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Abstract The theory of social balance, also called structural
balance, is first proposed by Heider in 1940s, which is utilized
to describe the potential social dynamics process. This theory
is of great importance in sociology, computer science, psy-
chology and other disciplines where social systems can be
represented as signed networks. The social balance problem is
hard but very interesting. It has attracted many researchers
from various fields working on it over the past few years.
Many significant theories and approaches have been devel-
oped and now exhibit tremendous potential for future appli-
cations. A comprehensive review of these existing studies can
provide us significant insights into understanding the dynamic
patterns of social systems. Yet to our investigation, existing
studies have not done this, especially from a dynamical per-
spective. In this paper, we make an attempt towards
conducting a brief survey of these scientific activities on social
balance. Our efforts aim to review what has been done so far
in this evolving area. We firstly introduce the fundamental
concepts and significant properties of social balance. Then we
summarize the existing balance measures and present
detecting/partitioning algorithms, as well as important empir-
ical investigations in both physical world and cyberspace. We

next mainly focus on describing and comparing the funda-
mental mechanisms of the dynamics models. Several existing
problems not yet satisfactorily solved in this area are also
discussed.

Keywords Social balance . Signed networks . Empirical
study . Dynamicsmodel

1 Introduction

A group of individuals can often be viewed as social net-
works, where nodes represent individuals and edges their
relations (Wasserman and Faust 1994; Young 2011; Watts
and Strogatz 1998; Albert and Barabási 2002; Newman
2003; Fowler and Christakis 2010; McPherson et al. 1992;
Borgatti et al. 2009; Hanaki et al. 2007; Schilling and Phelps
2007; Lazer et al. 2009; Carrington et al. 2005; Wang et al.
2011, 2012; Liang et al. 2013; He et al. 2013; Zheng et al.
2008, 2009a, b; Cui et al. 2013a). Traditionally, these social
networks are depicted in basic forms such as undirected,
directed or weighted, and analyzed by mainly considering
their topological patterns. However, in many interesting real-
world social systems, links between two nodes may display
diversity, and the content of the relations in a social commu-
nity is often more important than their topological patterns
(Facchetti et al. 2011). For example, each person can express
his positive or negative sentiments such as like, or dislike on
others from an individual perspective (Wasserman and Faust
1994; Zajonc and Sherman 1967; Tang et al. 2012), while for
international relations among nations, different countries may
have exhibit different states of equilibrium and disequilibrium
(Harary 1961). Users in cyberspace can also vote the nomi-
nated persons as administrators (Burke and Kraut 2008), or
express trust or distrust of others (Guha et al. 2004;
Brzozowski et al. 2008; Kim 2007; Ziegler and Lausen 2005).
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To quantify and extrapolate the content-related features of
reciprocated relations between social entities presented above,
we should further develop more efficient analytical and com-
putational approaches. Signed networks, whose links are often
labeled as different signs, for instance “+” or “−” (Wasserman
and Faust 1994; Easley and Kleinberg 2010; Yang et al. 2007;
Katai and Iwai 1978), have recently attracted more and more
attentions. By analyzing the properties of these signed social
networks, we can better identify the key role of that network
structure plays when some relations between social entities are
positive while others are negative (Leskovec et al. 2010a).
This type of information, which may not be provided by other
traditional network representations, can provide us significant
insights into understanding in depth the cognition or aware-
ness of social interactions in one social system and further
inferring how the targeted social system evolves and when the
system will reach balanced or relative stable status.

This presented above has been formed to one significant
theory, called social balance or structural balance, which is
originated from several early studies of Heider (1944, 1946) at
the individual level and generalized by Cartwright and Harary
(1956; Harary 1953, 1955, 1960; Harary and Kommel 1979)
in the graph-theoretical formation at the group level. The basic
principles underlying social balance are commonly character-
izedwith the aphorisms: “The friend ofmy friend ismy friend,
the friend of my enemy is my enemy, the enemy of my enemy
is my friend” (Thomas 2010; Aronson and Cope 1968; Lerner
2008; Van De Rijt 2011). The social balance theory affirms
that human societies tend to avoid tensions and conflictual
relations (Facchetti et al. 2011; Easley and Kleinberg 2010;
Newcomb 1956, 1961, 1981; Srinivasan 2011). These results
can offer us reasonable explanations for some interesting
social phenomena, such as the cascade effect of feeling, opin-
ion and belief diffusion over the whole group (Hummon and
Doreian 2003), the political conflicts among international
nations (Harary 1961), the social situation where polarization
is frequent, such as in national elections (Srinivasan 2011), the
intergroup conflict within an organization (Labianca et al.
1998), and human cooperation in some specific social activ-
ities (Traag et al. 2013). Furthermore, these social balance
studies can also help us to design and develop effective social
computing applications to infer the hidden attitude of one user
toward another based on the observed positive and negative
links (Leskovec et al. 2010b).

Traditional studies of social balance mainly focus on static
state. However, real social systems are dynamic evolution and
changing at each time. This has led naturally to incorporate
theories of dynamic complex systems into social balance and
even further develop a new dynamic theory of social balance
recently (Leskovec et al. 2010a; Marvel et al. 2009, 2011;
Abell and Ludwig 2009; Antal et al. 2005). Recent studies
have attempted to capture how the social balance of a signed
network can evolve from dynamic changes to the links’ signs

over time (Terzi and Winkler 2011). A comprehensive review
of these research results can provide us significant insights
into understanding the evolutionary patterns of real-world
social systems and finding the key impact factors of social
balance. Based on these previous studies, we can further
analyzing and modeling real-world social systems more prac-
tically. Yet to our investigation, existing studies have not done,
especially from a dynamical perspective.

The following work is an attempt toward conducting a brief
review of significant research results regarding social balance,
including fundamental measures and detecting algorithms,
empirical results, and social models. In order to ensure a
coherent, integrated presentation of the related studies, the
remainder of this paper is organized as follows: in Section 2,
we firstly introduce some general definitions and theories of
social balance. Section 3 presents the approaches of balance
computing. In Section 4, we describe the empirical analyzing
results in both traditional physical space and new emerging
cyberspace. Section 5 gives us social balance models and
illustrates their mechanisms. Finally, Section 6 concludes
the main content of this paper and further discusses existing
research problems of social balance and presents several
possible solutions.

2 Concepts and properties

From the seminal studies conducted byHeider (1944, 1946) in
1940s to now, there are more than half a century. Many
fundamental concepts and significant theories have been pro-
posed and generalized with the development of social balance.
In this section, we firstly describe several important concepts
relevant to signed social networks. Then we further present the
fundamental definitions and properties of social balance from
four perspectives, including balance of nodes, triangles, com-
plete networks and general (or arbitrary) networks.

