:643	 0:001 0:617	 0:001 0:214	 0:002 0:674	 0:002 0:619	 0:002 0:218	 0:003
LGME test 0:644	 0:011 0:627	 0:002 0:221	 0:004 0:677	 0:002 0:613	 0:003 0:223	 0:002
C2MR test 0:630	 0:001 0:607	 0:003 0:193	 0:002 0:658	 0:014 0:642	 0:007 0:197	 0:009
RSSL test 0:673	 0:005 0:642	 0:001 0:255	 0:003 0:697	 0:002 0:653	 0:001 0:267	 0:002

The best results are highlighted in bold.

TABLE 3
Experimental Results (Mean Microauc 	 Standard Deviation, Mean Macroauc 	 Standard Deviation and Mean F1 	 Standard

Deviation) on the NUS-WIDE Data Set

Method n ¼ 5;000 n ¼ 10;000

MicroAUC MacroAUC F1 MicroAUC MacroAUC F1

Baseline learn 0:677	 0:003 0:594	 0:002 0:225	 0:010 0:697	 0:002 0:612	 0:002 0:316	 0:005
ASO learn 0:709	 0:001 0:636	 0:001 0:327	 0:003 0:724	 0:002 0:641	 0:001 0:343	 0:008
LapRLS learn 0:708	 0:001 0:663	 0:004 0:354	 0:004 0:712	 0:005 0:664	 0:007 0:333	 0:006
SDA learn 0:709	 0:001 0:642	 0:003 0:310	 0:001 0:722	 0:002 0:644	 0:006 0:347	 0:009
MPMF learn 0:665	 0:003 0:719	 0:002 0:358	 0:006 0:674	 0:001 0:775	 0:001 0:381	 0:005
SSLF learn 0:708	 0:002 0:677	 0:009 0:326	 0:010 0:738	 0:002 0:685	 0:003 0:341	 0:007
LSCCA learn 0:618	 0:002 0:724	 0:003 0:258	 0:002 0:632	 0:002 0:732	 0:003 0:264	 0:002
SFSS learn 0:757	 0:009 0:722	 0:004 0:480	 0:007 0:786	 0:006 0:736	 0:004 0:485	 0:011
SFUS learn 0:753	 0:006 0:727	 0:001 0:390	 0:009 0:785	 0:004 0:725	 0:003 0:407	 0:008
LGME learn 0:761	 0:003 0:739	 0:005 0:453	 0:007 0:780	 0:006 0:744	 0:004 0:471	 0:04
C2MR learn 0:689	 0:003 0:621	 0:003 0:301	 0:009 0:770	 0:002 0:655	 0:002 0:351	 0:003
RSSL learn 0:835	 0:008 0:768	 0:006 0:576	 0:005 0:844	 0:002 0:791	 0:009 0:589	 0:003

Baseline test 0:658	 0:002 0:550	 0:002 0:131	 0:003 0:674	 0:001 0:560	 0:001 0:152	 0:004
ASO test 0:673	 0:002 0:559	 0:004 0:157	 0:002 0:675	 0:001 0:574	 0:004 0:159	 0:003
LapRLS test 0:677	 0:001 0:554	 0:009 0:140	 0:003 0:691	 0:007 0:561	 0:008 0:151	 0:009
SDA test 0:672	 0:002 0:613	 0:0021 0:165	 0:001 0:682	 0:008 0:633	 0:009 0:160	 0:008
MPMF test - - - - - -
SSLF test 0:683	 0:002 0:630	 0:002 0:173	 0:007 0:696	 0:001 0:653	 0:001 0:189	 0:002
LSCCA test 0:588	 0:001 0:613	 0:001 0:158	 0:002 0:599	 0:003 0:621	 0:006 0:192	 0:004
SFSS test 0:706	 0:001 0:630	 0:002 0:228	 0:004 0:731	 0:002 0:653	 0:002 0:239	 0:005
SFUS test 0:708	 0:001 0:633	 0:002 0:238	 0:004 0:735	 0:001 0:662	 0:001 0:247	 0:003
LGME test 0:711	 0:001 0:641	 0:001 0:243	 0:001 0:729	 0:001 0:657	 0:001 0:248	 0:003
C2MR test 0:642	 0:004 0:620	 0:002 0:220	 0:001 0:767	 0:002 0:641	 0:001 0:225	 0:001
RSSL test 0:773	 0:001 0:703	 0:004 0:269	 0:006 0:795	 0:005 0:731	 0:006 0:272	 0:007

