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Abstract

In this paper, the problem of designing observer for a class of uncertain neutral sys-
tems. The uncertainties are parametric and norm-bounded. Both robust observation
and robust . observation methods are developed by using linear state-delayed
observers. In case of robust observation, sufficient conditions are established for asymp-
totic stability of the system, which is independent of time delay. The results are then
extended to robust ., observation which renders the augmented system asymptoti-
cally stable independent of delay with a guaranteed performance measure. Furthermore,
a memoryless state-estimate feedback is designed to stabilize the closed-loop neutral
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system. In all cases, the gain matrices are determined by linear matrix inequality
approach. Two numerical examples are presented to illustrate the validity of the theo-
retical results.

© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

As is well known, dynamical models of many physical and engineering sys-
tems incorporate time-delay factors, see for example, [11,13]. When using
these models in the analysis and control design, there have been three basic
approaches [1,20]: (1) using infinite-dimensional systems theory by embedding
the class of time-delay systems into a larger class of dynamical systems for
which the state evolution is described by appropriate operators in infi-
nite-dimensional spaces; (2) applying algebraic systems theory in which the
evolution of delay-differential systems is provided in terms of linear systems
over rings and (3) employing functional differential systems (FDS) by incor-
porating the influence of the hereditary effects of system dynamics on the
change rate of the system and in this regards, it provides an appropriate
mathematical structure. On the other hand, robust observation (or estima-
tion) [5,26,9,28,30] is concerned with the state reconstruction when the plant
model has uncertain parameters and is described by ordinary differential
equations (ODE) or equivalent representation. Following the third approach
based on FDS, results on estimating the state of uncertain system with state-
delay are developed in [18] and related work can be found in [21]. An integral
part of FDS [11-13,32] is the class of neutral-type systems which can be found
in several applications including, but not limited to, chemical reactor, rolling
mill, infeed grinding, lossless transmission lines and hydraulic systems. Stabil-
ity analysis and feedback stabilization for neutral FDS have been studied in
[16,27] and other related work was reported in [20]. Recently s, control
has been developed in [19] for a class of linear neutral systems with para-
metric uncertainties.

On another research front line, there are a wide class of systems having a
variable structure subject to random changes which may result from abrupt
phenomena such as component and interconnection failures, parameters
shifting, tracking and/or variation in the time frame of measurements. Sys-
tems with this character may be modelled as hybrid ones; that is, the state
space of the system contains both discrete and continuous states and is fre-
quently termed jumping systems. Results on the stability and control of linear
jumping systems can be found in [3,7,25,14,33,4,2,31,23,24] and the references
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therein. This paper build upon [20,19] and extends their results further by
considering the state observation and stabilization problems for a class of lin-
ear neutral systems with norm-bounded uncertainties. Note that the motiva-
tion to investigate this kind of system is that some control systems depend
not only on state delays but also on derivatives of delayed states, and this
class of systems is referred as neutral delay systems. The system we studied
in this paper is an extension of the standard neutral systems with jumps. Ini-
tially, we address both problems of robust state observation and robust
observation and employ a new linear state-delayed observer such that the
asymptotic stability of the combined neutral system and the proposed obser-
ver is guaranteed for all admissible uncertainties. The main tool for solving
the foregoing problems is the linear matrix inequality (LMI) approach. In
this regard, it has been established that the solution of robust is expressed
in terms of two LMIs involving scaling parameters. Looked at in this light,
the developed methods provide new results which in some sense are the dual
of [19]. Then, the robust stabilization problem is considered by designing
memoryless state-estimate feedback such the asymptotic stability of the
closed-loop stability is guaranteed. The analytical developments of this work
are organized into theorems whereby the results are presented in a systematic
and gradual build-up. Finally, two numerical examples are presented to illus-
trate the validity of the theoretical results. It should be mentioned that in
fact, our paper deals with a class of neutral systems with uncertainties and
jumping parameters using the difference operator approach. The method of
analysis is systematic and the developed results are new and delay-indepen-
dent. There is a wide-class systems, such as fault-tolerant systems, satisfying
these features.

1.1. Notations and facts

The notation in this paper is fairly standard. We use W', W', (W)
and ||W|| to denote, respectively, the transpose, the inverse, the eigenvalues
and the induced norm of any square matrix W. We use W>0 (=, <, <0)
to denote a symmetric positive definite (positive semidefinite, negative, nega-
tive semidefinite) matrix W with A,(W) and Ap(W) being the minimum and
maximum eigenvalues of W and I denote the n X n identity matrix. The open
left half of the complex plane is represented by C . The Lebesgue space
#5]0,00) consists of square-integrable functions on the interval [0,00). Let
C,: = C([-7,0],R") denote the Banach space of continuous vector functions
mapping the interval [—7,0] into R" with the topology of uniform conver-
gence and equipped with the norm |[x||, £ sup_._yllx|| where ||| is the
Euclidean norm and 7> 0 is termed the delay factor. Sometimes, the argu-
ments of a function will be omitted in the analysis when no confusion can
arise.
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Fact 1 (Schur Complement). Given constant matrices Q;, Q,, Q3 where
0<Q =0 and 0 < Q, = Q) then @ + Q4Q5'Q; < 0 if and only if

Q@ -2, Q
[ : ’ } <0 or [ tz 3} < 0.
Q3 _QZ .Q3 .Ql

Fact 2. Given any real matrices X, X,, 23 with appropriate dimensions, such
that 0 < X3 = X} the following inequality holds:

D5+ 22 < BV E + 2R

Fact 3. Let X}, X5, 25 and 0 < R = R' be real constant matrices of compatible
dimensions and H(f) be a real matrix function satisfying H'()H(t) < I. Then
for any p > 0 satisfying p2}%, < R, the following matrix inequality holds:

(T3 4+ D H(0) )R (2 + SSH(1)2Y) < p' 2128 4+ 55(R — p2ix,) ' 5L,

2. Class of neutral jumping systems
2.1. Model description

Given a probability space (2,7 ,P) where Q is the sample space, Z is the
algebra of events and P is the probability measure defined on % . Let the ran-
dom process {1,,¢ € [0, 7]} be a homogeneous, finite-state Markovian process
with right continuous trajectories and taking values in a finite set & =
{1,2,...,s} with generator 3 = (p,;), i,j € ¥ with transition probability from
mode i at time ¢ to mode j at time ¢+ 0, i,j € -

wd o), ifit)
Dij (’7[+5 J|’7: ) { 1+ OCija + 0(5)7 if i =j ( )

with transition probability rates o;; > 0 for i,j € &, i # j and

Ojj = — i: im (2.2)

m=1,m#i

where 6 > 0 and lim;|0(6)/d = 0. The set % comprises the various operational
modes of the system under study.