2.1 Basic definitions

For a signed network G, we can represent it in a mathemat-
ical form: G=(V, L), where V denotes the set of vertices or
nodes and L the set of links or edges. Each link lij∈L is
labeled with either a sign “+” or “−”. “+” indicates that its
two ending points are positive relations and “−” negative
relations. We view a link labeled “+” sign as a positive link
and that with “−” sign as a negative link. The positive/
negative links indicate many real social relations in differ-
ent perspectives such as: trust/distrust, like/dislike, praise/
blame, influence/ negative influence (Facchetti et al. 2011;
Szell et al. 2010; Sampson 1968). If node i connects node j
directly, this kind of link between these two nodes is de-
fined as the direct labeled link, while the connection
through the third node k is the indirect labeled link. A cycle
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CPi in G is the closed path beginning and ending on the
same node i. The sign of a cycle CPi is the product of links
of the cycle. These basic symbols are presented in Table 1.
Other symbols of this paper will be described in the fol-
lowing sections when they are firstly mentioned.

2.2 Balance of nodes

A signed network is balanced at one node is also known as
locally balanced at this node, which can be generally defined as
all cycles containing this node are positive.Mathematically, for a
signed networkGand one randomly selected node ni(i=1,…,n),
if the sign sj

cof every cycleCPj( j=1,…,k) encompassing node ni
is larger than 0, that is sj

c>0, then we can say that the signed
networkG is balanced at ni. Here, kmeans that there are totally k
cycles passing through node ni. The local balance have been
proved to be strong inter-depended on articulation nodes
(Harary 1955). An articulation node ni

a is defined as the key
node that a well-connected signed social network G will be
separated into multiple disconnected subgroups G1,…,Gm(m≥
2) if we remove it.

2.3 Balance of triangles

A signed social network is said to be balanced at triangles if
direct and indirect labeled links has the same sign or the sign
of the product of three labeled links are positive. As shown in
Fig. 1, triangles in Fig. 1a and c are balanced while unbal-
anced in Fig. 1b and d. If a triangle shown in Fig. 1 contains
three nodes i, j and k, then we will obtain that the triangle is
balanced if sijsjkski=1 while unbalanced if sijsjkski=−1, where sij
represents the sign of link lij. sij is equal to 1 when lij is positive
link otherwise −1. This means that a triangle is balanced when
the amount of its positive links is odd otherwise unbalanced
(Davol 1959). If C+ denotes the number of positive triangles
and C− that of negative triangles respectively, we can further
define the degree of balance B (Harary 1959) as the proportion
of either positive triangles

B ¼ Cþ= Cþ þ C−ð Þ ð1Þ

or negative triangles

B ¼ 1 − 6C−= N N − 1ð Þ N − 2ð Þð Þ; ð2Þ

where N is the order of the signed network. B usually ranges
from 0 to 1 (Frank and Harary 1979).

2.4 Balance of complete networks

For a complete network, we can claim that it is balanced
if each constituent triangle is balanced (Wasserman and
Faust 1994; Heider 1944, 1946). Mathematically, if the
sign sj

c of each cycle CPj( j=1,…,k) is equal to 1, we call
this complete network Gc is balanced while unbalanced
when sj

c=−1. Harary (1953; Cartwright and Harary 1956)
and Antal et al. (2006) further found that a complete
signed network Gc is balanced (shown in Fig. 2) if and
only if the set V of nodes in Gc can be divided into two
subsets X and Y, such that each pair of nodes within the
same subset has a positive relation while all links between
X and Y are negative. This significant property, which is
the basis of some social balance theories, has been widely
applied in various domains.

2.5 Balance of arbitrary networks

Since a large number of real-world social systems can not
be represented by complete signed networks Gc (Nooy
1999), we further consider the case of a social network
with its edges not necessarily complete, which can be
called a general or an arbitrary network Ga. An arbitrary
signed network Ga may have three possible links: a posi-
tive link, a negative link, and a neutral link denoting the
absence of a relation between the two nodes. According to
existing studies, there are two equivalent ways to judge
whether an arbitrary signed network Ga is balanced or
unbalanced. One is called local view, which mainly focus-
es on evaluating each triangle of the network, the other is
global view, by dividing the whole network into two op-
posed sets (Easley and Kleinberg 2010). For a local view,
an arbitrary signed network Ga can be dealt by filling the
missing links to form a complete signed network Gc. If the
complete signed network Gc is balanced, we can say that
the arbitrary signed network Ga is balanced (as illustrated
in Fig. 3). For a global view, if individuals within each
cluster or subgroup have positive relations and negative
between these two clusters or subgroups, we regard the
arbitrary signed network Ga as a balanced network (as
described in Fig. 4). These concepts and properties de-
scribed in this section are presented in Table 2.

Table 1 Descriptions of basic symbols

Symbols Descriptions

G A signed social network

V The set of nodes

L The set of edges or links

lij A link between node i and j

CPi The closed path beginning and ending on the same node i

+ The sign of a link between node i and j is positive

− The sign of a link between node i and j is negative

Inf Syst Front



3 Balance computing

As described in Section 2, if a signed network is balanced, the
nodes either are unique clique or else can be partitioned into
two mutually exclusive clusters. Several significant studies
(Wasserman and Faust 1994; Easley and Kleinberg 2010;
Davis 1963, 1967; Cheng et al. 2011; Kunegis et al. 2010;
Harary and Kabell 1980) have further found that some signed
networks can be split into more than two clusters. Social
balance researchers (Morrissette et al. 1967; Cartwright and
Gleason 1966; Henley et al. 1969; Norman and Roberts 1972;
Taylor 1970; Stix 1974) have proposed some important
criteria to detect balance status of the targeted signed networks
and develop the partitioning algorithms to cut the networks
into multiple exclusive but balanced clusters from various
views. In this section, we firstly present existing social balance
measures, which can be used to evaluate the degree of bal-
ance, and then describe the correlations between clustering
and balance. We next systematically discuss and compare
existing partitioning algorithms.

3.1 Measures

The balance status in a given signed networkG is determined by
the number of balanced or unbalanced cycles. To detect the
degree of balance or unbalance, it is natural for us to consider
howmany cycles that have negative or positive signs. One of the
simplest indices to detect the balance status B of G is given by

B ¼ Cp=Ct; ð3Þ

where Cpdenotes the number of cycles with positive signs and
Ct the total number of cycles. This index can be calculated by

using the adjacency matrix A of G (Cartwright and Gleason
1966) and weighting the components of this ratio by using the
length of the cycles of this network (Henley et al. 1969;
Norman and Roberts 1972). Harary (1959, 1960) proposed
an index by considering the number of signs which must be
changed when the signed network G changes its status from
unbalanced to balanced. Taylor (1970) discussed and
reviewed more indices to measure the degree of social
balance.