The best results are highlighted in bold.
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Second, compared with the related approaches, i.e., ASO,
SSLF, LapRLS, SFSS, SFUS and LGME, the proposed RSSL
achieves significant improvements, which demonstrates
the necessity and advantage of the introduced ‘2;1-norm
and smooth regularization. ‘2;1-norm makes RSSL robust to
noise and outliers. By mining the local geometric structure,
RSSL maps visually similar images close to each other in the
hidden subspace. Thus they have consistent feature repre-
sentations in the hidden subspace, which makes much eas-
ier to assign concepts to images in the subspace. Third,
RSSL, LGME and SFSS are superior to other methods in
general, such as ASO, SDA, SSLF and SFUS. It indicates the
effectiveness of the local consistent constraint over tags,
which gives an intuitive interpretation of better perfor-
mance of the proposed algorithm since visually similar
images can implicitly share common tags. On the other
hand, the noise in tags can also be somewhat alleviated by
exploiting visual geometric structure. Fourthly, by explor-
ing the feature combinations in the prediction process,
RSSL, LGME, SFUS, SSLF and ASO are better than Baseline.
Fifth, to jointly mining the image tagging information and
visual content information, MPMF factorizes the image-tag
relation matrix, image correlation matrix and tag correlation
matrix simultaneously and it cannot map new images into
the learned model. On the contrary, the proposed model
learns a robust latent subspace by exploiting the image
tagging information and visual content information simul-
taneously and can easily assign tags to new images. The
proposed RSSL is better than MPMF since RSSL can learn
more robust and compact latent subspace. Sixthly, RSSL
outperforms LSCCA by jointly uncovering the image tag-
ging information and image content. The proposed frame-
work can reduce the noise-induced uncertainty. In addition,
RSSL achieves better results than C2MR, which indicates
that it is better to jointly explore the visual geometric struc-
ture and the tag local and global consistency.

Finally, we present the performance of image retrieval
in terms of MAP of all the compared methods on the
learning data sets with n ¼ 5;000 of MIRFlcirk and NUS-
WIDE data sets in Fig. 1. It is observed that RSSL per-
forms significantly better than other methods for image

retrieval, which shows that our method can rank the rele-
vant tags at the top positions.

6.1.6 Parameter Sensitiveness

In the proposed framework, there are several parameters to
be tuned. In our experiments, it is observed that the perfor-
mance is not sensitive to the dimensionality r of the latent

subspace and we set r ¼ 5� bm�15 c, where m is the number

of concepts and bcc denotes the largest integer not greater
than c. When a is larger than 10, the performance of RSSL
is good for the two image data sets. Besides, we observe
that RSSL is not sensitive to � when it is in the range of

½10�3; 103�. To validate how the rest parameters affect the
performance, we conduct experiments to evaluate their sen-
sitivity. The MIRFlickr and NUS-WIDE data sets with
n ¼ 5;000 learning data are used.

Fig. 2 shows the performance variance w.r.t. b and g in
terms of F1 on the two data sets. It is observed that the tag-
ging performance varies corresponding to different values
of the parameters b and g. The performance is good when
the parameter b is not too large or small, which demon-
strates the necessity of the smooth regularization on the
underlying geometric structure between samples in the
latent subspace. However, due to images represented by
the low-level visual features, large b may introduce inaccu-
rate information, which degrades the performance. For the
parameter g, we can see that it should not be small. Large
g makes the learned W satisfy the expected properties,
which guarantees that better results are achieved.