We consider a class of stochastic uncertain neutral systems with Markovian
jump parameters described over the space (2, 7, P) by
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(Zan) () 25(1) = B(n,)x(t — 1)

= [, (n,) + Ao (2,n,)}x(2) + [Aa(n,) + Ady(t,m,)]x(t — ) + N (n,)w(t)
= Ao (t,0,)x(2) + Ana(t,1,)x(t — 1) +N(n,)w(t), (23)
x(n) =) € C([-7,0,R"), Vne[-1,0], (24)
y() =[Co(n,) + AC,(t,n,)]x(t) + [Ca(n,) + ACq(t,n,)Ix(t = T) + M (n,)w(t)
= Cao(t,1,)x(t) + Caa(t,n,)x(t — ) + M (n,)w(2), (2.5)
z(t) =L(n,)x(1), (2.6)

where x(¢) € R" is the system state, y(f) € R" is the measurement output,
z(t) € R? is the controlled output, w(f) € ¥,[0,00) is the disturbance input,
z(¢) € R" is the controlled output which belongs to #,[(Q2, #,P),[0,00)] and
the factor 1> 0 is a constant scalar representing the amount of time-lag
in the state. Frequently the term .#(x;): C[—7,0] — R"£x(¢) — Bx(t — 1) is
called the difference operator and it offers a fundamental role in the analytical
development throughout the paper.

For each possible value 1, =i, i € ¥, we will denote the system matrices of
(2 an) associated with mode i by

Ao(”]t) éAO(i)v Ad(nt) éAd(i)v N('I;) éN(i)v

CLln)2Co(0), Caln)2Cald), M) EMG). Bln) 2B,
where A4,(i) € R™", 4,(i) € R™", B(i) € R™, C,(i) € R™", C,(i) € R™",
N(i) € R™, M(i) € R™" and L(i) € R”*" are known real constant matrices.
A(Q), ALD), C,(i), CAi), B(i), N(i) and M(i) are known real constant matrices
of appropriate dimensions which describe the nominal system of (2,,). The
matrices AA,(t,1,), AAAt,n,), ACy(t,n,) and AC,t,n,) are real, time-varying
matrix functions representing the norm-bounded parameter uncertainties.
For 5, =i, the admissible uncertainties are represented by

AAo(t’i) AAd(tvi):l _ |:Ha(i)
AC,(t,i) AC,(t,i)| | H.(i)

(2.7)

}A(r)[Ea(i) E (i)], VA ()A(t) <1, Vit
(28)

where H,(i) € R™*, H.(i) € R, E,(i) € R"" and E,(i) € R"", are known
real constant matrices and A(¢) € R”ﬂ is an unknown matrix with Lebesgue
measurable elements. The initial condition is specified as f, = (x(0),x(s)) =
<xoa ¢(S)>’ where (b() € D(ZZ[_T;O]'

In the absence of uncertainties (A(-) = 0) and for each possible value 1, = i,
i € .4, we obtain the nominal neutral system

(Z) M () Z5(t) = B(i)x(t — 1) = Ao (i)x(2) + Au (i)x(¢ = 7) + N (i) w(t),
(2.9)
x(n) = ¢(n) € C([-7,0l,R"), Vne€[-1,0], (2.10)
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y(#)=C,())x(t) + Ca(i)x(t — ) + M (D)w(2), (2.11)
z(8) =L(i)x(¢). (2.12)

The following assumptions on systems (X,,) and (2,) are recalled:

Assumption 2.1. A(4,(i)) e C", i€ .
Assumption 2.2. |A(B(i))| <1, det[B(i)] # 0, i € <.

Remark 2.1. Note that system (2.3)—(2.6) is a hybrid system in which one state
x(¢) takes values continuously, and another “state” 5(¢) takes values discretely.
Being continuous in time and represents a wide class of physical systems thus
Assumption 2.1 is quite standard. On the other hand, Assumption 2.2 provides
a sufficient condition on the eigenspectrum in the discrete space and its major
role will be clarified in the sequel. An alternative interpretation of Assumption
2.2 is that the difference operator .#(x,) is delay-independently stable. The
kind of systems (2.3)—(2.6) can be used to represent many important physical
systems subject to random failures and structure changes, such as electric
power systems [34], control systems of a solar thermal central receiver, commu-
nications systems, aircraft flight control, and manufacturing systems
[3,25,14,33,6,8].

Our primary objective in this paper is to design robust state and robust
observers for the neutral system (2,,) with some desirable stability behavior
and then extend these designs to the neutral system (X,). Towards our goal,
we let X(¢,f,,n,) denote the trajectory of the state x(¢) from the initial state
(Bo>n,) and recall the following definition:

Definition 2.1. System X,, is said to be robustly stochastically stable

independent of delay (RSSID) if for all finite initial vector function
¢(-) € L[—1,0] defined on the interval [—7,0] and initial mode 5, € &

{7 (i pnitharf < oo .13)

for all admissible uncertainties satisfying (2.8).

3. Robust observers

In the sequel, to derive the state estimate ¥ € R" we will utilize the following
linear Markovian state-delayed observer for each possible value ,=1i,i € ¥
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(Zo) M (x0)25(0) = Bx(t— 1) = A, (D)X (6) + A (DR (1 — 1) + K (i)(1), £(0)=0,
5(1) =L(1)3(1), (3.1)

where 4,(i) € R™", K,(i) € R™", i € & are the observer matrix gains to be de-
signed such that x reproduce x asymptotically for all admissible uncertainties
satisfying (2.8).