The measures described above mainly focus on counting
the distinct configurations of the signed edges within all
possible cycles that appear in the networks. These measures
would require time that is cubic to the total number of nodes.
Such an algorithm is infeasible for large real-world social
systems. To solve this problem, Terzi and Winkler (2011)
proposed a computational algorithm to evaluate the degree
of balance. In his algorithms, for a complete signed network
Gc, the degree of balance Bc is given by

Bc ¼ 1=2þ
X
i¼1

n

λ3
i

 !
= 4Nc Nc − 1ð Þ Nc − 2ð Þð Þ; ð4Þ

where λi denotes the eigenvalue of the adjacency matrix Ac,
and Nc is the total number of nodes in Gc. When the targeting
signed network is non-complete Ga, the degree of balance Ba
can be computed by

Ba ¼ 1þ
XNa

i¼1
λ3
i

� �
=
XNa

i¼1
μ3
i

� �
=2; ð5Þ

where μi is an eigenvalue of the connectivity matrix Aa of Gc,
and Na is the total number of nodes in Ga.

a

+ +

+

+ -

+ +

- - - -

-

b c d

Fig. 1 Four fundamental undirected triads in signed networks. Red links represent positive relations, blue negative. a and c are balanced and relative
stable. b and d are unbalanced and relative unstable
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a bFig. 2 Illustration of judging
the balance state of a complete
network. a the complete network;
b the balanced complete network
can be cut into two subsets
X and Y
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Most of existing studies to judge the balance status of a
given signed network must require the condition that if the
signs of all cycles are positive, then the network regarded as
balanced. This condition is very strict and may not be applied
widely in some real-world social systems. We should further
relax this condition in a very natural way. Recently, Easley and
Kleinberg (2010) extended this and proved that: if at least 1−ε
of all triangles in a labeled complete graph are balanced, then
there is a set consisting of at least 1−δof the nodes in which at
least 1−δ of all pairs are friends, where ε is any number
ranging from 0 to 18 and δ is equal to

ffiffiffi
ε3

p
.

3.2 Clustering and balance

The seminal works conducted by Heider and Harary (Heider
1944, 1946; Harary 1953, 1955) have inspired many re-
searchers (Harary 1955; Davis 1967, 1977, 1979; Doreian
and Mrvar 1996; Abell 1968) from a variety of domains to
generalize the original theories of social balance (Wasserman
and Faust 1994; Davis 1979) and further developed many
significant theories and approaches. These theories can pro-
vide for us to better understand the inherent mechanisms and
key properties of signed networks.

One of these existing significant studies is conducted by
David during 1960s–1970s (Davis 1967, 1977, 1979), who
proposed the concept of clustering in a signed social network.
Clustering defined by David is partition of the node set of a
given signed network into k subsets, such that each pair of
nodes in the same subset has a positive relation and a negative
relation exists between each pair of nodes from different

subsets. The subsets derived from the clustering are called
clusters (Wasserman and Faust 1994). After some significant
empirical analysis, Davis (1967) further found that a signed
network has a clustering or is clusterable if and only if it
contains no cycle with exactly one negative link.

Another significant and interesting studies are performed
by Harary (1955) and Doreian and Mrvar (1996). Their stud-
ies mainly focused on exploring the correlation between k-
balanced at one node and k-clusters in a given signed network.
A signed social network is defined to be k-balanced if its
cycles length not exceeding k are positive (Cartwright and
Harary 1956). Harary (1955) proved that a signed network G
is k-balanced at node ni if and only if k-clusters containing ni
are balanced. Doreian and Mrvar (1996) found that a signed
network G is k-balanced if and only if it contains no
semicycles with exactly one negative link. When k=2, it is
traditional balance problem, while k>2 corresponding to
generalized balance.

Most of theories and approaches described above are just
suitable for complete signed networks. This can not be applied
directly to analyze the real-world social systems. More gener-
alized approaches should be further developed to understand
the dynamics patterns of signed networks with some links
between nodes within clusters absented. Abell (1968) gave
some useful approaches to judge the relation between k-balance
and k-clusters for incomplete and directed signed networks. He
proved that an incomplete, affective, symmetric structure with
k-clusters is balanced if and only if there are 2k−1 ways to divide
the node set of a given signed network such that: all intra-cluster
links are positive or unconnected and all inter-cluster links are
negative or unconnected.
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a bFig. 3 Illustration of judging the
balanced state of an arbitrary
network from a local view. a the
original arbitrary network; b the
balanced complete network by
filling the missing signed links
(the dashed lines) into the
arbitrary network, can be divided
into two exclusive subgroups X
and Y

+

+

X

+

+

+

+

+

+

-

-

Y

a b

-

-

Fig. 4 Illustration of judging the
balance state of an arbitrary
network from a global view. a the
original arbitrary network; b the
balanced arbitrary network can
divided into two exclusive
clusters X and Y

Inf Syst Front



3.3 Partitioning algorithms

Partitioning or clustering based on social balance has proven
useful for representing the structure of signed social networks
(Doreian and Mrvar 2009). Existing partitioning algorithms
can be classified into two types: edge-based partitioning and
node-based partitioning. Edge-based partitioning algorithms
aim to cut the resulting network into multiple clusters by
selecting a set of edges to be removed. While nodes often
serve as bridges in most of existing node-based partitioning
algorithms.

3.3.1 Edge-based partitioning algorithms

The problem of social balance in edge-based partitioning
algorithms is often solved by considering the adjacencymatrix
Aof the given signed networkG, where the entries of matrix A
represent the values of signed links. Significant partitioning
algorithms (Terzi and Winkler 2011; Kunegis et al. 2010;
Doreian and Mrvar 1996, 2009; Wu et al. 2011; Gill 1981;
Doreian and Krackhardt 2001) have been developed for dif-
ferent applicable purposes. A common place of existing stud-
ies is that these proposed algorithms usually first select some
edges as bridges and then remove them in such a way that the
resulting social network can be partitioned into multiple sub-
groups (Kim and Candan 2012). The differences among these
algorithms are the definitions and computational methods of
cut functions. The cut function CD proposed by Doreian et al.
(Doreian and Mrvar 1996, 2009; Doreian and Krackhardt
2001) has the following form,

CD ¼ αNn þ 1 − αð ÞNP; ð6Þ

where Nn is the total number of negative links within sub-
groups, NP represents the total number of positive links be-
tween subgroups, and the tunable parameter α ranges from 0

to1. While Kunegis et al. (2010) recently developed another
form of cut function CK, which is defined by,

CK ¼ 2 ⋅ Cþ
K X ; Yð Þ þ C−

K X ;Xð Þ þ C−
K X ; Yð Þ: ð7Þ

In this form, CK
+ is given by

Cþ
K ¼

X
i∈X ; j∈Y

Aþ
ij ð8Þ

and CK
− is computed as follow,

C−
K ¼

X
i∈X ; j∈Y

A−
ij: ð9Þ

A+ indicates the adjacency matrix containing only positive
links and A− represents the matrix just encompassing negative
links. By investigating the spectral properties of the Laplacian
and minimizing the cut function CK, we can partition the
original network G into two subgroups X and Y, where few
positive links connecting subgroup X and Y, and little negative
links within each subgroup.

