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Abstract. Much attention has been paid upon network data flow control in 
recent years. The main problem in this field is how to design good algorithm or 
control law for flow rate of network data flow sources and for updated price of 
communication links. Base on Lyapunov stability theory, this paper makes a 
deep analysis of stability of such network data flow control systems with the 
consideration of dynamic link capacity case. Simulations show that the stability 
analysis of dynamic link capacity of network data flow control system provided 
in the paper is enlightening and meaningful to further understand and design 
good control strategy of network data flow control problem. 

1   Introduction 

In recent years congestion control has attracted much interest in the field of control 
theory research. Many good regulation methods and control schemes have been 
proposed. In the Internet environment, network flow is governed by the 
interconnection between information sources and communication links [1-9]. With 
this view, the central problem is to seek good regulation law for each source rate and 
update law of price for communication links. F. Kelly, A. Maulloo, and D. Tan (1988, 
[1]) and S. H. Low and D. E. Lapsley (1999, [2]) provided a common approach to 
flow control, that is, to decompose the problem into a static optimization problem and 
a dynamic stabilization problem. For the optimization the main task is to design 
algorithms to approximate to equilibrium of the closed loop system with some 
constraints of available queue length or available link rates based on gradient 
projection optimization techniques. In [2], the synchronous algorithm and asynchro-
nous update algorithm are proposed. S. H. Low, F. Paganini, and J. C. Doyle (2002, 
[3]) pointed out that congestion control mechanisms in today’s Internet already repre-
sent one of the largest deployed artificial feedback systems. In [3], comprehensive 
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description and analysis were given with optimization-based framework. Considering 
the presence of communication delays, R. Johari and D. K. H. Tan (2001, [4]) gave 
stability condition of network rate control for both a single resource and a large 
network with constant round-trip delay. 

Especially, J. T. Wen (2004, [5]) developed a unifying framework for stabilizing 
source and link control laws, which encompass many existing algorithms in [1,6] and 
many special cases. Based on passivity theory, J. T. Wen proposed a comprehensive 
equilibrium stability analysis and dynamic control law design by constructing 
different passive system or strictly passive systems instead. The greatest advantage of 
this novel strategy is the combination of equilibrium stability and dynamic control 
law design for network flow control. Though, because the complexity and variety of 
network environment, capacity of links to be allocated is not static, but often dynamic 
according to its available bit rate for some networks such as ATM network 
environment in reality. Contraposing to this problem, this paper mainly aims at giving 
deep stability analysis of the optimum equilibrium manifolds of the primal optimal 
problem and its dual problem based on some mild conditions.  

This paper is organized as follows. In section 2, we provide some preliminary 
knowledge including some critical concepts, such as positive projection, strictly 
passivity and other critical results to be used in next sections. The main problem 
under consideration is described in detail in section 3. The deep pL stability analysis 

of the two kinds of systems based on rate control for information sources and link 
price update price law models is given based on Lyapunov stability theory in section 
4. The simulation experiments are done in section 5. Finally, conclusion is made in 
section 6. 

2   Preliminary Knowledge 

In this section, some preliminary knowledge about passivity theory and some critical 
results are given as follows. 

Definition 2.1. [5] Positive projection 
+))(( xxf  with some function )(xf  is 

defined as follows 

<=
≥=>

=+

0)(  and 0 if�   0

0)( and 0or ,0 if       )(
))((

xfx

xfxx�xf
xf x (1)

Now, assume there exist a system H , in which system state is vector NRx ∈ , input 
MRu ∈ and output MRy ∈ . According to passivity theory[10], some definitions are 

given as follows. 

Definition 2.2. The system H  above is called passivity, if there exists a continuously 

differentiable energy function 0)( ≥xV  satisfying yuxWxV T+−≤ )()(  for 

some 0)( ≥xW .
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From the above definition, some system is passive if the system itself doesn’t 
generate energy, but possibly dissipates the energy injected into the system. 

Definition 2.3. The system H  above is called strictly passivity, if there exists a 
continuously differentiable energy function 0)( ≥xV  satisfying 

yuxWxV T+−≤ )()(  for some 0)( >xW .

Definition 2.4. The system is pL stable, if pL -norm of the state vector, and output 

vector of the controlled system exist simultaneously for 1>p , or ∞=p  if input 

vector variable is pL .

Lemma 2.1[11] . Suppose that )()(),0[: ttWW βα +−→∞  satisfies 

)()()( ttWtWD βα +−≤+ (2)

where +D  denotes the upper Dini derivative, α is a positive constant, and 

),1[, ∞∈∈ pLpβ , then 
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where qp,  satisfies  

1
11 =+
qp

(4)

and when ∞=p , the following estimate holds 

∞

−− +≤
L

t WeW βαα 1)0( (5)

3   Problem Formulation 

As we know, status of network environment is often changing along with time. Not 
only the number of network data flow source but also link rate capacity/bandwidth is 
variable. In fact, some network links in certain routing path might fail in work. In this 
note, we don’t plan to make consideration of this problem. Now we focus upon such 
an occasion that link rate capacities for sources are not constant, but dynamic 
changing along with time, denoted as )(tc with respect to time variable t . Firstly, we 

assume network is constructed by N information resource and L communication 
links where N and L are some known integer number. Now we define a routing 

matrix NLijrR ×= )( with  

=
other, 0

link  the  throughpassessource theif, 1 ij
rij

 (6) 
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From the routine matrix, it is easily to define two sets )(ls  and )(sl  respectively, 

that is, } ,,1 � 1 | {)( lj Njrjls === and } ,,1 � 1 | {)( s Lirisl i === .