The underlying geometric structure preservation in the
latent subspace is dependent on the neighbor number k to
compute the Laplcian matrix. In this experiments we tune
kwithin the range of f5; 10; 15; 20; 25; 50g. The performances
in terms of recall, precision and F1 by varying k on the two
databases are presented in Fig. 3. We observe that the per-
formance of the proposed RSSL varies slightly with varying
k when k is not large. Thus, in our experiments, we fix
k ¼ 15 for both the MIRFlickr and NUS-WIDE data sets.

6.1.7 Convergence Study

To solve the proposed formulation, we develop an iterative
update algorithm. Now we experimentally validate its con-
vergence and study the speed of convergence. Following the
above experiments, the corresponding experiments are con-
ducted on the MIRFlickr and NUS-WIDE datasets with
n ¼ 5;000 learning data. The convergence rates are shown in
Fig. 4. From these figures, we can see that the value of our
objective functionmonotonically decreases when the iteration

Fig. 1. Comparison of different algorithms on MIFlickr and NUS-WIDE
learning data sets with n ¼ 5;000 in terms of MAP.

Fig. 2. The performance in terms of F1 by varying the parameters b and
g on MIFlickr and NUS-WIDE learning data sets with n ¼ 5;000.
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round increases and changes only a little bit after five itera-
tions for these two data sets, demonstrating that the proposed
optimization algorithm is effective and converges quickly.

6.2 Clustering

In this section, we evaluate the performance of the proposed
formulation for unsupervised clustering. The performance
in terms of clustering is measured by two widely used eval-
uation metrics, i.e., Accuracy (ACC) and normalized mutual
information (NMI) [18], [19]. The experiments are con-
ducted on seven publicly available datasets, including three
face image data sets (i.e., UMIST [41], JAFFE [42] and Point-
ing4 [43]), two handwritten digit data sets (i.e., a subset of
USPS [41] and Binary Alphabet (BA) [41]), and two text data
sets (i.e., tr11 [44] and oh15 [44]). Data sets from different
areas serve as a good test bed for a comprehensive evalua-
tion. Table 4 summarizes the details of these seven bench-
mark data sets.

As stated above, the goal of the proposed method is to
learn a suitable representation and our method is suitable
for clustering. Therefore, we adopt the learned F by the pro-
posed method for clustering and denote it as RSSL. Besides,
to validate the performance of the proposed method for
representation learning, the proposed method is treated as a
feature selection algorithm, denoted as RSSL-FS. That is, we
first map data into the underlying subspace and then select

features in the subspace by P to represent data. To demon-
strate the performance of our method, we take all the origi-
nal features for clustering as baseline and compare it with a
various of representative algorithms, including spectral
clustering (SC) [45], PCA [2], LPP [6] and several unsuper-
vised feature selection methods, i.e., MaxVar (Features
corresponding to the maximum variance are selected.), Lap-
lacian Score [17], SPEC [15], MCFS [18], UDFS [19], NDFS
[46] and LLCFS [47]. For feature selection methods, the
numbers of features used for clustering are set as f5;
10; 20; 50; 100; 150; 200; 250; 300g for all the datasets except
USPS. Because the total feature number of USPS is 256,
we set the number of selected features as f5; 10; 20; 50; 80;
110; 140; 170; 200g. In our experiments, we adopt Kmeans to
cluster samples based on the selected features. The perfor-
mance of Kmeans depends on initialization. We repeat the
clustering 20 times with random initialization for each setup
and report the average results. The average results with
standard deviation (std) are presented in Tables 5 and 6.

It can be observed that our method is significantly supe-
rior to other algorithms, which verifies that the proposed
RSSL enables to uncover more informative representations.
And our method is the only one which has consistently
high performance on all seven data sets. Intuitively, this
indicates that it is necessary and useful to exploit the latent
subspace to find the discriminative representation of data.