These partitioning approaches help us understand the
overall amount of frustration of the network, but they do
not provide any information on which links or triangles
remain unbalanced. By the gauge transformation theory
(Toulouse 1977) in the spin glass literature, Iacono et al.
(2010) introduced a heuristic algorithm for ground-state
search on sign networks and utilized it to analyze biological
networks. Based on this work, Facchetti et al. (2011) further
improved this algorithm and generalized it to compute the
global social balance in large-scale signed social networks.
In this algorithm, they proposed an energy function EF,
which is given by

EF ¼
X

i; jð Þ 1 − lijsis j
� �

=2; ð10Þ

where lij∈{±1} is the edge or link between nodes i and j, and
si∈{±1}(i=1,…,N) is the sign of node i. The approach aims
to find a signature matrix TF and then minimize the number
of negative signs in TFATF. Here, TF is a change of sign
through cut the set of the signed network and A denotes its
adjacency matrix. The signed network is balanced when all
terms in (10) is simultaneously equal to zero. Similarly,
Axelrod and Bennett (1993) have also given us another
energy function for signed networks. The energy function
EA is defined as

EA ¼
X

i; j
sNi s

N
j pijdij: ð11Þ

Table 2 Concepts and properties

Concepts Properties

Balance of one node All cycles containing this
node are positive

Balance of a triangle The sign of the product of three
labeled links are positive

Balance of a complete networks Each constituent triangle of this
complete network is balanced

Balance of an arbitrary networks Either the filled complete network is
balanced, or individuals within
each cluster have positive relations
and negative between these
two clusters
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si
N in (11) denotes each node’s size and pij presents its propen-
sity to be close to other nodes j, dij=1 if node i and node j
belong to different cliques and dij=0 otherwise. All of these
algorithms described above aim to find a minimized energy
value and divide the signed network G into two closed-
connected subgroups or cliques.

3.3.2 Node-based partitioning algorithms

In node-based partitioning algorithms, the cut passes through
the nodes of the graph and each node serves as the exit- and
the entry-points of the respective partitions (Kim and Candan
2012). A node-based partitioning algorithm would partition a
given signed network into two or more clusters/components
by cutting the minimum number of nodes (Black 2004).

Since the node-cut problem is in its general form NP-hard,
various approximation algorithms and heuristics have been
developed to tackle the problem. Feige et al. (2005) proposed
a balance criterion. This criterion can be used to evaluate the
goodness of a node-based partitioning algorithm. Biha and
Meurs (2011) studied the node separator problem from the
polyhedral point of view and provided an exact solution to the
node separator problem, by representing the underlying prob-
lem in terms of constraints and solving the resulting mixed-
integer programming.

Another significant challenge in node-based partitioning
is ensuring the balance of the resulting partitions while
simultaneously minimizing the number of nodes that are
cut. To overcome this problem, Kim and Candan (Kim and
Candan 2012) proposed a node-based network partitioning
algorithm that leverages these structurally-balancing node-
cuts. The algorithm firstly identifies a set of balance nodes
and then hierarchically partitioned by recursive application
of social-balanced cuts. They showed how to locate and
used these balance nodes to obtain a balanced node-cut of a
signed network G. In future work, we can focus on finding
dominant balance nodes without using eigen decomposi-
tion, which can be a bottleneck in running time, and de-
tecting k balance nodes directly rather than generalizing
bisection.

4 Empirical studies

Empirical studies based on data coming from observations
of real social systems are very important not only for the
identification of new phenomena or surprising features, but
also for the validation of theoretical hypothesis (Castellano
et al. 2009; Morrissette et al. 1966). Although massive
papers have provided for us significant insights into under-
standing of social dynamics in our physical world, the
approaches of data collection in these studies are stilled
criticized since it is difficult to affirm some specific social

relations between two individuals. Those relations based on
sentiments, trust or friendship are always influenced by the
cultural, political and economic factors around individuals
(Costa et al. 2011). These results in a large number of social
dynamic studies always remain on the level of theoretical
hypothesis.

To solve this problem, researchers then turn to design
scientific questionnaires, conduct reasonable field interviews
and even compare these surveys manually to obtain more
reliable empirical data. However, these approaches need a
lot of time and resources to deliver statistically meaningful
assertions, and meanwhile may introduce well-known biases
(Carrington et al. 2005; Costa et al. 2011). Moreover, regard-
ing data acquisition is essential not only to record the social
behavior of individual humans but also the simultaneous state
of their surroundings (Szell and Thurner 2010). As such,
traditional empirical studies have been limited to examining
small, well-bounded populations, involving a small number of
snapshots of interaction patterns (Lazer et al. 2009; Zheng
et al. 2012).

These limitations presented above might appear in a radi-
cally more positive light with the emergence and rapid prolif-
eration of social media. In those Web 2.0 social computing
applications, individuals can express freely their feelings and
communicate with each other conveniently. The availability of
unprecedented huge new datasets has spurred thorough em-
pirical characterization. Virtual social networks in cyberspace
can provide a significant statistical sample and possibly unbi-
ased features of the social relations (Costa et al. 2011). Table 3
lists the basic approaches of data collections.

The following section will focus on describing the
existing significant empirical studies on social balance in
both physical world and cyberspace. We also in this paper
refer to the offline and online social systems as those social
systems in physical world and cyberspace respectively.
According to the differences of research objects, we classi-
fied the existing empirical studies on offline social systems
results into three levels, including the individual-level, the
group-level and the nation-level. The Individual-level
mainly focuses on examining the attitude and perception
behavior of single individuals. The group-level generally
considers the relations within dyads and groups, and the
national level usually studies the dynamics of national
relations and political crisis using theory of social balance.

Table 3 Approaches of data collection

Data types Approaches

Offline Designing offline surveys or questionnaires

Conducting face-to-face or telephone interviews

Online Creating online surveys

Collecting web logs or user-generated content
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For these empirical studies on online social systems, ac-
cording to the types of relations between two entities of
these systems, we further describe existing results from two
basic perspectives, which encompass single-dimension and
multi-dimension. Table 4 gives the fundamental classifica-
tion of existing empirical studies. Part A in this section will
give existing empirical studies of offline social systems and
Part B will present that of online ones.