Then the aggregate rate vector of links LRy ∈  and aggregate price of sources 
NRq ∈  can be defined respectively as 

pRqRxy T== and, (7)

where NRx ∈ is called source rate vector and LRp ∈  link price vector. 

In [1], the information flow control problem is described a static optimization 
prime problem and its dual problem as follows 

=≥
Ni
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0
)(max          s. t. )(tcRx ≤ (8)

where )( ii xU  is utilization function with the strictly concave property and 
LRtc ∈)(  is link rate capacity vector with component )(tcl  representing the rate 

capacity of the link l . Its dual problem is easily obtained as follows 
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After simple transformation, the above can be converted to be 
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If )(xU is differentiable, the first order condition for the maximization problem is 

iii qxU =)(' (11)

and  
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where 
iiii xUxU ∂∂=)(' . From appendix I in [5], we know that if )( ii xU  is strictly 

concave and routing matrix R is full row rank  the (11) and (12) are sufficient to 
determine unique equilibrium for the constant link capacity. But what will happen 
when link capacity becomes dynamic changing along with time?  The objective of 
flow rates and link update laws is to drive the actual source rate and link prices to 
their respective equilibrium dynamic. To realize this destination, there are several real 
constraints exist, such as decentralization network topology, no routing information, 
that is, routing matrix is unknown to network data flow source, no coordination and 
the link capacity is time varying. 
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In [1], the source update law is given by 
+−= x

' ))()(( tqxUKx (13)

where }{kdiagK = { }, 0i iK diag k k= > , ' ( ) NU x R∈  with thi component 
' ( )i iU x . And the link price generation function is given by  

)( yhp = (14)

where LRyh ∈)( , with thl  component is )( ll yh  which may be considered as a 

penalty function enforcing the link capacity constraints, )(tcy ll ≤  . The function ( )h y
is monotonically nondecreasing and nonnegative which is defined in [1] as 

2

( )
( ) l l

l
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ε
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+− += .  Here, considering the dynamic capacity case, introducing a 

buffering factor δ and dynamic adjusted factor )(tγ , link price generated function is 

defined as follows 
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The main motivation to define such a link price generation function above is to reduce 
the risk of link congestion under consideration of dynamic link capacity case. The 
buffering factor and dynamic adjusted factor become smaller while available link 
capacity becomes increasing which aims to widen the buffer size.  

But in this case under consideration, from (11) and (12), we can find that 
equilibrium is shifted and timely variant because link capacity )(tc  is not constant 

now. Therefore, equilibrium manifold can be obtained as 

))(( and))(( ***'* tyhptxUq == (17)

It is remarkable to note that much attention should be paid to link capacity’s 
changing property such as rate changing velocity, changing shape and so on. The 
detailed analysis of the influence of dynamic link capacity upon equilibrium manifold 
and control performance will be done in next research step. In this note, network data 
flow control shown at Fig. 1 considering the differences between real-time data flow 
and equilibriums as follows 

Proposition 3.1. Assume that: (1) link capacity )(tcl  is dynamic changing with time; 

(2) If NN RRU →:  satisfies NIxU δ−<)('' , 0>δ , and NI  is NN × unit 

matrix. (3). Routing matrix R  is of full row rank, then optimality condition given by 
(11) and (12) has a unique equilibrium manifold (17). 
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Fig. 1. Diagram of network data flow control in error means 

For simplicity some interpretation of the above proposition is given. When the 

variable t  is frozen and denoted as t , it is apparent to see now the situation is same 

with the Appendix I in [5]. That is to say, for every )(tc , there are unique 

equilibrium )(* tp , )(* tq , )(* tx , )(* ty . So, when link capacity )(tcl  is 

dynamic changing with time, )(* tp , )(* tq , )(* tx , )(* ty  forms a dynamic 

equilibrium manifold each. 
Here we focus on the equilibrium manifold over the dynamic link capacity case. 

And the next task is to realize stability analysis of network flow control for the primal 
optimal control system and the dual optimal control system. 

4   Stability Analysis 

Firstly, according to the passivity-based flow control structure shown in Fig. 1, we 
observe the system with source rate controller and link update law as follows 
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and we have the following results. 

Theorem 4.1. Considering the closed-loop system (18) shown in Fig. 1, with the 

assumption that NIxU δ−<)('' , for some 0>δ , and the link penalty function 

)( yh satisfies 

η≤≤ )(0 ' yh ,  for all 0≥y  and all links (19)

where η  is a positive constant. Then the two following inequalities hold 
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pp LL
xxRpp ** −≤− η . (21)

That is, if )(* tx is pL , then the system (18) is pL stable. 