6.3 Classification

In this section we apply our method to the problem of classi-
fication including semi-supervised classification and super-
vised classification. To validate the performance, we
conduct experiments on four datasets, i.e., UMIST, JAFFE,
USPS and tr11. The performance is measured by the widely
used evaluation metric, i.e., classification ACcuracy.

For semi-supervised classification, we randomly choose
50 percent of samples as training data and the rest as testing
data. We further randomly sample s percent of training
data as labeled data. In our experiments, we set s as 5, 10, 20
and 50, respectively, and report all of the results. The pro-
posed algorithm is compared with several semi-supervised
methods, including LapRLS [34], SDA [35], LSR [48] and
SFSS [39]. The experiments are independently repeated
20 times to generate different training and testing data, and
the average results are reported. The compared results are
presented in Tables 7 and 8. We can see that the perfor-
mance of all the algorithms improve as the number of
labeled samples increases. Furthermore, it also is observed
that our framework significantly outperforms all of the com-
pared semi-supervised classification approaches, which

Fig. 3. The performance in terms of precision, recall and F1 by varying
k to compute L on MIFlickr and NUS-WIDE learning data sets with
n ¼ 5;000.

TABLE 4
Dataset Description

Domain Dataset n d c

Image, Face UMIST 575 644 20
JAFFE 213 1,024 10

Poingting4 2,790 1,120 15

Image, Handwritten Digits USPS 400 256 10
BA 1,404 320 36

Text tr11 414 6,429 9
oh15 913 3,100 10

Fig. 4. Convergence curves of the relative error of the objective function
value of the proposed algorithm.
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indicates that RSSL can effectively learn a representation of
data and classifiers from the labeled and unlabeled data.

The performance of the proposed RSSL for supervised
classification is also validated on these four datasets. We
randomly choose c percent of samples as training data and
the rest as testing data. In our experiments, we set c as 5, 10,

20 and 50, respectively. The experiments are independently
repeated 20 times to generate different training and testing
data, and the average results are reported. To demonstrate
the superiority of the proposed RSSL, we compared it with
several state-of-the-art methods, i.e., ASO [33], FSNM [4],
SSLF [37], LSCCA [38], SFUS [1] and SFSS [39]. The

TABLE 6
Clustering Results (NMI% 	 Std) of Different Algorithms for Clustering on Different Datasets

Dataset Face Handwritten Digits Text

UMIST JAFFE Pointing4 USPS BA tr11 oh15

Baseline 62:3	 2:3 80:0	 2:7 41:7	 1:4 62:6	 3:3 40:3	 2:0 7:0	 1:4 17:7	 3:0
SC 77:2	 3:2 85:6	 1:8 73:8	 2:0 69:2	 3:0 60:3	 0:9 2:5	 0:3 30:0	 1:1
PCA 63:8	 2:6 83:4	 1:9 47:4	 1:4 58:7	 2:0 58:4	 1:2 7:7	 2:4 26:0	 2:4
LPP 74:2	 3:0 80:8	 3:3 56:0	 2:1 62:4	 1:5 59:5	 0:9 40:2	 8:1 24:0	 2:8
MaxVar 63:5	 1:5 70:3	 1:2 50:8	 1:8 58:1	 1:7 56:9	 1:3 7:6	 1:1 22:1	 2:7
LS 63:9	 1:8 79:4	 4:0 42:7	 1:2 58:7	 1:0 57:3	 0:8 8:0	 2:0 23:2	 2:8
SPEC 65:2	 2:0 82:8	 1:8 40:5	 1:0 59:5	 1:1 57:9	 1:1 11:5	 2:9 23:6	 2:2
MCFS 66:7	 1:9 83:4	 2:0 53:1	 1:1 59:3	 0:9 57:5	 0:8 13:5	 3:3 23:1	 3:0
UDFS 67:3	 3:0 82:3	 3:5 52:4	 1:7 60:1	 2:3 58:1	 1:0 13:7	 1:9 21:8	 2:0
NDFS 69:7	 2:3 86:3	 4:1 56:4	 1:3 61:3	 2:3 58:8	 0:8 14:2	 3:0 24:2	 2:7
LLCFS 71:2	 2:5 85:8	 4:4 73:2	 2:9 65:8	 1:0 57:3	 1:0 31:9	 2:1 24:9	 1:5
RSSL-FS 80:5	 2:5 94:7	 2:1 77:9	 2:8 72:2	 0:5 62:3	 0:9 41:9	 2:2 36:8	 1:9
RSSL 81:4	 1:2 96:2	 0:7 82:4	 2:8 73:4	 0:3 62:7	 0:3 43:2	 1:0 39:3	 1:1

