
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	http://www.researchgate.net/publication/220988256

Applications	of	Homomorphic	Functions	to
Software	Obfuscation.

CONFERENCE	PAPER	·	JANUARY	2006

DOI:	10.1007/11734628_18	·	Source:	DBLP

CITATIONS

9

READS

33

3	AUTHORS:

William	Zhu

MinNan	Normal	University

149	PUBLICATIONS			2,522	CITATIONS			

SEE	PROFILE

Clark	David	Thomborson

University	of	Auckland

127	PUBLICATIONS			5,285	CITATIONS			

SEE	PROFILE

jj	Wang

The	Hong	Kong	University	of	Science	and	T…

201	PUBLICATIONS			3,600	CITATIONS			

SEE	PROFILE

Available	from:	William	Zhu

Retrieved	on:	23	December	2015

http://www.researchgate.net/publication/220988256_Applications_of_Homomorphic_Functions_to_Software_Obfuscation?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_2
http://www.researchgate.net/publication/220988256_Applications_of_Homomorphic_Functions_to_Software_Obfuscation?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_3
http://www.researchgate.net/?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_1
http://www.researchgate.net/profile/William_Zhu?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/William_Zhu?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/MinNan_Normal_University?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/William_Zhu?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Clark_Thomborson?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Clark_Thomborson?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/University_of_Auckland?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Clark_Thomborson?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_7
http://www.researchgate.net/profile/Jj_Wang3?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_4
http://www.researchgate.net/profile/Jj_Wang3?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_5
http://www.researchgate.net/institution/The_Hong_Kong_University_of_Science_and_Technology?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_6
http://www.researchgate.net/profile/Jj_Wang3?enrichId=rgreq-369040b8-656a-46da-897d-1f613266efd2&enrichSource=Y292ZXJQYWdlOzIyMDk4ODI1NjtBUzoxMDMzNzcyMDM2MzAwODhAMTQwMTY1ODQ1NTY5NQ%3D%3D&el=1_x_7

H. Chen et al. (Eds.): WISI 2006, LNCS 3917, pp. 152 – 153, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Applications of Homomorphic Functions
to Software Obfuscation*

William Zhu1, Clark Thomborson1, and Fei-Yue Wang2,3

1 Computer Science Department, The University of Auckland, Auckland, New Zealand
fzhu009@ec.auckland.ac.nz, cthombor@cs.auckland.ac.nz

2 The Key Laboratory of Complex Systems and Intelligent Science,
Institute of Automation, The Chinese Academy of Sciences, Beijing 100080, China

3 Systems and Industrial Engineering Department,
The University of Arizona, Tucson, AZ 85721, USA

feiyue@sie.arizona.edu

1 Introduction

As various computers are connected into a world wide network, software is a target of
copyright pirates, attackers, or even terrorists, as a result, software protections become
a more and more important issue for software users and developers. There are some
technical measures for software protections, such as hardware-based protections and
software-based techniques [1], etc. Software obfuscation [2] is one of these measures
to protect software from unauthorized modification by making software more obscure
so that it is hard for potential attackers to understand the obfuscated software. There
are several algorithms of software obfuscation such as layout transformation, compu-
tation transformation, ordering transformation, and data transformation [2]. Variable
transformation is a major method of data transformation to transform software into a
new semantically equivalent one that is hard for attackers to understand the true
meaning of variables in software.

Chow et al. applied residue number technique, an approach used in hardware de-
sign, high precision integer arithmetic, and cryptography, to software obfuscation by
encoding variables in the original program to hide the true meaning of these variables
[3], but part of the technique proposed there is incorrect. In order to compensate this
drawback, in paper [4], we proposed homomorphic functions, developed an algorithm
for division by several constants based on homomorphic functions, and applied them
to variable transformation.

Data structures are important components of programme and they are key clues for
people to understand codes. Obfuscating data structures of programme will make it
very hard for an attacker to modify them. In this paper, we apply homomorphic func-
tions to obfuscate arrays in software through array index change, array index and
dimension change, array folding, and array flattening. As said in [2], by adding the
data complexity in the program, these methods can make a program much more diffi-
cult to understand and reverse engineer. We are investigating the security of these
applications.

* Research supported in part by the New Economy Research Fund of New Zealand.

 Applications of Homomorphic Functions to Software Obfuscation 153

2 Application of Homomorphic Functions to Array's Change

We describe four methods to apply homomorphic functions to software obfuscation:
index change, index and dimension change, array folding and array flattening.

1. Index change
For an array A[n], firstly, find an m such that m > n, and n and m are relatively prime,
then change A[n] into B[n] and the element A[i] is turned into b[i*m mod n].
2. Index and dimension change
For an array A[n], firstly, find an m such that m > n, and n and m are relatively prime,
then change A[n] into array B[m] and the element A[i] is turned into b[i*n mod m].
3. Array folding
For an array A[n], we assume n > 2. The array folding procedure is as follows.

If n is a prime, let m = n+1; otherwise m = n.
Extend A[n] into C[m] by C[i] = A[i] for 0 <= i < n and C[i] undefined for others.
Factor m into m1 and m2. Replace C[m] with B[m1, m2] through B[i mod m1, i mod

m2] = C[i] for 0 <= i < m.
Replace any A[i] with B[i mod m1, i mod m2] in the unobfuscated program.

4. Array flattening
For a 2-dimensional array A[n1, n2], the array flattening procedure is as follows.

Find two relatively prime integers m1 and m2 such that n1 <= m2 and n2 <= m2. Let
m = m1*m2.

Turn the 2-dimension array A[n1, n2] into another 2-dimension array C[m1, m2] by
C[i, j] = A[i, j] for 0 <= i < m1 and 0 <= j < m2, and C[i, j] undefined otherwise. Re-
place all A[i, j] with C[i, j].

Find two relatively integers k1 and k2 such that k1*m1 + k2*m2=1.
Turn the 2-dimension array C[n1, n2] into a 1-dimension array B[m] and let B[i] =

C[i mod m1, i mod m2] for 0 <= i < m.
Replace any A[i, j] with B[(i*k1 + j*k2) mod m] for 0 <= i < n1 and 0 <= j < n2.

3 Conclusion

We propose applications of homomorphic functions to obfuscate arrays in software.

References

1. W. Zhu, C. Thomborson, F.-Y. Wang, A survey of software watermarking, LNCS 3495,
2005, pp. 454-458.

2. C. Collberg, C. Thomborson, D. Low, A taxonomy of obfuscating transformations, Tech.
Report, No.148, Dept. of Computer Sciences, Univ. of Auckland, 1997.

3. Chow, et al, Tamper resistant software encoding, US patent 6594761 (2003) 1-32.
4. W. Zhu, C. Thomborson, A provable scheme for homomorphic obfuscation in software se-

curity, in: The IASTED International Conference on Communication, Network and Infor-
mation Security, CNIS’05, 2005, pp. 208-212.

