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Abstract—Reachability trees, especially the corresponding
Karp-Miller’s finite reachability trees generated for Petri nets are
fundamental for systematically investigating many characteristics
such as boundedness, liveness, and performance of systems
modeled by Petri nets. However, too much information is lost in
a FRT to render it useful for many applications. In this paper,
modified reachability trees (MRT) of Petri nets are introduced
that extend the capability of Karp–Miller’s FRTs in solving the
liveness, deadlock, and reachability problems, and in defining
or determining possible firing sequences. The finiteness of MRT
is proved and several examples are presented to illustrate the
advantages of MRT over FRT.

Index Terms—Analysis method, discrete event systems, Petri
nets, reachability tree.

I. INTRODUCTION

OVER the last three decades, Petri nets have been proven
to be very powerful in modeling, analysis, verification,

simulation, performance evaluation, and control of discrete dy-
namic systems [1]–[3], [9]. Besides the graphical representa-
tion, a fundamental advantage of Petri nets is their capacity to
systematically investigate many properties and characteristics
of the modeled systems. Among various analysis methods and
tools, the reachability tree of a Petri net, i.e., the tree represen-
tation of its reachability set, is a fundamental and powerful one
for various properties including liveness, boundedness, conser-
vation, reachability, and coverability [2], [3].

Unfortunately, the application of reachability tree analysis
method is greatly limited by the fact that the reachability tree
of a Petri net may be an infinite tree for a given initial state or
marking [2]. Efforts have been made to find some finite rep-
resentations for reachability trees [4], [5]. Karp and Miller [4]
developed the finite reachability tree (FRT) method by intro-
ducing a special symbol, , to represent an infinite component
in markings resulting from some transition firing loops. This
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FRT is proved to be useful in determining such properties as
safeness, boundedness, conservativeness, and coverability [2],
[3], as well liveness and reversibility when the tree contains no

, i.e., a system with only a finite number of markings [9].
However, due to the loss of information caused by symbol,

the FRT cannot be used to solve the liveness, deadlock, or
reachability problems or to define or determine which firing
sequences are possible for an unbounded Petri net that contains
infinite number of different markings. The FRT of an un-
bounded Petri net contains in at least one of its nodes [9]. A
marking with an component simply indicates that the number
of tokens in the corresponding place is potentially infinite with
no further information on the structural reason to cause it.
Consider the examples given in [2]. Two Petri nets of Fig. 1,
with identical FRTs as given in Fig. 1(c), are similar nets but
have different reachability sets or reachability trees when they
are fully explored. In Fig. 1(a), the number of tokens in place
is always an even number (until fires), whereas in Fig. 1(b), it
can be an arbitrary integer. The symbol itself, however, does
not allow this kind of information to be represented, preventing
the use of the FRT from solving the reachability problem, i.e.,
whether a specific given marking can be reached. Fig. 2 gives
two Petri nets whose common FRT is shown in Fig. 2(c). Note
that the first net in Fig. 2(a) can lead to deadlock (after firing
sequence , for example), but the second one in Fig. 2(b)
cannot. The FRT approach fails to distinguish these two cases,
thereby making it invalid for deadlock detection.

Following Peterson’s suggestion [2] to use the expression
rather than to represent the value of the components

of a marking, we presented a modified reachability tree (MRT)
method for Petri nets [6]. Later, we developed a computer pro-
gram for the automated generation of MRTs for Petri nets [7].
MRTs have been proven to be useful. The proposed method ex-
tends the capability of FRT in solving the liveness and reach-
ability problems, and in defining or determining which firing
sequences are possible.

This paper formalizes and improves the results in [6], [7] with
a proof for the finiteness of MRTs, its usefulness in solving
reachability, deadlock, and liveness problems, as well as sev-
eral examples to illustrate the advantages of MRTs over FRTs
for Petri net analysis. Next section presents the preliminaries
for this MRT method by introducing -numbers, -vectors, and
their operations. Section III presents the MRT generation algo-
rithm and several examples. Section IV provides the theoretical
proof of the finiteness of the proposed algorithm and their prop-
erty checking capability. Section V concludes this paper.
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Fig. 1. Petri nets with the identical FRT but different reachability.

Fig. 2. Petri nets with identical FRT but different liveness properties.