4.1 Empirical studies in physical world

The original social balance approach proposed by Heider
(1944, 1946) was often applied to analyze the social behav-
ior of single individuals. This approach then was further
generalized to analyze the evolution process of relations
within dyads and larger groups in our physical world
(Heider 1958; Miller and Geller 1972; King 1964).
Newcomb (1981) analyzed a population with 17 male stu-
dents who were recruited as total strangers to one another.
This population is consisted of one balanced and one un-
balanced subgroups. By empirical analysis on this dataset,
he found that previously reported balance within a group
may be attributable to a single subgroup and inferred the
certain conditions under which the balance of one social
group is likely to occur. Newcomb’s efforts illustrate that
Heider’s balance theory can be expanded interpersonally in
such ways that it can be utilized to explain the balanced
states within subgroups of a population. The findings con-
ducted by Taylor (1970) show that small groups such as

children in an education setting usually exhibit tendencies
towards balance. Auster (1980) and Harary (1966) took
tales and drama as cases and found an interesting phenom-
enon: many plays written by some writers always contain
some unbalanced episodes but end in balance. They also
obtained that the narratives of these stories can be well
predicted by balance theory.

National relationship is another favorite case studied by
social balance researchers. Nodes in these studies usually
represent nations, states or other administrative regions,
and the sign “+” and “−” indicate positive and negative
relations respectively. Based on the theory of social bal-
ance, several studies have provided for us significant in-
sights into understanding the behavior of different nations
during various international crises (Easley and Kleinberg
2010; McDonald and Rosecrance 1985). Moore (1978,
1979) analyzed the conflict over Bangladesh’s separation
from Pakistan in 1972. He found that the behavior of the
United State, China, India and Pakistan at this period could
be deduced from the relations between these nations. Antal
et al. (2006) explored that the evolution of the major rela-
tions changes between the protagonists of the World War I
from 1872 to 1907. This study states the fact that, when
social balance is natural outcome, it is not necessarily a
good thing. Harary (1961) also described the distinction
between states of balance and unbalance in the international
relations by a structural analysis of the situation in the
Middle East in 1956. These significant empirical studies
are depicted in Fig. 5.

Table 4 Classification of existing empirical studies

Types Levels Objects Examples

Offline Nation-level National relations and political crisis • National behavior during political crises (Easley
and Kleinberg 2010; McDonald and
Rosecrance 1985)

• Conflict over Bangladesh’s separation from
Pakistan in 1972 (Moore 1978, 1979)

• National relations during Word War I (Antal et al. 2006)

Group-level Relations within dyads and groups • Structural balance in a university group (King 1964)

• Behavior of children in education settings (Taylor 1970)

• Character relations in fairy tales (Auster 1980)

Individual-level Attitude and perception behavior
of individuals

• Personal Attitudes and causal unit formations (Heider 1946)

• Social perception and phenomenal causality (Heider 1944)

Online Single-dimension Each pair of nodes with a single relation • Characterizes of online social networks with positive
and negative relations (Leskovec et al. 2010a;
Kunegis et al. 2009)

• Trust and distrust in online social networks
(Guha et al. 2004; DuBois et al. 2011)

Multi-dimension Relations with diversity • Multi-relational organization in massive multiplayer
online game (Szell et al. 2010)

• Evolution of multi-relational online social networks
(Szell and Thurner 2010)
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4.2 Empirical studies in cyberspace

The data available from social media websites in cyberspace
allow the nature of one-to-one interactions between individ-
uals to be identified. Many significant characteristics of the
corresponding signed networks can be deeply studied at a
larger scale (Facchetti et al. 2011; Burke and Kraut 2008;
Brzozowski et al. 2008; DuBois et al. 2011; Romero et al.
2011; Li et al. 2013). These features can provide much solid
evidence for us to validate some classical theories of social
balance. Kunegis et al. (2009) collected data from one famous
news platform called Slashdot Zoo and constructed a virtual
social network. Their analysis was carried out from three
different levels, including global level, node level and link
level. They found that the social network of Slashdot Zoo
displays multiplicative transitivity, which means that the fa-
mous theoretical balance property of the enemy of my enemy
is my friend can be utilized to explain the user interactive
behavior in some social media sites.

Trust and distrust may be one of the existing most chal-
lenging problems in traditional social dynamics research. The
lack of reliable data about trustful relations in physical world
drives the studies to concentrate on virtual trust relations in
cyberspace. Researchers recently have attempted to explore
the features of trust/distrust networks and develop several
significant approaches to solve this problem. DuBois et al.
(2011) presented a method for computing both trust and
distrust. This work was done by combining an inference
algorithm that relies on a probabilistic interpretation of trust
based on random graphs with a modified spring-embedding
algorithm. The authors approved that their algorithm can
correctly classify hidden trust edges as positive or negative
with high accuracy. These results may be useful in a wide
range of social web applications where trust is important to
user behavior and satisfaction. Guha et al. (2004) proposed a
framework of trust propagation schemes and evaluate the
schemes on a large trust network of Epinions, consisting of
131,829 nodes and 841,372 links, each labeled either trust or
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Fig. 5 Examples of the evolution of alliances in the Middle East in 1956,
where nodes E, A, B, F, I, D, U and S stand for Egypt, the other Arab
nations except Egypt, the Great Britain, France, Israel, India, USA and
USSR respectively (Harary 1961). The initial network as displayed in (a)
is consisted of these eight entities and relations between them. This
network is balanced since it can be cut into two exclusive clusters. One
cluster includes D, I and S and the other encompasses A, B, E, F and U.
However, two positive links lSE and lSAwere then added due to bartering
Czech and Russian armaments for Egyptian cotton. The resulting network
as shown in (b) is unbalanced since the cycles ESU and BES are negative.
Then the sign of lBE was changed from to negative, and that of lDS was
changed from negative to positive. lEFand lUEwere then added and lBIand
lUI were removed from this network since Egypt nationalized the Suez
Canal. This new network as depicted in (c) is balanced and relative stable

if no more external stimuli. Yet the subsequent military attacks on E by B,
F and I as well as the induced new positive link lBIbetween B and I led the
network evolved into the new one as described in (d). Though it seems
balanced in the network, U in this situation is not very pleasant since the
other coalition of U finds that A and E, which were controlled by U, now
stand together with S, which is the opponent of U. Therefore, American
then denunciated the attack on E byB, F, and I. This leads that the signs of
cycles FSU and BDU changed from positive to negative. The network in
(d) then further evolved into the new network as displayed in (e). As the
network changing, the cycle BDU becomes positive while DSU is neg-
ative as shown in (f). From the unbalance triangle DSU in (f), we can
further infer that, in this situation, Indian would feel tensional and
consider to change the sign of the link lDS from positive to negative,
which is precisely confirmed by several political events happened in 1957
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distrust. They showed that a small number of expressed trusts/
distrust per person allow us to predict trust between any two
people in the system with high accuracy. Similar results have
also been founded in other researchers (Leskovec et al.
2010b).