3.1. The augmented system

Let the state error be
$E&x(t) — x(2). (3.2)
From (2.3)—(2.5), (3.1) and (3.2), the state error dynamics can be represented by

(Zac) () 2X(t) — B(i)x (t—f) = Ay (Dx(1) + Aa(D)x(t — 1)
+ Ao (i) = K (1) Cold) — A (D)]x(1) + [Ado(,7) = Ky ()AC (2, 1) lx(7)
— Ky ()[Ca(i) + ACq(t,)]x(t = ) + [N (D) — K ()M (i) w(2). (3.3)
A state-space augmented model of the observation error, z(¢) = z(¢) — 2(¢), can

then be constructed in terms of the augmented state vector and the extended
matrix B(i) for each possible value n,=i,i € &

ws[10] a0 )
by using (2.3)—2.6), (3.3) and (3.4) as follows:
(Zan) () EL0) - B - 1)
=l no(,1){(t) + Do (t,0)(t — T) + B(i)w(2), (3.5)
2(t) = Ly (1)C(0),

R e

0= 0] EO=0EOL BO-0EGL  6)

D) = Aa(i) —Kf(i)cd(l)] BO.):{N(I')—Kf(i)M(l)} (3.8)
0 440) I N(i) ’ '

-5 Ha(l)_Kf(l)Hc(l) I7 (N _Kf(l)Hc(i)

= 1, (i) Js 7ot = | 1, () | G39)
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Had we followed another route and combined systems (X)) and (X.), we would
have obtained the nominal augmented system

(Z0) #(E)EL) — BO)L - 1) = AGL) + DO — 1) + Bli)w(r),
(3.10)
2(1) = Ly ()(0). (3.11)

Remark 3.1. It should be stressed that system (X,) describes a linear
uncertain jumping system of neutral-type the nominal version of which is
represented by systems (2 4). The matrices of both systems depend on the gains
Afi), K(i), i € &.

3.2. Stability analysis

The following theorems establish that the stability behavior of system
(Xa4) or (2 ,) is related to the existence of a positive definite solution of linear
matrix inequalities thereby providing a clear key to designing the state
observers.

Theorem 3.1. Given gain matrices A(i), K(i), i € & and subject to Assumptions
2.1 and 2.2, system (Xpa4) with w=0 is (RSSID) if for given matrices
0 < L(i) =L'(i) € R*, i € &, and letting

L) =16) - () ia,-mum» L) = L() + &0) ioc,-mumx
ies

for some scalars &(i) > 0, i € &, there exist matrices 0 < P(i) = P'(i) € R*™",
i € S and scalars €(i) > 0, o(i) > 0, i € & satisfying the following linear matrix
inequalities (LMIs):

T Y i) A()
AL —d,(i) 0 <0, ied, (3.12)
LA, 0 =6,0)
[ LG BOLG) Ep() e()B'G)E,G)
L())B(i) L) 0 0 <0 iew (13
Ep(i) 0 —1 0
Le(i)E4())B(7) 0 0 —&(i)]
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T, =P)AG) + A ()P() + L(i +Za,,,, E,(i)EA(i),
Au=[P)H, () P(ﬂu<>nw>£b<ﬂ -—dma I ) ()],
o =T0) ~BOL0BG) - o(0) (B (DL (DE)BG) + Ep()Eo(i))

(i) = P()AGB() + D)+ L()B() (3.14)

for all admissible uncertainties satisfying (2.8).

@

Proof. For n,=1i, i € % and given 0 < L(i) = L'(i), let the Lyapunov func-
tional V' (-) : R" x Ry x ¥ — R, be selected as

V(EC,'Ir:i)é (té )
— M)P) Q) /cz+0 L0)do. (3.15)

The weak infinitesimal operator Ja[-] of the process {{(¢),n;,t = 0} for system
(3.5) at the point {¢,{,#,} is given by [15]
. aV oV
~{
Ja[V] at (Ct)( )aC

Using (3.5) into Eqgs. (3.15) and (3.16) and manipulating the terms we get

+Za1m (t,¢,i,m). (3.16)

=i

S, V] = A COP ) A w8, )L(0) + D (8Dt = 7)]
+ [ w0 (1,1) (1) + Do (1,))C(t = O PA (L) + (L))

%3 P m)A(G) + EOLOUD — Lo — LA — )

m=1

+fo,m/ e+ O)L(m){ (¢ + 0)do

< AM(L)P O]t 2o (8,)L(8) + Do, D)Lt = 7)]
+ [ o (1, )L(8) + Do (1,0)L (8 = D) P ()M (C) + (L)

fox,m L)+ COLE)(n) - L — DLE)(E — ),
(3.17)

where L(i) > 0, i € & by selection of &(i), i € . Applying the argument of
“completing the squares’ and over-bounding the result, it yields
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S VI A (L) | PGS wo150) + A, (1)) P+ (7) +i%mP(Wl)} A (L)

0 (0) (P) o (1.0B() + LB +P0) P 1) ) (e =)
+ (=) (P) o (0BG + L()BU) + PO) Fas 1)) A (L)
~{(t=7) [[(i)fB‘a)E(nB(z’)}cwr)

\/Ma[ (D) a0 (1,0) 4, ()P () + L (i +Za P(m

+ P(i)%(nf)@(i)+E<i>B<i>+P<f>@Ao<r,i>) [C-BOL0OBEO]
x u»(i)mo(t,i)[a(i)+[(i)B(i)+un»(i),@m(z,i)ﬂ (8

= [0t = () (P () 0 1,0)B0) + (B + P @) P (1)) |

(3.18)

Using Facts 2 and 3, it follows from (3.18) for some scalars &(i) > 0, o(i) > 0,
i € ¥ that:

m<ﬂ‘<a>{ (DAG) + A WP() + LG +Za,m
+ o PO, ()P() + 0()E,()Ea (1)
+e-1<i>P<z>[HA<> 0+ Hol0 »(0)] ()
+ (P()AGBG) + iB())
< [T BOLOB() - <>( LOE) + Ey(0Eo(9)]
x(P(i){A(i)B(i)+D<i>]+ﬁ<i>B<f>)‘}/%<c,> MENTI@) M),
(3.19)
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By the Schur complements, inequality (3.19) is equivalent to LMIs (3.12)
and (3.13) from which we conclude that for all admissible uncertainties satisfy-
ing (2.8) 3:[V] < 0 for all { # 0 and J.[V'] < 0 for all (.

Since ||x(z + p)|| < @||x(8)||, VB € [—7,0] and some ¢ > 0 [17], it follows from
(3.15) that

V(ta Ca l) < <ﬂt(CI)P(l)’%(Ct) + MHCHZa
= o (max n[P0] + AnlL0])
Therefore, for all { # 0, we have

SX[V] «Wt(C;) () (Ct) A . {im[_n(i)}}

a - < K—0= —MmMnn<{———- . 3.20

VL) S A CPOAG) S PP (320

It is readily seen from (3.20) that ¢ > 0 and hence we get 3:[V'] < —aV(t,(,i).