The best results are highlighted in bold.

TABLE 7
Semi-Supervised Classification Results (AC% 	 Std) of Different Algorithms on UMIST and JAFFE Datasets

Dataset UMIST JAFFE

s ¼ 5 s ¼ 10 s ¼ 20 s ¼ 50 s ¼ 5 s ¼ 10 s ¼ 20 s ¼ 50

LapRLS semi 51:9	 1:7 56:1	 1:9 59:3	 1:6 65:8	 1:4 81:9	 2:7 85:3	 1:7 90:1	 1:9 91:8	 1:3
SDA semi 34:4	 3:1 39:0	 2:0 42:1	 1:8 46:3	 1:4 72:3	 3:3 75:9	 2:6 82:0	 1:9 89:2	 0:6
LSR semi 30:9	 2:7 37:7	 2:1 46:3	 1:4 65:2	 1:3 77:8	 2:9 85:7	 2:1 87:9	 1:9 90:6	 2:0
SFSS semi 41:2	 1:7 59:3	 2:6 72:0	 1:8 89:0	 1:4 76:7	 3:6 87:9	 1:1 96:5	 0:7 99:9	 0:4
RSSL semi 60:5	 1:6 71:8	 0:5 82:9	 0:6 93:4	 0:3 92:7	 0:9 97:6	 0:7 99:9	 0:2 100:0	 0:0

LapRLS test 50:4	 2:7 56:4	 1:6 58:5	 1:2 63:7	 1:5 82:7	 1:8 84:1	 1:8 90:0	 1:8 90:2	 0:7
SDA test 32:4	 1:8 37:1	 1:0 40:8	 1:1 45:5	 1:0 70:2	 3:8 75:6	 2:3 80:6	 1:2 85:7	 0:8
LSR test � � � � � � � �
SFSS test 40:2	 1:2 58:9	 2:2 71:6	 2:4 88:2	 1:0 76:8	 3:2 88:1	 1:5 96:0	 1:6 99:5	 0:7
RSSL test 59:7	 1:6 71:2	 0:9 82:2	 1:3 93:9	 1:0 89:5	 1:2 96:3	 1:1 99:6	 0:4 100:0	 0:0

The best results are highlighted in bold.

TABLE 5
Clustering Results (ACC% 	 Std) of Different Algorithms for Clustering on Different Datasets