II. PRELIMINARIES

We assume that a reader has the basic knowledge of Petri
nets and related definitions of their execution rules, bounded-
ness, liveness, and reachability. Let , and denote the
set of integers, nonnegative integers, and positive integers, re-
spectively. The original symbol is defined as in [2] with the
properties

Based on our previous work [6] and [7], we introduce the
following notations and operations:

1) -number. A subset of integers is called an -number
if and only if there exists , , such that

It can be shown that -number can be expressed
uniquely as

or is called a canonical -number
with as its base, the least bound, and the reminder.

Notice that the notion of -numbers contains more in-
formation about the structure of the infiniteness than the
notion does.

2) Addition of -numbers and integers. For integer
, it is defined that

where

Note that subtraction is defined since is allowed to be
negative in this definition.

3) Comparison of two -numbers. Let be the set
of integers (nonnegative integers) and -numbers. For
any , , is defined as either

and

or

and

Note that in the second case, is a subset of if both are
viewed as sets.

4) Comparison of two -vectors. A vector is called
an -vector if and only if at least one of its coordinates
is an -number. Clearly, an -vector can be viewed as
a set of vectors on in an obvious way. An instance of
an -vector is any ordinary vector in the corresponding
vector set. An -vector contains if and only if and

have the same non- -number coordinates, and

where and are coordinates of and , respectively.
5) Calculation of the next-state function. The next-state

function, , is defined to be the marking resulting
from firing transition at the current marking . If is an

-marking, i.e., represented by an -vector, then
is calculated in the same way as for ordinary markings by
using the addition of -numbers and integers defined in
Item 2.

6) Association of -number components. Two -number
components in an -marking are called associated if and
only if they are reached at the same firing of a transition.
The associated -number components are synchronized
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in the sense that their integers must be paired orderly
(i.e., no cross-products among the associated -number
components).

7) Conditionally enabled. If some -number components
of the resulting marking by firing a transition have neg-
ative least bounds, the transition is called conditionally
enabled by the -marking.

8) Elimination of negative markings. Since no marking
with negative components should be allowed in the reach-
ability tree for a Petri net, the resulting marking by firing
a conditionally enabled transition is modified as: for an

-number component with a negative least bound , set-
ting its least bound to zero and increasing the least bounds
of all the associated components by , and repeating the
procedure until all the -number components have non-
negative least bounds. Note that one may keep markings
with negative components to simplify the MRT at the ex-
pense of lacking their proper physical explanation.

9) Classification of nodes. To describe an MRT, some new
names for the nodes are defined: interior, terminal, dupli-
cate, -duplicate, and frontier nodes. An interior node is
a node in MRT with subnodes. A terminal node is a node
corresponding to a dead marking without any enabled
transitions. A duplicate node is a node with a marking
that had previously appeared in the tree along the same
path. An -duplicate node is a node with an -marking
that is contained by another node that appears previously
in the tree along the same path. All the other nodes in the
tree are frontier nodes.

Notations and operations defined in items 1) to 4) involve
-numbers only, while those defined in items 5) to 9) deal with

firings of Petri nets and resulting markings.

III. GENERATION OF MODIFIED REACHABILITY TREES

The procedure to construct the MRT for a Petri net can now
be precisely stated in terms of the notations and operations in-
troduced in the previous section. Let be the set of transitions
and be the set of places of a Petri net with initial marking

. The procedure begins by defining the initial marking to be
the root of the MRT and, initially, a frontier node. As long as
a frontier node exists, it is converted into an interior, terminal,
duplicate, or -duplicated node by the following algorithm.

MRT Generation Algorithm:

1) Let the initial marking be a frontier node.
2) If no frontier node exists, terminate. Otherwise, let be a

frontier node to be processed.

2.1) If there exists another node in the tree which
is not a frontier node, and has the same marking
associated with it, , then node is an

-duplicate node; goto 2.
2.2) If there exists another node on the path from the

root to node with a marking that contains ,
is an -duplicate node; goto 2.

2.3) If no transition is enabled by marking , then
is a terminal node; goto 2.