Then, it follows from [15], by using the Gronwall-Bellman lemma [20] and let-
ting x(t =0, ¢, i) = x,, that

EV (6,8, i)l n,) < e V(t,Com,) (3.21)
Therefore
E[V(2,L,0)|4, no]—fE{J%‘(C, A (L) /C (t+0)L() (e + 0)d0| ¢, no}

=E{.4 (L)P Q)4 (L) $n,}
+[E{/ C(e+ 0L (¢ + 0)d0| ¢, '70}

e UIV(t7 CO? 1/’0)‘
(3.22)

Since [E{fi C(t+ O)LG) (e + 0)do) g, 110} > 0; then some algebraic manipula-
tion of (3.22) yields:

ELA )P < V(e L)
= o [T poaeapn
<[[ “’dt] V(o) = S 10 Gom,)
= m el [t

<TERO + LI+ O, Vo€ [-50,  (323)
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where ||x(¢ + 0)||fésup9€[,f‘0]||é(t +0)|I>. Now, let

B() = max {AM[PWHCOHZ o+ 7L (n, )] (e + 9>|i}
alP(n,)]1% I |

ey
it follows from (3.23) for i € ¥ that
T —00

im £{ [ Ci0dlgn, b < G @)L, < +ox

which, in the light of Definition 2.1, shows that system (2 ,) is (RSSID). O

Theorem 3.2. Given gain matrices A(i), K(i), i € & and subject to Assumptions
2.1 and 2.2, system (X ) with w = 0 is stochastically stable independent of delay
(SSID) if for given matrices 0 < L(i) = L'(i) € R*™*, i € &, and letting

B0 = 10) =0 Yl ln), T =10 +60 D mlm), i€ 7

for some scalars E(i)> 0, i € &, there exist matrices 0 < P(i) = P'(i) € R*™ ",
i € L satisfying the following L MIs:

iy —ouin] <

O = L(i) — B'()L(i)B(i). (3.25)
Proof. Follows from Theorem 3.1 by setting E, =0, E, =0, H, =0. [

Remark 3.2. It should be remarked that both Theorems 3.1 and 3.2 offer new
analytical results for the class of neutral-type dynamical systems under consid-
eration. The results are cast in LMI format for which the MATLAB-LMI software
is readily available [10]. More importantly, in the case B(i) =0 = .#(-) = x,,
systems (Xr4) and (2 ,) become of retarded-type for which Theorems 3.1
and 3.2 retrieve the results of [29,22].

Remark 3.3. The need for Assumption 2.2 is evident from (3.14) and (3.25) in
which case the conditions ©&,> 0, @,,> 0 are required, respectively. In both
cases, the result reveals a discrete Lyapunov inequality.
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3.3. Observer design

In this section, we provide expressions for the gain matrices of the observer
(3.1) when applied to the neural systems (25 ,4) and (X 4). To facilitate further
development, we introduce the following matrix expressions for some scalars
&) >0, 0(i)>0,i € ¥

P.(i) 0 L() 0
P(i):{ 0() [F"X(i)} I]_(i):{ é) [Lx(i)}’ (3.26)
Eu(i) = L(i) - B'()L(i)B(i),
E4(i) = Lu(i) = B'()La(i)B() — o(0) (E, () Ea(i) + Ey () Ea(0)),
E(i) = B)Z," (1)[B'() L) + [} (1) + B\ ()AL ()] P ()], (3.27)
Ao (i) = A,(i) + 0 (D HL(VH (DP () (1 + Ee(0))
Co(i) = Coli) +[Cal) BT (DEc(i) + (7 (i) + 07 (D) He (D HL (1) Pa(i)

/)|B(i
) Ha(z)H‘( )+ (20(1) +Ad( )+ L (z)B(z))E Y()B' (i) C, (i)
)+ Le(D)B(i)E; " (1) [[Coli) + Co(1)]B() + Ca(i)]. (3.30)

The main results are summarized by the following theorems:

Theorem 3.3. System X, is RSSID, if given matrices 0 < L(i) = LL(i) € R™",
0 < Li(i) = LL(i) € R™" and scalars (i) > O such that

[h(l Z(xtm m) [L +£( Z“zm X l yv
m=1
L>)= Zoc,,,,[l_ ), L +§()Zo¢,m[L ic?,

there exist matrices 0 < P,(i) = P{(i) € R"™", 0 < P,(i) = Pi(i) e R™", i€ &
and scalars &(i) > 0, (i) > 0 satisfying the LMIs

YD) Ap(D) Adi)  Af() . | |
Ayi) 0 —E(6) 0 ’ i : ) :
AL (i) 0 0 —5() h Zp

(3.31)
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where

i) = Po(i)A,(0) + A, ())Po(i) + Lo(i) + Y inPe(m) — PELE, E,P,

Ap(0) = [P()H (i) Po(i)H,(i)] "

@,(i) = diag[e(i)l ()],

Aq(i) = P (i) [Ao (i) + Aa(i)] + Le(i)B(0),

Ay (i) = Po(i)[A, (i) — A, ()] + Lo(i)B(i),

V(i) = Po(i) A4, (i) + AL ()P (i) + (i) + 0EL () Ea(i) + Z %P (m)
(3.32)

An(0) = Po(i)A,()B(i) + Py(1)Aq (i) + Le()B(i),

Ac(i) = [P()Ho (i) P()H.(i) P.()H(i)],

®.(i) = diag[e(i)] o) e(i)I] (3.33)

for all admissible uncertainties satisfying (2.8). Moreover, the estimator gains are
given by

Ki(i) = Z,)E (@), As(i) = 4,(0) = K (1) Co (i), (3.34)

Proof. Extending on Theorem 3.2 by using (3.7)—(3.9) and (3.26)—(3.30) into
(3.19) and expanding terms we express the result into the block form

s o)

where
zna)=u%(i)Af(i)+A;<z'>uﬂ>e<z'>+Ee<i>+iain,Pe<m>

(e ()07 ()Pl [Ha(0) — K, (D H )] [Ha(0) — K () ()] P (i)
o (PR, () H(DHL (DK ()P, ()

+Pi) A, (D)B() +A4,(0)) + L()B)IE, ' ()

[P ()BU) +Au ()] + L) B!