Dataset Face Handwritten Digits Text

UMIST JAFFE Pointing4 USPS BA tr11 oh15

Baseline 41:8	 1:7 72:5	 2:2 35:9	 1:2 62:6	 2:3 40:3	 2:0 30:9	 2:0 30:4	 1:0
SC 59:6	 2:3 75:8	 1:8 64:6	 2:2 71:5	 2:3 44:4	 2:2 31:1	 1:1 39:4	 2:7
PCA 43:3	 2:2 78:2	 1:5 36:5	 2:1 65:5	 2:5 43:4	 2:4 32:4	 2:4 34:9	 0:8
LPP 56:5	 2:4 69:7	 2:4 47:1	 2:0 64:0	 1:8 44:1	 1:8 48:2	 3:2 33:4	 1:6
MaxVar 45:8	 2:8 67:3	 0:8 44:0	 1:8 63:8	 1:3 40:7	 1:7 30:5	 1:0 32:9	 2:2
LS 45:9	 1:9 74:0	 1:6 37:1	 1:6 64:9	 2:1 42:1	 1:7 31:6	 1:6 33:8	 1:7
SPEC 47:9	 2:0 76:9	 1:2 38:6	 1:2 65:5	 1:8 42:2	 2:2 35:1	 1:8 33:8	 2:1
MCFS 46:3	 1:6 78:8	 2:1 46:2	 1:9 64:4	 1:1 41:5	 1:8 36:3	 2:1 33:8	 1:8
UDFS 48:6	 2:7 76:7	 1:1 45:1	 1:4 66:2	 1:7 42:7	 1:8 35:9	 1:5 32:9	 1:3
NDFS 51:3	 1:9 81:2	 1:1 48:9	 2:2 67:3	 0:7 43:4	 2:0 37:4	 2:5 34:8	 0:9
LLCFS 52:6	 2:2 81:6	 3:5 65:7	 2:6 68:9	 1:4 41:8	 1:8 38:0	 1:4 35:8	 1:8
RSSL-FS 65:2	 0:3 91:5	 0:4 69:1	 1:4 76:5	 1:8 47:6	 0:6 57:8	 1:5 48:2	 1:4
RSSL 67:9	 0:8 97:4	 1:2 76:9	 1:1 79:6	 0:4 49:2	 0:7 58:4	 0:6 54:0	 0:7

The best results are highlighted in bold.
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results measured by classification accuracy are reported in
Tables 9 and 10. From the results, we can see that the pro-
posed RSSL obviously achieves the best performance.

From these experiments, we conclude that our method is
well suited to classification problems, including semi-super-
vised and supervised ones.

7 DISCUSSION

The proposed formulation (11) is a general one, and can be
used to explain several existing algorithms as special cases.

Connection with feature selection algorithms. By now many
feature selection methods have been studied, such as NDFS
[46] and SFUS [1].

First, in unsupervised scenarios there is no labeled data.
If we set r ¼ d and Q ¼ Id, we have W ¼ P and the objec-
tive function (23) is changed to

min
F;W
kF�XTWk2;1 þ aTr½FTLF� þ �kWk2;1

s:t: FTF ¼ Ic;F � 0:
(28)

If we use the least-squares loss function, the above formula-
tion is same to the formulation of NDFS [46]. Our formula-
tion is robust to the outliers using the ‘2;1-norm based loss
function.

Second, for supervised learning, we set z!1 to make
F ¼ Y since all the data are labeled. If we set b ¼ 0 and use
the regularization term kWk2;1 instead of kPk2;1 to facilitate

feature selection, our formulation leads to

min
P;Q;W

kY�XTWk2;1 þ gkW�QPk2F þ �kWk2;1
s:t: QTQ ¼ Ir;

(29)

which is the formulation of SFUS [1].

TABLE 9
Classification Results (AC% 	 Std) of Different Algorithms for Supervised Classification on UMIST and JAFFE Datasets