Proof: We take the Lyapunov function as follows 
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Its derivative along the solution is  
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According to the definition of positive projection, it yields 
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With the above inequality, (23) can turn into 
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Considering the utilization function is strictly concave, then 

)())(()( ***2

1 pptyytxkxxV TT −−−∆−∆−≤ δ (25)
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RxhRxhRtxxtxkxx TTT −−−∆−∆−= δ

And with the property of the function vector satisfies (19), further we have 
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where maxkk = , },,1,min{min Nikk i == , },,1,min{max Nikk i == ,
*xxx −=∆ and ],[ *RxRx∈ξ  which follows from the mean value theorem. We 

take 1VW =  and obtain 

)(/2/1 *
minmaxmin txkkWkWD +−=+ δ (27)

According Lemma 2.1, we get 
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Therefore, following from the above, it is easy to obtain (20) and (21). Furthermore, 

the system is pL stable if )(* tx is pL .

Remark 4.1. From (25), it is not difficulty to find that the forward system in Fig.1 is 
strictly passive when the following 

)(* tx
k

x
δ

>∆ (28)

holds. Further, it shows that for the case of dynamic link capacity the forward system 
strictly passivity partly depends not only on the approximate difference of information 

source rate )(tx  to the equilibrium dynamic )(* tx  but also on its changing degree. It 

is not always true that the faster the source flow rate approaches, the better 
performance of the system.  

Remark 4.2. According to theorem 4.1, we know that that the system under 

consideration is pL stable depends upon the property of )(* tx , which in fact upon 

the property of dynamic link capacity )(tc .

Next, we consider the dual problem shown as Fig. 2.  

RTR

�

*pp −

)( *qq−− *xx− *yy −)( *pp−−
)()( 1' qUx −=

+−Γ= ptcyp ))((

Fig. 2. Diagram of the dual problem in error means 



 Stability Analysis of Network Data Flow Control for Dynamic Link Capacity Case 403 

and we define it as follows 
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where },,1,0{ Lldiag l =>=Γ λ � and denote { }Lll ,,1,maxmax == λλ
and { }Lll ,,1,minmin == λλ .

Theorem 4.2. For the system (29) shown as Fig.2, assume that  
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and for certain positive constant 2c , the following condition  
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where 2c is a positive constant, then the system (29) is pL stable. And furthermore, 
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Proof: First, define the Lyapunov function as  
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Along with the (29), the difference of the above can be obtained 
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*1*** )()()( pppyypp TT −Γ−−−−≤ (37)

*1**1'1'* )())()()()(()( ppppRUpRURpp TTT −−− Γ−−−−=
*1**1''* )()()()()( pppppRURpp TT −− Γ−−−−= ξ

The above follows from the mean value theorem, where ],[ *pp∈ξ and with the 

assumption (30), the above turns into 

**
min

2*1
12 /1))(( ppptppRV T −+−−≤ − λδ

2
*

minmax2
2
minmin

1
1 /2)(2 VpVR λλσλδ +−≤ − (38)

Further using 2VW = , we have 
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From Lemma 2.1, it is easy to get (32), and because of  

)()()()( 1'1' RpUqUx −− ==
and mean value theorem, the (33) is not difficult to be obtained . 

Remark 4.3. From (37), only when the following  

)( ** ppp −Λ= , for },,1,0{ Lldiag l =>=Λ τ , (40)

then return subsystem is strictly passive.  

Remark 4.4. Through the deep analysis above, the condition stability of the system 
under consideration is comparatively tough. For dynamic link capacity case, the 
property of *p  which is determined by dynamic link capacity, plays very important 

role of the network data flow control system. 

5   Simulations 

First, we assume simulation test is made based on the topological graph of network 
data flows shown in Fig.3, 

1S 2S

3S 4S 5S

1
3

5

42

Fig. 3. Topological graph of network data flows 
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and the routing matrix R is given as follows 

=

10010

11101

01111

01100

00011

R (41)

The buffering factor 6/1,8/1 21 == ϑϑ , and dynamic adjusted factor )(tγ is chosen as 

follows 
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Here, two cases are considered in the simulation tests. Firstly, network link capacities 
available to be occupied for feedback based are constant, with 10, 8, 24, 15 and 16 
Mb/sec from link 1 to link 5 respectively. The flow rate of each data flow is shown in 
Fig.4. Secondly, considering the dynamic link capacity case, that is, the dynamic 
capacity of link 3 and link 4 given by (43), the simulation test is shown is Fig.5. 
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Fig. 4. Flow rate for constant capacity case        Fig. 5. Flow rate for dynamic capacity case 

6   Conclusion 

In this paper pL stability analysis of network data flow control system with dynamic 

link capacity case from the Lyapunov stability point of view, is first done for both its 
prime flow control system and its dual control system. Moreover, the corresponding 
comparison with passive or strictly passive property of flow control system is made. 
The conclusion is that stability performance of network data flow control system 
under consideration depends on property of dynamic link capacities. The simulations 
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illustrate the stability analysis in this paper is good and enlightening. Therefore, 
research about transient and statistical property of dynamic link capacity needs to be 
made in the fields of control and computer areas. 
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