P (1) — 4, (1) — K (D Co(i))BUG) — Peli)K (1) Ca D, (1)
[P (1)~ A4, () ~ K () CIBG) ~ POK (DCa(D]', (3.39)
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I (i) = Po(i) A, (i) + AL ()P (i) + Lo )+Z%m (m)+e(D)E, () Ea(i)

m=1

+(e () +e (D)Py (')H(')H‘(i) <(i) e (P Ho(DH ()P (D)

+[Po() 4o ()B() +Aa()])+ L ()B()]Z, " (1)

[P ()[40 ()B() +Au(D)] + Lo(D)BG)] (3.36)
Za(i) = [Pe (i) Ao (i) =4 (i) - ()C (1)]B(i) = Pe(DK (1) Ca(D))Z; (i)

[P (0) Ao (1)B(i) +Aa ()] + Lo (1) B

=& P(D)K () H () H (DK (DP(0) + Pe (1) [Ao (i) — A (1) = K (1) Co (0)]

+(e(i )+@‘1( )P0 (1) K (VL () ()P ). (3.37)

Applying Fact 1 to the matrix block X,,, we can readily obtain one of the LMIs
(3.31). The substitution of (3.28)—(3.30) into (3.37) renders X, = 0. Using
(3.28)—(3.30) and (3.34) into (3.35) with some matrix manipulations and apply-
ing the Schur complements we get the other LMI (3.31). [

Theorem 3.4. System X4 is (SSID), if given matrices 0 < L.(i) = L\(i) € R™",
0 < L.(i) = L\(i) € R™" and scalars (i) > 0 such that

L)) =L(i) — 7' (i) ioc,-mﬂ_x(m), Ex(i) =L.>)+&@) i:oc,-m Li(m), i€,

m=1

T() =L(7) — &' (i) Zi:ocimﬂ_e(m), L) = L(i) + &) i:a,.,,, L(m), i€¥

m=1

there exist matrices 0 < P,(i) = PL(i) € R™", 0 < P,(i) = Pi(i) e R"", i€ &
satisfying the LMIs

Teo(i) Ado(i) ﬁ—\e(i)B(i)
AL (@) —E,() 0 <0, [fo((ll)) _/:b(l()l)} <0, i€,
BOHLG) 0 —5,() '
(3.38)
where
Too(i) = Po(i)4, (i) + A4, ()P +Z°‘"" o(m) = P25 B P,

Ado(i) = lpe(l)[Aa(l) +Ad( )] + l]-e( ) ( ) ,
Yyoi) = Pu(0)Ay (i) + AL (P (i) + Lei) + Y o Pu(m)

m=1

A,(0) = Py(i)A, (1) B(i) + P, (i) 44(i) + L, (i)B(i). (3.39)
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Moreover, the estimator gains are given by

Ki(i) = Bo()Z,, (i), Ay(0) = A,(1) — K, () Co (D) (3.40)

Proof. Define

Eho(i) = Lo(i) — B'() Lo (i)B(i),
Zeoli) = B()Z,, () [BOT0) + [445) + B (DAL (0)]PL ()],
Coli) = Coli) + Ca(D)B™ () Euo () (I + Eo (i),
Z10(i) = C,(i)B(i)Z, " (i)B'(i)C, (i)
+ [[Co (i) + C,()]B(i) + Ca(i) | 5, () [[Co (i) + Co(1)]B(i) + Cali)] ;
Beo(i) = (A, (i) + A4 (i) + Le()B(0)) 2, (1)B' () C, (0)
+ L()BGH)E ()[[C, (i) + Co(0)]B(i) + Ca(i)] - (3.41)

By setting ¢=0, ¢e=0, H,=0, H,=0, E,=0, H.=0, E;=0 while using
(3.41) and following similar technique to Theorem 3.3, the desired result is
achieved. O

3.4. A, performance

In order to improve the foregoing robust observer results further, one would
direct the design effort on robust observation in an 5, setting. For this pur-
pose we recall the following definition:

Definition 3.1. System (X,,) is said to be RSSID with a disturbance attenu-
ation y if for all finite initial vector function ¢(-) € #»[—,0] defined on the
interval [—7,0] and initial mode 7, € &

1/2

0l 2E| [ 20z08] <ilwol,

for all 0 # w(t) € £,[0,00) and for all admissible uncertainties satisfying (2.8).

Our objective in this section is to design robust observers for the neutral
system (X24,) with some desirable stability behavior and guaranteed ., per-
formance and then extend this design to the neutral system (X),). Based thereon,
the following theorems are established:

Theorem 3.5. Given gain matrices A(i), K(i), i € & and subject to Assumptions
2.1 and 2.2, system (Xp,) is RSSID with a disturbance attenuation vy if given
matrices 0 < (i) = L'(i) € R**" and scalars £(i) > 0 such that
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B (l) i ALim [Lx(m)

P'(i) €

L(i)=

there exist matrices 0 < P(i) =
0(i) > 0 satisfying the LMIs:

(i) Ai) Ta(i)
A(0)  —@(i) O
I, (i) 0 -6,
B (@PGE) 0 0
[ -LG)  BG)LYG) B'O)L
L, ()B(i) ~1 0
L()B() 0 G
Ep(i) 0 0
¢E,B 0 0

where

Tu(i) = Y4(0) + L)L (1), Tuli) = A + Ly )Ly ),

Oy(i) = O, (i) + Ly (1)L (i)

2371
=L(0) +E@)Y il (m), i€
m=1
R, i € & and scalars y > 0, &(i) > 0,
P(1)B(i)
0
R L)
Ep(i) eB'(i)E, (i)
0 0
0 0 < 0, ie?,
_I 0
0 —el ]
(3.43)
(3.44)

for all admissible uncertainties satisfying (2.8).

Proof. The asymptotic stability follows from Theorem 3.1. Let stochastic
Lyapunov functional W(¢,{,i) be given by (3.15). The weak infinitesimal

evt

operator
{t,x,n,} is given by

I V] = 3V + 4 (C)PBw(r) +

Introduce the performance measure

w' (H)B'P.(L,).

w[-] of the process {x(),1,,¢t = 0} for system (3.8) at the point

(3.45)

J() = [E{/OOO [2'(0)z(r) — W' ()w(1)] dt}.