Dataset UMIST JAFFE

c ¼ 5 c ¼ 10 c ¼ 20 c ¼ 50 c ¼ 5 c ¼ 10 c ¼ 20 c ¼ 50

ASO 60:4	 2:8 71:8	 3:3 85:3	 2:7 94:8	 1:1 90:6	 1:4 95:4	 1:7 98:8	 0:7 100:0	 0:0
FSNM 46:3	 1:8 69:0	 2:5 85:6	 2:0 94:6	 1:5 78:7	 3:0 92:5	 1:3 99:0	 0:8 99:9	 0:3
SSLF 47:5	 1:9 72:4	 2:5 87:4	 1:6 96:5	 1:3 87:3	 2:3 95:6	 1:5 99:4	 0:6 100:0	 0:0
LSCCA 47:6	 2:3 70:1	 2:2 86:1	 1:9 94:8	 1:4 86:3	 3:3 95:9	 1:9 99:1	 0:7 99:9	 0:3
SFUS 48:4	 2:0 72:3	 2:8 87:3	 2:1 95:6	 1:1 80:9	 2:2 96:9	 1:6 99:5	 0:5 100:0	 0:0
SFSS 48:3	 2:1 72:2	 1:6 87:2	 1:6 96:9	 0:9 83:9	 1:8 95:2	 1:5 99:2	 0:7 100:0	 0:0
RSSL 65:2	 0:9 83:5	 0:8 93:6	 0:7 98:8	 0:4 96:8	 1:0 99:7	 0:3 100:0	 0:0 100:0	 0:0

The best results are highlighted in bold.

TABLE 10
Classification Results (AC% 	 Std) of Different Algorithms for Supervised Classification on USPS and tr11 Datasets

Dataset USPS tr11

c ¼ 5 c ¼ 10 c ¼ 20 c ¼ 50 c ¼ 5 c ¼ 10 c ¼ 20 c ¼ 50

ASO 62:2	 2:7 69:3	 2:1 74:2	 2:2 82:2	 1:3 54:4	 3:7 69:7	 2:3 75:9	 1:3 82:9	 1:8
FSNM 60:8	 2:3 64:4	 2:8 71:9	 1:4 81:5	 1:2 50:8	 3:3 63:6	 2:7 76:1	 2:9 83:3	 2:1
SSLF 62:9	 2:7 70:3	 1:6 74:1	 1:7 83:4	 0:9 56:0	 4:7 73:0	 2:1 80:1	 1:5 83:7	 1:9
LSCCA 61:9	 2:1 63:3	 2:7 64:9	 2:7 66:1	 3:0 42:4	 5:0 54:2	 3:0 67:3	 2:0 81:0	 1:4
SFUS 64:5	 2:7 70:0	 1:9 77:8	 2:2 83:3	 2:2 60:1	 2:4 73:5	 2:2 80:4	 2:6 84:8	 1:6
SFSS 64:9	 2:5 72:2	 2:3 78:6	 1:2 84:3	 1:5 58:8	 4:3 72:5	 2:3 81:0	 1:8 85:5	 0:8
RSSL 73:9	 1:4 82:9	 1:1 88:5	 0:9 92:6	 0:2 71:7	 1:1 82:3	 1:4 89:9	 0:6 94:8	 0:2

The best results are highlighted in bold.

TABLE 8
Semi-Supervised Classification Results (AC% 	 Std) of Different Algorithms on USPS and tr11 Datasets

Dataset USPS tr11

s ¼ 5 s ¼ 10 s ¼ 20 s ¼ 50 s ¼ 5 s ¼ 10 s ¼ 20 s ¼ 50

LapRLS semi 56:5	 1:3 63:6	 2:2 68:9	 1:7 71:3	 1:9 40:7	 2:7 45:9	 2:3 51:3	 1:5 56:6	 1:2
SDA semi 44:7	 2:4 50:4	 2:3 54:4	 3:0 61:0	 1:3 37:2	 2:0 45:5	 2:1 52:6	 2:2 57:2	 1:4
LSR semi 50:2	 2:3 65:5	 2:9 70:7	 3:0 78:4	 2:2 52:0	 3:4 62:1	 2:6 67:6	 2:2 72:9	 2:5
SFSS semi 50:3	 2:8 62:1	 2:5 72:3	 2:2 80:9	 2:3 46:6	 2:7 57:4	 3:2 69:6	 2:7 74:9	 1:7
RSSL semi 68:8	 1:5 76:4	 1:1 83:4	 0:67 91:8	 0:6 64:7	 0:96 75:4	 0:5 81:4	 0:6 86:7	 0:3