Leskovec et al. (2010a) further developed the original
research idea of Guha et al. (2004) into a theory of status. In
this theory, a positive directed link lij

+ originating from i to j
represents i considers jhas higher status in his/her belief, while
a negative directed link lij

− indicates that j has lower status. By
constructing three types of networks based on three online
datasets: Epinions, Slashdot, and Wikipedia, Leskovec et al.
(2010a) found that the networks of Epinions and Slashdot can
shed light on the main characteristics of these websites, while
the network of Wikipedia is not described well.

These studies presented above put much emphasis on
analyzing the characteristics of single-dimensional social
networks, however, many multidimensional attributes of
real-world social systems have largely been ignored. Based
on the dataset of a massive multiplayer online game
consisting of about 300,000 users, Szell et al. (2010;
Szell and Thurner 2010) recently attempted to construct a
multi-relational large social network. They extracted six
types of relations between these users. Three of them are
positive, including friendship, communication and trade.
The other three, encompassing enmity, attack and bounty,
are negative. By analyzing the cumulative in-degree and
out-degree distributions of this multi-relational network,
they found that the topological properties of social net-
works are correlated with the nature of their links.
Ignoring this will cause much useful information lost.
These empirical results are depicted in Fig. 6. Szell et al.
(2010; Szell and Thurner 2010) in their studies also proved
that positive links exhibit higher reciprocity and clustering
coefficients than negative ones. A detailed dynamical anal-
ysis of their empirical data further demonstrates that the
potential driving force of changes happening in the net-
work evolutionary process is the creation of new positive
and negative links, not due to switching from existing
positive links to negative ones.

5 Dynamics models

Since empirical studies always involve uncertainty caused by
measurement errors, imperfect observation or sampling, it
requires us to develop social balance models to explore the
underlying mechanisms of social systems (Frank and Harary
1979). Traditional researchers often focused on classifying
balanced stable states of networks when relationships are
static. The models in these studies proposed by some re-
searchers are originally used to provide logical explanations

for the changes of some specific networks to some extent and
further reason how the unbalanced triangles of the aimed
networks evolve into the balanced ones from one determined
snapshot to another one. In this paper, we regard them as static
models due to their underlying properties and mechanisms.
However, most of real-world social systems is dynamic and
evolutionary (Heider 1946; Cartwright and Harary 1956;
Zheng et al. 2011a) persistently. Therefore, these existing
static models can not work well. This situation has led a large
number of researchers naturally to develop dynamics models
(Marvel et al. 2011; Istrate 2009), which usually examine the
signs of links of the given networks at each time step during
the whole process. According to existing studies, we classify
existing dynamics models into two basic types: one type of
models can be called discrete-time dynamics models and the
other are continuous-time dynamics models. Table 5 presents
the general framework of existing social balance models. Due
to several previous studies (Wasserman and Faust 1994;
Heider 1944, 1946; Cartwright and Harary 1956; Frank and
Harary 1979; Davis 1963) have describe these static models,
the reminder of this section will mainly focus on describing
and comparing the fundamental mechanisms of these dynamic
models.

5.1 Discrete-time dynamics models

The first exploration of discrete-time dynamics models was
conducted by Antal et al. (2005, 2006). These discrete-time
dynamics models mainly consider two dynamical update
rules: one is called local triad dynamics (LTD) and the other
is constrained triad dynamics (CTD).

The basic idea of LTD rules shown in Fig. 7 can be
described as three steps. Firstly, we pick up a triad randomly
and judge whether the triad is balanced. If the triad contains
only one negative link as shown in Fig. 7a, we will change the
negative link into a positive link with probability p and change
a positive link into a negative link with probability 1−p.
While, if the triad contains three negative links as depicted
in Fig. 7b, in the third step, we can change a negative link into
a positive link with probability p=1.

In the CTD rules, similar to that of LTD, a signed link is
also selected randomly from an imbalanced triad. If the num-
ber of imbalanced triads decreases in the whole network, the
sign of the selected link will be changed. While the number of
imbalanced triads is conserved, the sign of the selected link
will be changed with probability 1/2. The basic mechanism of
CTD is similar to that of an Ising model with a three-spin
interaction between the links of a triad (Glauber 1963; Binder
and Young 1986). This mechanism can be utilized to mimic
the dynamical process of one person who examines his/her
personal social circle before this person decides to change one
of his/her social relations. Under the CTD rules, it has been
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proved that a social network arrives at one balanced state in a
time scaling with lnN (Antal et al. 2005, 2006), where N are
the whole size of the network.

Based on these studies conducted by Antal et al. (2005,
2006), Marvel et al. (2009) further modeled a fully-connected
signed social network on N nodes. In this model, each link is
labeled with either a positive or negative sign according to the
feelings existing among nodes. Similar to our description in
Section 2, the product of the link signs in this model is positive
for a balanced triangle and negative for an unbalanced trian-
gle. In their study, they further proposed a quantity U to

evaluate the potential energy of a social network. The quantity
U is defined as

U ¼ −6
X

sijsjksik
� �

= N N − 1ð Þ N − 2ð Þð Þ: ð12Þ

According to the proposed measure, the configuration with
all node pairs owning positive signs has the lowest potential
energy U=−1.

Fig. 6 Cumulative in-degree and
out-degree distributions for six
signed social networks (Szell
et al. 2010). The nodes of these
six signed social networks denote
the players of the massive
multiplayer online game, while
the links of these networks
represent six different types of
interactions between these online
players. These six different types
of interactions are: aFriendship, b
Communication, c Trade, d
Enmity, eAttack, and fBounty.
The cumulative distributions of
negative links, listed in the right
column ((d), (e) and (f)), follow
power laws with cutoffs, while
these phenomena are absent for
positive ones in left column ((a),
(b) and (c))
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As described above, Antal et al. (2005, 2006) and Marvel
et al. (2009) mainly focused on the sequential sign change
process on a fixed network. Van De Rijt (2011) further con-
sidered the best response dynamics and proposed one new
model call the best-response model. Following the basic idea
of this model, if we denote m>0 as the maximum number of
signs one individual can change in his/her ego-network at any
step, then Si⊆Xi for which

FinSi
� �

∪ SinFi

� ���� ���≤m ð13Þ

is a strategy on networkG=(N,X,F) for node i, whereN={1,2,
…,n} represents the set of nodes, X is the set of existing links
between these nodes, F⊆X means the subset encompassing
positive links. Strategy Si

∗ can be considered as the best
response to F if this strategy has the maximum utility value
comparing with all other possible strategies Si. The network
produced by Van’s model is proved to be stable if Fi is a best
response to F for all i, while the networks of Antal et al. (2005,
2006) and Marvel et al. (2009) are stable only under the
special conditions m=1 and X=XN, where XN denotes the set
of all possible links in the network.