By Dynkin’s formula [15], one has

QA %WwﬁEwmnmLavmxmLo>o
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With some manipulations using (3.8) and (3.19), we obtain
2O = [ 00 - Promo + 01 - S ar
<tf [7 [t + wiorPa) - w0
L L0 + G0 a1

< [E{/O ML) (H(l) + PB[y*1 —L},(i)Lf(i)]*lBt[p){%(Ct) dt}.
(3.46)

By using (3.43) together with Fact 1 and the results of Theorem 3.1, it follows
from inequality (3.46) that #({) < 0 for all admissible uncertainties satisfying
(2.8). Hence, by Definition 3.1, the proof is completed. [

Theorem 3.6. Given gain matrices A[i), K(i), i € & and subject to Assumptions
2.1 and 2.2, system (X 4) is SSID with a disturbance attenuation y if given matri-
ces 0 < (i) = L'(i) € R**, i € & and scalars £(i) > 0 such that

L) = L6) = &' ) Sk (), L) = L)+ E0) Yt m), i€ 5

there exist matrices 0 < P(i) = P'(i) € R*™, i € & satisfying the following
LMIs:

Tu(@)  Ta(i) P(1)B(i)

G —e,) 0 <0, ic?, (3.47)
| B(0)P(7) 0 =1 + Ly (i)Ls (i)
L) BOLGO BOLO
LOBGH - 0 | <o iew. (3.48)
L L(@H)BG) 0 ~L()

Proof. Followed from Theorem 3.5 by setting £, =0, E, =0, H, =0. [

Having developed the basic analytical results in Theorems 3.5 and 3.6, we
provide in the sequel expressions for the gain matrices of the observer (3.1)
when applied to the neutral systems (X44) and (2 ,) while guaranteeing #
performance in the light of Definition 3.1. For simplicity in exposition, we
introduce the following matrix expressions for some scalars ¢ > 0, ¢ > 0:
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(3.50)

The main results are summarized by the following theorems:

Theorem 3.7. System X, is RSSID with a disturbance attenuation v, if given
matrices 0 < (i) = L'(i) € R**" and scalars £(i) > 0 such that

E0) =10~ Y snkalm), L) =10+ sl (m), i€

there exist matrices 0 < P,(i) = P'(i) € R™", 0 < P,(i) = P.(i) e R™", i € &
and scalars ¢(i) > 0, 9(i) > 0, i € & satisfying the LMIs

L) A0 A6 A PUGONG)

AG) —dG) 0 0 0

A4 (i) 0  —Z6() 0 0 <0, ie,
N'()P.(i) 0 0 0 —y72 + L'(i)L(i)

(3.51)

i Tx(l) Ac(l) Ah(l) PV(Z)N(Z)

A4.G) =) 0 0 .

AL (D) 0 _5,0) 0 <0, ie? (3.52)
_Nt(l')ﬂj)x(i) 0 0 —y72]

for all admissible uncertainties satisfying (2.8). Moreover, the estimator gains are
given by

Kp(i) = B3 (i), Ay(0) = A4,(1) — K, (i) Co (D). (3.53)

Proof. Proceeding like Theorem 3.3, we express the expansion of (3.46) using
(3.19) into the block form
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2y 2
Et1 2 f22
where

Z1(0) = Po(i) A, (i) + AL ()P (i) + Lo(0) +io¢im P, (m)+L' ()L (i)

(7 0) @ )P [Hah) — K (D H () ~ K (D H (0] P (i)

& (PDK (D (DHEDK, ()P.()

+ [P 4, (B +Aa()] + Te()BG) | 2,1 )

[P 0BG) + s + LB

o [Pei) Ao (1) = A7) = K () Co0]BU) ~ Pe(DK £ (1) Cali) 25 ()

[P 1)~ A (1) = K (D Co()]B() ~ Peli)K (1) Cal)]'

+P(DING) =K (M @[T =L OL@] NG~ K ()M @] ()P« (i),

(3.54)

(i) = 2o (i) +9 PN (DN (D) P i), (3.55)
()= Si2i) + Pu() N ()~ K, OM @] =L DL N @PL(). - (3.56)

Applying Fact 1 to the matrix block 2,,, we can readily obtain the LMI (3.52).
The substitution of Eqgs. (3.49) and (3.50) into (3.56) renders X1, = 0. Using
(3.49), (3.50) and (3.53) into (3.54) with some matrix manipulations and apply-
ing the Schur complements we get the LMI (3.51). O

Theorem 3.8. System X, is SSID with a disturbance attenuation v, if given
matrices 0 < L,(i) = L\ (i) € R™",0 < L,(i) = L.(i) € R™" and scalars &(i)> 0
such that

[x(i):D_x(i)—é"(i)zs:ocimﬂ_x(m), L(i) = L (i) + €(0) Za,,,,r ied,

[C(i Zalm e ) l( +é Zalm e i y?

m=1

there exist matrices 0 < P,(i) = P'(i) € R™", 0 < P.(i) = P.(i) e R™", i € &
satisfying the LMIs
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[ Yeoli) Aw (i) Ap(i) P.())N (i)
A (@) —Z,() 0 0
¢ 0, ie?
AL (0) 0 —5,() 0 <O 1eS
LN (i)P (i) 0 0 —y72 + L'(i)L(i)
(3.57)
Txo(i) Ah (Z) Ipx(i)N(i)
A5 (i) —Eo (i) 0 <0, ied. (3.58)
| N' ()P (i) 0 -y
Moreover, the estimator gains are given by
Kp(i) = Eguo(i)Z (i), Ay = oo — K;Cop. (3.59)

Proof. By introducing

Aoo(i) = A, (i) +y NN (1) P, (i) (I + 2o (i),
Cooli) = Co + M) — L'G)L(I)] ' N ()P (I + Ep) ™
A (i) = L(1)B(i),
Fio = C,BE,'B'(i)C, (i) + [[C, (i) + C,()]B(i) + Ca())Z;, (i)
[[G (i @),

(Ao (1) = 4,(0) + LB ) 5,0 () [[Co (1) + C,(0]BG) + Cali)]
(3.60)

and applying similar procedure to Theorem 3.3 while setting ¢ =0, ¢ =0,
H,=0,E,=0, H. =0, E; =0 and using (3.56), the proof is completed. [

4. Robust stabilization

The foregoing theorems provided ways to produce a good replica of the
state of the neutral system. Quite naturally, the next step would be to derive
a robust state-estimate feedback control. For this purpose, we consider the fol-
lowing linear uncertain model:

(Zane) M (%) 2 x(1) = B(i)x(1 — 1)
= A, (2,7)x(2) + Apa(t,0)x(t — 1)
+ Fao(t, D)u(t) + Nw(2), (4.1)
x(n) = ¢(n) € C([-7,0,,R"), Vne€[-r,0], (42)
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V(1) = Caolt, 1)x(t) + Caalt, i)x(t — 1) + M(D)w(t), (4.3)
2(1) = L(i)x(2),

where u(z) € R? is the control input and
Fao(t,0) = Fo(i) + AF,(1,i) = F,(i) + Ha (i) A(t) E (i), (4.5)

where F,(i) € R™ and E,(i) € R¥ are known real matrices. The remaining
matrices are as in Section 2. In the absence of uncertainties (A(-) = 0), we ob-
tain the following nominal neutral system:

(Zne) M () Z3(t) — B(i)i(t — 1)

= A,())x(¢) + Aa(D)x(t — 1) + F,(D)u(t) + N({@)w(s), (4.6)
x(n) = ¢(n) € C([-7,0],R"), ¥y € [-7,0], (4.7)
y(t) = C,(i)x(t) + Cy(i)x(t — 7) + Mw(2), (4.8)
z(t) = L(i)x(?). (4.9)

In this section, we consider the problems of robust stabilization and stabiliza-
tion of the neutral systems (X,,.) and (2,.), respectively, using a linear
memoryless state-estimate feedback control u(r) = K,(i)x(¢), i € & where x(¢)
is generated by (3.1). It can be readily shown that the augmented system of
(Zane) and (2,) takes the form:

(Zaac)  M(E)EL(D) —BE)(t— 1)

= A ac(t,1){(2) + Dno(t,1){(t — 7) + B(i)w(1), (4.10)
2(t) = Lr(0)L(0), (4.11)
where

A 5e(t,1) = [A(D) +Hs()AEac(D)],  Eac(i) = [0 E,(i) +Ep(1)K(D)],

(4.12)
A (l) _ Af(i> - Fo(i)KS(i) Av(i) + FO(i)KS(i) - Kf’(i)co(i) _Af(i)
‘ 0 A, (i) '

(4.13)

The remaining matrices are given by (3.7)—(3.9). It follows from Theorem
3.1 that (Za4¢) is RSSID if for given matrices 0 < L(i) = L'(i) € R*™",
i € &, there exist matrices 0 < P(i) = P'(i) € R*™*", i € & and scalars &(i) >
0, &(i) > 0, o(i) > 0, i € & such that the following inequality holds:

=t

P(D)A() +ALDP() + L)+ iaimﬂj’(m) +o 7 ()P ()H()H, (1)P(i)

+0()Esc(VEac(i) &~ (VP () [ Ha()H, (1) + Ho(i) (1) | P (1)
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+ (P@IA@BG) + D]+ LB ) [T-B () THBG)

o) (BB + En o)) | (POIABG) +D(0)] + L()BG))
(4.14)

Taking into account (3.7)—~3.9), (3.26)—(3.28) and (4.13), we express (4.14) into
the block form

|:Qll(l) Q]z(l):|
QL0 Qi) ]’
where
Q1 (i) = Po(D)[A7()) = Fo(D)K(0)] + [A7() = Fo())Ko(0)] Pe(i) + Le(i)
+ & ()P(D)K (0 H (i) H (i) +Zo¢ P.(
+ (&7 (0) + 0 (D) Pe(DHL (1) — K (DH (D)][Ha(D)
— K (DH()]'Pe(i) + [[P’ (D)4, (1)B(0) + Aa(i)] + Lo(i)B(i )} ;' (i)
x [Be)A,(0BG) + 4,0)] + Te()BG)|
+ [Pe(D)[Ao (1) + Fo (K, (i) — 47 ()) — K, ())C,(1)]B(7)

—P.()K (i) Ca(i)] 2, (1) [Pe(i) Ao () + Fo()K, (i) — A, (i)
—K(i)C,(1)]B(i) — Pu(i)K (1) Ca(i)]", (4.15)

=)
2~
=

(i) = P ()4, (i) + 4, ()P (i) + L
3 3By m) + 0(EL(D) + EoDK. ()] ) [EL(0)
+2b() K (0](0) + (7 (1)
+ e (P () H(DH (1P (
+L. (0B | 2" (1) [P, (0B() + Aa)] + T.()BG) |, (4.16)

Qua(i) = [Puld) Ao (i) + Fo(i)K,(0) = A4,(0) = K, () C(0)]B()
—P(i)K 1 (0)Cal0)] 25 (1) | P(0) [, (DB() + Aa(0)) + La()BG)|
= & PR (DHDHE DK, (P + Poli) [40) + Fo(DKL ()

—Ap(D) = K (DCo(i)] + (7' (1) + ¢~ ()P (D)
% [H, (i) — K, (D ()] H ()P, () (4.17)

t
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where
= o(0) ([Ea ) + Ey(DK, (O] [Ea (1) + Ey(DK, (1] + EY()Ea(7))-
(4.18)

The main robust stabilization result is summarized by the following
theorem:

83|

Theorem 4.1. System (Xa4c) is RSSID via memoryless state-feedback
u(t) =K,(i)x(t), i€, if given matrices 0<L.(i)=L(>i)e R,
0 < Li(i) = LL(i) € R™" and scalars (i) > O such that

L) = Za,m (m), T +é()Zcx1m (m), i€,
m=1 m=1
LG)= Z(x,m (m), (D) + & )Zoc,mﬂ_ i€e?,

there exist matrices 0<Y(i)=7Y'(i)eR™, 0<X(i)=X"(i)eR"™,
0<Z(i)=2Z'()eR™, W@H)eR™, i€ and scalars E(i)>0, &(i)> 0,
0(i) >0, i € & satisfying the LMIs

Fa()  Ap(0)  An())  A40)

Ay (i) =@ (i) 0 0

<0, (4.19)
AL (i) 0 —Z,(i) 0
A, (i) 0 0 —Z,(i)

>0, (4.20)

where

(i) = A,()Y (i) + Y() A, (1) + YD L)Y (i) — 54 ()5 (1) Z (i)

+ F, ()W (i) + W (i) F, (i)
An(i) = A, () + Aa (i) + Y () Lo(0)B(0) + F,()W () Z(i) + Z(@) W' (i)FL (i),
Ag(i) = 4,(i) = 4,(0) + Y ()L (D)B(0) + F, ()W () Z(i) + Z(0) W' () FL (i),
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Tuli) = X()A,(0) + A, (DX (0) + L.(0)
+ 0(E(D) + EsOW (20 [Eali) + E ()W ()Z(0),
E4(0) = BO)Z, (1) [BOL) + [40) + B (DAL ()]
Aueli) = X (DA, (DBG) + X (DAa(0) + T()BO),
A1) = 4,(0) + HAOHL DX () + E,(1)) (4.21)

for all admissible uncertainties satisfying (2.8). Moreover, the associated gains
are given by

K(i) = 2, () E, ' (i),
Ay (i) i)+ F,()WW (i) Z(i) — K, (i) C, (i), (4.22)
K,

i) = 4,(
(i) = W(i)Z ().