2.4) For all transitions which are enabled
by , let be the modified resulting

marking by firing , which is calculated ac-
cording to rules 5 to 8 in Section II. Create a new
node in the MRT. The marking associated
with the new node is, for each place :

2.4.1) If there exists a node on the path from
the root node to with ,

and
, then

where and

2.4.2) Otherwise, .
2.4.3) A dash arc, labeled , is directed from

to node in the MRT if is conditionally
enabled by . Otherwise a solid arc,
labeled , is directed from to . Node

now becomes a frontier one.

2.5) Node is redefined as an interior node; goto 2.
The generation procedure is based on [6] with the major

modification that the modified next-state function
is calculated according to rules 5) to 8) defined in Section II.
Hence, no markings with negative components can be produced
by the procedure. This ensures that the MRT contains only but
all reachable markings from the initial marking of a Petri net.
The new MRT generation algorithm enables the usefulness of
MRTs in solving the liveness and reachability problems for
Petri nets, which is proved in the next section.

In addition, a major error has been found in [6]. In Step 2.2
of the algorithm, an -duplicate node is originally defined as:
“if there exists another node in the tree which contains .”
This should be changed to “if there exists another node on the
path from the root to node with a marking contains .” If
we search through the whole tree for the possible -duplicate
node, there will be a problem that some terminal node might
contain the current marking .

The procedure is implemented in C. It has 797 lines including
the comments. The input to the program is the structure of the
Petri net containing the number of places, number of transitions,
input matrix, output matrix, and initial marking. The output of
the program describes the structure again, and then lists all the
markings in the tree each attached with its parent marking and
type of nodes. After that, all the arcs are listed each with the
node it starts, the node it ends, and its type.

Figs. 3 and 4 give the MRTs of the Petri nets in Figs. 1 and
2, respectively. The examples of changing from non- -numbers
to -numbers, and calculating an -numbers from another are
presented. They indicate that Petri nets in Figs. 1 and 2 have dif-
ferent MRTs, even though their corresponding FRTs are same.
It should be noted that Fig. 3 shows clearly that the number of
tokens in places in Fig. 1(a) is always an even number, un-
less fires [see node (1, 2 1, 0, 0)], whereas the number of
tokens in places in Fig. 1(b) can be an arbitrary nonnegative
integer. Similarly, Fig. 4 shows that the Petri net in Fig. 2(a) can
lead to deadlock since its MRT contains an interior node with
all its subnodes linked by dash arcs, while the net in Fig. 2(b)
cannot. Clearly, instance (1, 0, 0) of the marking represented by
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Fig. 3. MRTs for Petri nets in Fig. 1 with different reachability.

this interior node leads to deadlock. These examples illustrate
that the MRT representation for the reachability set of Petri nets
is more powerful than the FRT, and expresses all the necessary
information lost in the FRT in those cases.

Fig. 5 presents another Petri net example. Its MRT is given
in Fig. 6 and shows that the Petri net is possible to be dead-
locked since it contains two interior nodes with all their subn-
odes linked by dash arcs. It is easy to see that three interior
nodes include the instances of (0, 2, 0), (0, 3, 0), (0, , 0) where

, respectively, which all lead to deadlock. For comparison,
Fig. 5(b) gives the corresponding FRT for the same Petri net.
Clearly, it is not possible to find the deadlock problem for this
net if only its FRT is used.

IV. FINITENESS, LIVENESS AND REACHABILITY OF MRTS

The following theorems guarantee the finiteness of MRTs and
their usefulness in analyzing reachability, deadlock, and liveli-
ness of unbounded Petri nets.

Theorem 1 (Finiteness): The modified reachability tree of a
Petri net is finite.

The proof of the theorem is an extension of that used by Hack
[8] for the finiteness of FRTs. We need the following lemmas.

Lemma 1: In any infinite directed tree in which each node
has only a finite number of direct successors, there is an infinite
path leading from the root.

The proof for the lemma is obvious.

Fig. 4. MRTs of Petri nets in Fig. 2 with different liveness property.

Lemma 2: Every infinite sequence of numbers over
and -based -numbers contains an infinite nondecreasing
subsequence.

Proof: The numbers in this case can be classified into one
of the types, i.e., nonnegative integers, -based -num-
bers with remainder 0, -based -numbers with remainder

-based -numbers with remainder . Since the
number of types is finite, every infinite sequence of numbers
over them has to contain at least one infinite subsequence
over a single type of number. It can be shown easily that this
infinite subsequence over the single type contains an infinite
nondecreasing subsequence.