Radicchi et al. (2007) also generalized themodels proposed
by Antal et al. (2005) and applied their new model to k-cycle
dynamics for arbitrary integer k. On the other hand, they also
developed the random local algorithm to a p-random local
algorithm. By investigating the convergence time of a discrete
dynamical system on several classes of networks, Istrate
(2008) developed a model for general networks, which aims
to provide the connection between the triad dynamics and a
generalization of nondeterministic dynamical systems to
hyper-graphs. This dynamics model can help us to character-
ize the recurrent states in general networks where each link
belongs to no more than two triangles. Abell and Ludwig
(2007, 2009) proposed another type of models. In these
models, they firstly assumed that the nodes of a social network
are subsequently linked with each other. At each step, one
positive or negative link is formed between one pair of un-
connected nodes randomly. The probability of assigning the
positive or negative signs depends on an index α, which
ranges from −1 to 1. The indexαcan help us better understand
the specific evolutionary processes of social network in which

Table 5 General framework of existing social balance models

Types Features Examples

Static Static models Discovering the potential tendency
of a static social relations and
reasoning how the unbalanced
triads evolve into the balanced
ones from one determined
snapshot to another one

• The prediction model of interpersonal attraction
proposed by Newcomb (1956)

• The social balance model for stochastic signed
networks developed by Frank and Harary (1979)

• The POX balance model given by Heider (1944, 1946)

Dynamic Discrete-time dynamics models Investigating how an initially
imbalanced society achieves
balance by following some
dynamical update rules from
a discrete-time perspective

• The local triad dynamics (LTD) model
and the constrained triad dynamics
(CTD) model developed by Antal et.al (2005, 2006)

• The balance model for fully-connected signed
social networks proposed by Marvel et al. (2009)

• The best response dynamics model given by
Van De Rijt (2011)

Continuous-time dynamics models Identifying the underlying
mechanisms of a targeted
network evolving from
generic initial configurations
to a large balanced network
from a continuous-time perspective

• The theoretical balance model using differential
equations presented by Kułakowski et al. (2005)

• The continuous-time dynamics model proposed
by Marvel et al. (2011)

• The opinion dynamics model developed
by Altafini (2012)
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Fig. 7 An update step under the rule of local triad dynamics from ref.
(Antal et al. 2005, 2006). a Is suitable for the triad containing only one
negative link and b for the triad having three negative links respectively
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node pairs have different propensities. The probability pp of
one positive link being created in these models is computed by

pp ¼ 1þ αð Þ=2; ð14Þ

and a negative link pn is given by

pn ¼ 1 − αð Þ=2: ð15Þ

We can further obtain that the likelihood ptb of one com-
pleted triangle with balanced state is (1+α3)/2 and that ptu of
one unbalanced triangle is (1−α3)/2.

5.2 Continuous-time dynamics models

Generally, one balanced network is a stable point for these
discrete-time dynamics presented above. However, in these
models, especially in constrained triad dynamics models, the
number of imbalanced triads can not increase in an update
event, and the final state can either be balanced or jammed
(Marvel et al. 2009; Antal et al. 2005). This problem has
driven a number of social balance researchers (Srinivasan
2011; Traag et al. 2013; Marvel et al. 2011; Kulakowski
et al. 2005; Altafini 2012; Pelino and Maimone 2012;
Summers and Shames 2013; Singh et al. 2013) to develop
continuous-time dynamics models to identify and analyze the
underlying mechanisms of a simple network evolving from
generic initial configurations to a large balanced network.

In our real-world social systems, individuals usually do not
count the balanced triads in the whole network. Based on this
interesting social phenomenon, Kułakowski et al. (2005) con-
structed a model by considering variations on the following
basic differential equations:

dxij=dt ¼
X
k

xikxkj; ð16Þ

where xij denotes the strength of the positive or negative link
between node i and j. In these equations, the same sign of xik
and xkjwill drive the value of xij to the positive direction, and
vice versa. The dynamics is local: each link only determined
by the state of triads containing node i and j. From this model,
we can obtain the evolving process in a simple network with
just three nodes. However, it is still an open problem to
characterize the structure of a larger social systems which
starting from an initial value to a balanced state.

To resolve this problem, Marvel et al. (2011) extended this
analytical study to N×N continuous-time dynamics and com-
pared its predictions with empirical social network data. They
found that this model can evolve in finite time from a ran-
domly selected initial matrix to a balanced matrix with a
probability converging to 1. A closed-form expression for this
balanced matrix as a function of the initial conditions can be
obtained from this model. This indicates that the initial num-
ber of positive links in large social networks can determine
whether they will end with conflict or harmony. Srinivasan
(2011) further analyzed the properties of this model and
uncovered the basic mechanisms that local balancing influ-
enced global structure in social networks. Pelino and
Maimone (2012) proposed another dynamics models using
the properties of isospectral flows. They considered the
strength of links in signed social networks and numerical
indices to positive or negative links among nodes. These
models can be utilized to simulate realistic evolving conflicts.

In order to demonstrate how social relationships between
individuals influence their opinions in signed social networks,
Altafini (2012) recently proposed another dynamicsmodel, by
using the differential equation

dx=dt ¼ f xð Þ; ð17Þ

where x∈Rn is the vector of opinions of n persons and the
function f(⋅) describes the forming process of opinions. This
model aims to describe the influence of node j over node i by
the partial derivative

Fij xð Þ ¼ ∂ fi xð Þ
∂x j

: ð18Þ

From this equation, we can obtain the formal Jacobian
matrix of the social system

F xð Þ ¼ ∂ fi xð Þ
∂x j

� 	
i; j¼1;…;N

: ð19Þ

Under the hypothesis that the opinions of friends exert a
positive influence and those of enemies a negative one,
Altafini (2012) obtained that monotone dynamical social sys-
tems can be utilized to describe the dynamic forming process
of opinions in structurally balanced communities.
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6 Discussions

With this brief review, we made an attempt to summarize
the scientific activities in the interesting field of social
balance. Our efforts aim to review what has been done so
far in this rapidly evolving area. The fundamental concepts
and properties of social balance were firstly introduced in
this paper. Then we presented the approaches of balance
computing and significant empirical studies as well as
dynamics models. These studies can provide for us unques-
tionable evidences about the importance and dynamics of
social balance domain. As we known, the success of one
area always depends not only on their theoretical contribu-
tions, but also on their potential applications to real-world
problems (Costa et al. 2011). The area of social balance
research has already constructed a general and powerful
theoretical framework and provided for us many significant
dynamics models to uncover and mimic the evolutionary
mechanisms of real-world social systems well, as we pre-
sented above in Section 2, 3, 4 and 5. This holds tremen-
dous potential for future applications.