Proof. By defining

Pu(i) =X(), PG =YM),  K(i)=W(3i)z(i)

e

and applying the technique of Theorem 3.3 using (3.23), (3.24) and (4.22), the
desired result is readily obtained. [

On the other hand, by combining the nominal system of (X,.) and (X,) we
obtain the augmented system:

(Zuc) AM(E)2E() —BE(t—1) = AL(t) + DL(t — 1) + Bw(r),  (4.23)

2(t) = LyL(r) (4.24)

and for which we prove the following theorem.

Theorem 4.2. System (X,c) is SSID via memoryless state-feedback
u(t) = K(i)x(t), i € &, if there exist matrices 0 < (i) € R™", 0 < L,(i) €
R, 0<Y(@i)=Y'(i)e R, 0<X(i)=X'"()eR™, 0<Z(@i)=2)¢€
R W(i) € R™*" i € & satisfying the LMIs

[Tero(i)  Amo(i)  Ago(id) ' .
At - Txko(l) Avx(l)
wli) =B 0 | <0, L <0, (425
t fod Avx(l) _:’bo(l)
Aqo(l) O _Hb()(l)
L 0, (4.26)
AAG)
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B0 (1), (1) Bgso i)
+F0W0+W%Wﬁ%

Ano(i) = Ao (i) + Aa() + Y () Le(D)B() + F, ()W () Z(i) + Z(@) W (D) F' (1),
Ago(i) = Y (D) Le(0)B(i) + F, (1)) W (1) Z(i) + Z(i) W (i) F (i)
Yuoli) = X (0)A4,(7) + AL ()X (i) + L.(7)

E(i) =

Avx(i) =

X(0)4,()B(i) +

X(i)Aa(i) + Ex(i)Ba),
A, (i) = A,(i).

Moreover, the associated gains are given by

(4.27)
K (i) = Ego(i)E, (i),

Ag(i) = A,(i) + Fo ()W (1) Z(i) — K, (1) C, (i), (4.28)
K, (i) = W(i)Z(i).

Proof. Follows from Theorem 4.1 in the manner theorem by suppressing the
uncertain terms. [

5. Examples

In order to illustrate the theoretical results of this paper, we provide some
numerical examples.

5.1. Example 1

We consider a pilot-scale single-reach water quality system which can fall
into the type (2.3)—(2.5) with t = 0.75. Let the Markov process governing the
mode switching has generator

=[5 4
S = .
3 -3
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For the two operating conditions (modes), the associated date are:
0 2 -0.1 0 1 0
A1) = { 3 —6}’ Ad() = { 0.2 —0.3]’ Co(l) = {o 2}’
1

s=["g" s} v=[g] mo=[gi]s m=[]

L(1)=10.1 0.1], E,(1)=[0.1 02], E,(1)=[0.1 0].

Mode 2:
A"(z):[—z —24}’ A"(z):[_o(.); —8.4]’ C"(z)_{é ﬂ
Cd(z):[o.z 0}

2
= [2 8 ver= 23] e[, me =[]

L(2)=[0.1 0.1], E,(2)=[02 0.1], E,2)=[0 03].

First we note that Assumptions 2.1 and 2.2 are met for both modes. Invok-
ing the software environment [10], we solve the LMIs (3.31) using (3.27)—(3.33)
and the initial data for i=1,2:

L=y o] nm=[; o] -

0 5 0 5
L=y ] we=[; o] w@=2

which ensures that T,(1) >0, L.(1) >0, T,(2) >0, L,(2) > 0. The feasible
solutions are given by
1 — 1.8010 0.0577 1 — 0.7413 0.0029
100577 13405 Y 10.0029  0.9746
~ [1.0134 0.0106]
7 10.0106 08245
0.8350 0.0217
H-x(l) =
0.0217 1.1205
e(1) = 6.1246, y=1.1045,

], o(1) = 2.7694,
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0.0322 13146
1.0095 —3.1423 [—2.3011 —5.8945]’
29627 0.1527 1.1174  0.0109
0.1527 0.8405]7 2= [0.0109 1.1657]7
0.9467  0.0105

0.0105 1.18542]’

0.8350 0.0217
0.0217 1.1205

0.1107 —2.9167 00176  1.5031
. A2 = .

0.0404 —2.6255
Kf(l) = ; Af

-
L.(2) = l ] 0(2) =3.2658, &(2) = 4.8453,

Ky (2) =
! 1.1945  —4.4627 ~3.0111 -3.9213

This verifies Theorem 3.7 and in turn confirms the robust stochastic stability
independent of delay and with disturbance attenuation y = 1.1045 of the water
quality model.

5.2. Example 2

To illustrate Theorem 4.1, we consider the numerical data of Example 1 in
addition to

Fo(l)= Ll) g} Fo(2)= E ﬂ Ey(1)=[0.1 0.1], E4(2)=1[0.2 0.2]

and rely again on the software package [10]. Here, we solve the LMIs. (4.19),
(4.20) using (4.21) for i = 1,2 to produce the feasible solutions:

X(1) = 2.3506 0.9457 N 1.5980 0.2654
109457 25294 |’ ~10.2654 1.4533]’
2(0) = { 1.5512 —0.2055}
[ =0.2055 08733 |’
—0.7524 —0.1445
w(l) = ., o(1) =3.1338,
0.1281  1.2206

e(1) = 8.1457, = 12671,
1) = 0.0404 —2.6255
A 71,0095 —3.1423)0

{ 0.0322 1.3146
—2.3011 —5.8945]
—1.1374 0.284
K (1) = ,
—0.0521 1.0396
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0.1527 0.8405 0.0109 1.1657
1.1054  —0.2104

( :{—0.2104 1.2132]’

0.9450 —0.5117

:{0.4402 —1.4204

B [2.9627 0.1527} 9 — [1.1174 0.0109}

}, 0(2) =3.4116, &(2) =5.5514,

K, (2) = {0.1107 —2.9167} (2) = { 0.0176 1.5031]
1.1945 —4.4627]° —3.0111 —3.9213’

2 - [1.0578 —0.8196}

’ 0.7414 —1.8158 ]

6. Conclusions

In this paper, the designs of robust observation, robust J#,, observation and
robust stabilization methods for a class of linear neutral-type continuous-time
systems with norm-bounded parametric uncertainties have been presented. A
linear state-delayed estimator is proposed such that the augmented system
achieves desirable stability properties independent of delay. Then a memoryless
state-estimate feedback control to stabilize the closed-loop system is designed.
In all cases, the gain matrices are determined by solving linear matrix inequal-
ities with scaling parameters. Two numerical examples are included to illustrate
the validity of the theoretical results.
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