LapRLS test 56:0	 2:3 63:0	 2:9 68:5	 2:2 70:7	 1:4 40:1	 2:8 45:4	 1:4 49:3	 1:5 56:4	 1:0
SDA test 44:2	 2:6 47:3	 1:8 53:0	 2:1 60:6	 1:6 37:0	 3:0 46:7	 2:4 50:3	 1:6 57:3	 1:2
LSR test � � � � � � � �
SFSS test 49:6	 2:6 60:8	 1:9 71:1	 2:0 80:4	 1:0 44:3	 3:1 55:5	 3:4 69:4	 1:5 73:1	 0:7
RSSL test 67:4	 0:9 74:7	 1:5 81:5	 1:2 89:5	 1:1 63:5	 0:9 73:3	 0:8 80:3	 0:6 84:5	 0:4

The best results are highlighted in bold.
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Connection with semi-supervised learning (SSL) algorithms.
We now discuss the relationship between the proposed for-
mulation and several Semi-supervised Learning algorithms.

First, a SSL algorithm is proposed for multitask learning
in [33], which is closed to the proposed formulation. When
z!1, we have Flabeled ¼ Ylabeled. If we set b ¼ 0 and � ¼ 0
and adopt the same loss function, the proposed formulation
reduces to the one in [33] in the special case where the input
data are the same for all tasks. Besides, if we further set
r ¼ c and P ¼ Ic, we have W ¼ Q and the proposed frame-
work leads to LapRLS [34] with linear predictive function.

Second, in [39], a semi-supervised feature analyzing
framework for multimedia data understanding is proposed,
which is formulated as

min
F;W

aðTr½FTLF� þ Tr½ðF�YÞTUðF�YÞ�Þ

þ kF�XTWk2F þ �kWk2;1:
(30)

If we set r ¼ d and Q ¼ Id, we have W ¼ P. Then using the
least-squares loss function, our formulation leads to the
above formulation.

Besides, if we use Frobenius norm rather than ‘2;1-norm
and impose a regularization term onW instead of P, by set-
ting b ¼ 0, our formulation reduces to

min
F;P;Q;W

aðTr½FTLF� þ Tr½ðF�YÞTUðF�YÞ�Þ

þ kF�XTWk2F þ gkW�QPk2F þ �kWk2F
s:t: QTQ ¼ Ir:

(31)

It is same to the objective function in [40]. In [40], the rela-
tionships to dimensionality reduction algorithms, transduc-
tive classification and traditional graph regularization have
been discussed. Thus, the relationships analyzed in [40] are
appropriate to ours.

Connection with multi-label classification. When all data are
labeled and z!1, we we have F ¼ Y. Then when the reg-
ularization parameter b ¼ 0, the proposed formulation
reduces to the one in [37] in the special case where we
employ Frobenius norm rather than ‘2;1-norm. In [37], it dis-
cusses its connections with several algorithms, such as the
classical ridge regression. Similarly, we can build the corre-
sponding relationships between those algorithms and ours.

8 CONCLUSION

In this paper, we propose a subspace learning framework
which can learn an appropriate representation for data by
incorporating image understanding and feature learning
into a unified framework. It exploits the visual geometric
structure and the local and global consistencies over labels
simultaneously to uncover a underlying subspace robust to
the outliers and noise. We formulate the subspace learning
problem into an optimization problem and develop an itera-
tive algorithm. Then we apply the proposed framework to
several image understanding tasks, i.e., image tagging, clus-
tering and classification. And the proposed formulation is a
general framework that can include several well-known for-
mulations as special cases. For evaluation, we conduct
extensive experiments to compare the proposed algorithm
with related methods for different image understanding

tasks. Extensive experiments over diverse public data sets
show that the proposed algorithm is quite effective to
uncover a latent subspace for image understanding tasks.
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