However, there are still some places which should be
further improved in this area: 1) The current social balance
measures usually have high computational complexity and
hence some of them just stay at the level of theoretical
analysis but can not be applicable; 2) As many real-world
social networks have directed and weighted links, we
should further generalize the existing theory of social bal-
ance to directed and weighted signed networks. This meth-
od can help us obtain more useful information about social
systems and may provide for us important insights into
understanding the dynamics of such systems; 3) Most of
these existing dynamics models concerning the issue of
social balance are only suitable for mimicking the social
process of some specific social phenomena under several
ideal hypotheses. Few existing models can work well and
provide perfect explanations for general real-world social
systems. As such, it is still an open problem for us to
develop more applicable mathematical models which can
be combined with the perspectives in the empirical body of
literature (Marvel et al. 2011); 4) More issues concerning
social balance should be argued and more significant ideas
should be also proposed from other fields besides social
psychology. Though those opinions and approaches may be
conflict to some extent due to different experiences and
perspectives, they can help enrich the theory of social
balance.

In the following part of this section, we will mainly focus
on discussing three significant issues, including empirical
studies on the emerging systems called Cyber-Physical-
Social Systems, competitive and cooperative models, and
evaluation and computational experiments. We will also pres-
ent some potential research directions in the future.

6.1 Empirical studies on cyber-physical-social systems

Existing empirical studies have paid more attentions on tradi-
tional offline social systems using the data of offline question-
naire and online social systems utilizing the online web log
data obtained from social media. However, as we known,
some online social behaviors of users may be influenced by
their offline social activities. On the other hand, many indi-
viduals’ offline actions could also be affected by their online
social interactions. If those offline or online social systems are
analyzed separately, it is most probable for us to obtain a
biased perception of user’s behaviors, especially their interac-
tion behaviors. Furthermore, few existing empirical studies in
this field have conducted deeply analysis on dynamical be-
haviors at a large scale. The potential reason is that, to date, it
is difficult for us to obtain this type of data quickly and
accurately.

This problem may be solved efficiently as the rapid growth
of mobile communication and web-based technologies, espe-
cially these recent emerging technologies such as the Internet
of things and cloud computing technologies (Eagle et al.
2009; Fang et al. 2013; Jung et al. 2012; Martens and
Teuteberg 2012; Mazhelis and Tyrväinen 2012). These tech-
nologies have created an overwhelming demand for the rapid
development and application of Cyber-Physical-Social
Systems (CPSS) (Fei-Yue 2010), which could potentially
integrate the cyber-social systems and physical-social systems
together. These Cyber-Physical-Social Systems can encom-
pass a holistic treatment of information, and knowledge from
the Cyber-Physical-Social spaces and offer massive historical
data concerning social interactions of users (Sheth et al. 2013).
These CPSS data can provide for us a huge number of signif-
icant evidences to gasp and understand human perceptions
and individuals’ attitudes more precisely than ever before.

6.2 Competitive and cooperative models

The current approaches proposed by social balance re-
searchers so far mainly focus on representing and modeling
very simple interaction behaviors of entities of social systems.
Many real existing significant social factors around these
entities have been ignored. Many real-world social behaviors
involve the interaction of multiple organisms in a population,
and the success of any one of these organisms depends on how
its behavior interacts with that of others (Easley and Kleinberg
2010; Axelrod et al. 1995). Especially, within an organization,
some relations between individuals are competitive while
some others are cooperative, or even these two types of
relations exist in the same pair of individuals. Actually, we
can present these relations using the construction method of
signed networks, where positive and negative links have a
natural interpretation in the light of cooperation and competi-
tion: positive links indicate cooperation and negative links
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competition (Traag et al. 2013). However, existing dynamics
models have not considered the competitive and cooperative
behavior yet, which leads that most of existing theoretical
models are not applicable. This is then also a natural motiva-
tion to develop more reasonable and applicable social balance
dynamics models by considering the competitive and cooper-
ative behaviors of entities within an organization and some
important international political and economical activities.

Along this direction, we can utilize the famous Game
theory (Malekzadeh et al. 2011; Gnyawali and Madhavan
2001; Kakade et al. 2005; Daniel et al. 2008; Jackson and
Zenou 2014; Galeotti et al. 2010; Abramson and Kuperman
2001), especially the evolutionary game theory (Hanaki et al.
2007; Smith and Price 1973; Osborne 2003; Jackson 1996,
2008; Szabó and Fáth 2007; Ba et al. 2000), which is designed
to address the situations in which individuals’ decisions de-
pend not only on how they choose among options, but also on
other actions made by the persons with whom they interact
(Easley and Kleinberg 2010), to construct competitive and
cooperative models. We can also integrate some fundamental
theories of multiple disciplines, such as organizational behav-
ior (McPherson et al. 1992; Kogan and Tagiuri 1958), eco-
nomics (Easley and Kleinberg 2010; Zenou 2012), sociology
(Friedkin 2004; Viktorov 2007), computer science (Tang et al.
2012; Yang et al. 2007) and statistical physics (Castellano
et al. 2009), to further conduct significant analytical studies,
which can help us obtain more realistic and operational results
from the targeted social systems and predict their overall
trends.

6.3 Evaluation and computational experiments

Most of existing studies on social balance are often insuffi-
cient to discriminate among different modeling schemes and
computational measures. Therefore, in the future, more efforts
can be made on developing efficient measures and evaluation
approaches. Several researchers have attempted to conduct
some studies along this direction. Using the simulation ap-
proach of Monte Carlo, Wang and Thorngate (2003) and
Kulakowski (2007) described two simulations and found that
individual decisions can exclusively guide the balancing pro-
cess. Notsu et al. (2006, 2010) simulate virtual societies under
several communication network conditions among agents
using multi-agent systems, whose agents are based on cogni-
tive balance, to get clues for understanding the feelings, atti-
tudes and beliefs of modern society. However, these tradition-
al computer simulations may not be valuable and applicable
when examining policies dealing with the matters of real-
world complex social activities (Wang et al. 2007;
Morrissette 1958; Zheng et al. 2011b) since the rules of most
of existing computational simulations are simple and
predetermined. Therefore, these approaches may not be used

to discover more hidden or unobservable key factors of com-
plex social systems well.

Motivated by these considerations presented above, many
social computing researchers have further contributed more
interesting ideas. Wang et al. (2007; Wang 2004, 2007) re-
cently proposed the approach of computational experiments
with artificial systems andmore sophisticated simulation tech-
niques, such as the self-emergence technologies based on
multi-agent modeling approaches. Zheng et.al. (2011a, b,
2012; Cui et al. 2013b) further gave a general theoretical
framework of computational experiments with a feedback
mechanism. These approaches can be triggered between the
theoretical and the experimental activities in order to make the
results robust, well understood and concrete.
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