Lemma 3: Every infinite sequence of -vectors over and
-based -numbers (different coordinates may have different

bases) contains an infinite nondecreasing subsequence.
Proof: For , the proof is given in Lemma 2. As-

suming the lemma is true for , we prove the
lemma is true for . Consider the first coordinate.
By Lemma 2, an infinite subsequence of vectors that is nonde-
creasing in their first coordinate can be found.

Applying the induction hypothesis on the sequence of
-vectors obtained by ignoring the first component of the
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(a)

(b)

Fig. 5. Petri net and its FRT: Deadlock cannot be detected from this FRT.

-vectors. The infinite subsequence selected this way is
nondecreasing in each coordinate.

Proof of the Theorem 1: The theorem can be proved by
contradiction. Assume there exists an infinite MRT. Then by
Lemma 1 there is an infinite path from the
root . Let , , , , be the infinite sequence
of -vectors on . From the construction algorithm of
MRT, it is clear that all -numbers in each coordinate of the
infinite -vector sequence has the same base. By Lemma
3 this infinite sequence of -vectors has an infinite nonde-
creasing subsequence But
by construction, we cannot have , since then
it would be a duplicate node and would have no successors.
Thus, we must have an infinite strictly increasing sequence

If contains non- -number
components, then by construction, means that
at least one component of which is not an -number
would be replaced by an -number. Therefore, has
at least one component that is an -number, has at
least two -number components, , and has at least

-number components, i.e., a pure -marking. But, since
, is an -duplicate node by

definition, hence it would be no successors by construction.
This is a contradiction, therefore the assumption that an infinite
MRT would have existed is incorrect.

Theorem 2 (Reachability): The modified reachability tree of
a Petri net consists of only but all reachable markings from its
initial marking.

The proof of the theorem is obvious from the generation al-
gorithm for the MRT. Note that in this case we consider an

-marking as a subset of markings represented by an -vector,
where integers of associated -number components are syn-
chronized while integers of nonassociated ones are listed in the
form of cross-products. Clearly, all markings from the subset are
reachable and all reachable markings from the initial markings

Fig. 6. MRT of Petri net in Fig. 5: Deadlock can be detected from this MRT.

are included in the MRT. Therefore, MRT can be used for the
reachability analysis of systems modeled by Petri nets.

Before we introduce Theorem 3, we call a node in a MTR with
all its subnodes linked by dash arcs a full conditional node, or a
partial conditional node if only some but not all of its subnodes
are linked by dash arcs. Both full and partial conditional nodes
have to be associated with an -marking. For a full conditional
node, due to the synchronization of associated -number com-
ponents and the cross-product of the nonassociated -number
components, it is clear from the MRT generation algorithm that
some instances of its -marking are actually terminal markings
[see Fig. 4(a) for example]. Based on this and Theorem 2, we
have,

Theorem 3 (Deadlock): A Petri net has deadlocks if and only
if its modified reachability tree contains terminal nodes and/or
full conditional nodes.

Theorem 4 (Liveness): A transition in a Petri net is live at
level 1 (i.e., it is potentially fireable from the initial marking) if
and only if it appears as a label to some arc (dash or solid).

Definitions of liveness at different levels can be found in [2,
page 86]. Liveness analysis at other levels can be conducted
with MRTs too, but more complicated check schemes would be
needed for this purpose.

Based on those theorems, it is obvious that MRTs can also be
used to determine which sequences of transitions are possible
or can be planned.

V. CONCLUSIONS

By introducing -number, a notion which contains much
more information about the structure of infiniteness than
symbol, the MRT offers a more general and powerful repre-
sentation for the reachability set of unbounded Petri nets and
can be used to solve the liveness, deadlock, and reachability
problems. Clearly, the concept of MRTs is a straightforward
generalization from that of FRTs and the generation algorithms
for both basically have the same computational complexity.
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While FRTs are very useful for boundedness, safeness, conser-
vation, and coverability, but are invalid for liveness, deadlock,
and reachability analysis, which are more important and critical
for many applications. Those problems now can be solved
easily with MRTs developed in this paper.
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