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Abstract: In this paper, a new method is proposed to detect the pose of an object with two cameras. 

Firstly, the intrinsic parameters of the cameras are self-calibrated with two pairs of parallel lines, which 

are orthogonal. Then the poses of the cameras relative to the parallel lines are deduced, and the 

rotational transformation between the two cameras is calculated. With the intrinsic parameters and the 

relative pose of the two cameras, a method is proposed to obtain the poses of a line, plane and rigid 

object. Furthermore, a new visual control method is developed using pose detection rather than 3D 

reconstruction. Experiments are conducted to verify the effectiveness of the proposed method. The 

method can also be applied to mobile manipulators, humanoid robots and so on.  
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1 Introduction 

Detecting the pose of an object is needed in many robotic tasks such as tracking and grasping. Pose 

detection has been used in Position Based Visual Servoing (PBVS) and Hybrid Visual Servoing (HVS) 

[1]. For example, Han et al [2] provided a method for door opening with a stereovision system using 

some special marks. The marks consisted of some rectangles where the cross points between the main 

rectangle and the small ones were selected as feature points. The poses of the doorknob and the 

end-effector were calculated from the positions, measured with stereovision, of the feature points. 

Malis et al [3] proposed a 2.5D visual servoing method that dealt with position control in image space 

using extended image coordinates, and pose control in Cartesian space according to the pose obtained 

through 3D reconstruction. Hespanha et al [4] investigated the performances of three visual servoing 

methods, PBVS, HVS and Image Based Visual Servoing (IBVS) with un-calibrated cameras. Although 

IBVS performed best in position tracking, it is hard to be used for pose control. Therefore, pose 

detection is important for tasks requiring pose adjustments and control. 

Pose detection methods can be classified into different categories as follows.  

(1) Using known knowledge of an object. For example, Kragic et al [5] estimated the pose and 

position of an object according to its CAD model and images. Sugimoto et al [6] gave a method to 

estimate the translation and rotation of a mobile robot using line and intersection constraints at two 

views in indoor scenes. The parameters of the stereovision system were pre-calibrated. Yang et al [7] 
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developed a method to measure the pose of symmetric objects, and gave application examples in robot 

navigation.  

(2) Via 3D reconstruction. For example, Sato et al [8] proposed a projection reconstruction method 

based on robot’s movement offset and epipolar geometry at two views. They calculated the direction of 

the object relative to the camera mounted on a mobile robot. Pose detection using 3D reconstruction 

can be found in many literatures [2, 3]. With this method, the errors in positioning will be introduced 

into the pose calculation. 

(3) Via estimation of image Jacobian matrix. This method is widely used in un-calibrated visual 

servoing [9-15]. However, singularity in the image Jacobian matrix presents stability problem in the 

pose estimation. Schramm et al [15] presented a method to improve the stability through estimating the 

camera parameters and the robot Jacobian matrix separately.  

For applications in an indoor environment, the first type of the above methods is more promising 

because of the available environment knowledge. Although the objects may have limited features to be 

used for camera calibration, the environment probably provides more. Therefore, the camera’s 

self-calibration can be achieved using constraints in an environment. 3D reconstruction suffers from 

correspondence problem especially when point matching is used. In this regard, line matching would 

offer a better solution to pose detection than point matching. Yet, direct 3D reconstruction should be 

avoided in pose detection to reduce the influence of positioning errors. 
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The pose of a line in Cartesian space cannot be determined with one camera at single view. To solve 

this problem, one can either use multiple views for a single camera or use two cameras instead. In 

either case, the intrinsic parameters of the cameras need to be calibrated. In man-made environments, 

there often exist parallel lines that can be employed to calibrate cameras. In this regard, Carvalho et al 

[16] presented a case of camera calibration with the constraints existing in football field. As known, the 

vanishing point contains the information of the intrinsic parameters. Many references about camera 

calibration of intrinsic parameters with vanishing points can be found [17-19]. Bénallal et al [17] 

proposed a method to calibrate a camera with three orthogonal vanishing points. Generally, it is not 

easy to find three orthogonal vanishing points in an indoor environment. Guillou et al [18] developed a 

method using two orthogonal vanishing points in a single image. However, the principal point of the 

camera was supposed at the center of the image. Sometimes, this assumption may not be valid. Lee et 

al [19] gave a method using two orthogonal vanishing points from image streams without the 

assumption of known principal point. The candidate space of principal point and focal length were 

derived from the relation of multiple hemispheres. In [17-19], the intrinsic parameters of a camera 

consisted of the focus length and principal point. The difference between the horizontal and vertical 

magnification was not considered. In addition, it is not easy to find the vanishing points with 

satisfactory accuracy in a natural image [20, 21]. 

In this paper, the self-calibration of a pair of cameras, including the intrinsic parameters and the 
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transformation between the cameras, is achieved using parallel line constraint. A new method to detect 

the pose of an object with two cameras is proposed. Throughout this paper, the term pose refers to 

orientation only. A new visual control method is presented using pose detection rather than 3D 

reconstruction. Our method is easier to implement than a traditional method like a position-based one. 

With our method, the tedious calibration of the extrinsic parameters of cameras is avoided and the 

position information of the environment or metric information of the object is no longer needed. The 

rest of the paper is organized as follows. The camera model is introduced in Section 2. Section 3 

investigates the self-calibration of the intrinsic parameters using parallel lines. In Section 4, a new 

method for calibrating the transformation between two cameras is developed based on orthogonal 

parallels. The pose detection methods for a line, plane and rigid object are also presented. Section 5 

proposes a new hybrid visual control scheme using the poses of the object and end-effector without 3D 

reconstruction. Sensitivity analyses are presented in Section 6. The experimental results are given in 

Section 7. Finally, we conclude the paper in Section 8. 

2 Camera model 

In this paper, we assume a pinhole camera model with lens distortion negligible. If the lens distortion 

is noticeable, it can be corrected in advance by a method we developed in a separate work [24]. The 

four parameter model of a camera can be given as 
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where [u, v] are the coordinates of a point in an image, [u0, v0] denote the image coordinates of the 

camera’s principal point, [xc, yc, zc] are the coordinates of a point in the camera frame, Min is the intrinsic 

parameters matrix, and [kx, ky] are the magnification coefficients from the imaging plane coordinates to 

the image coordinates. 

Assume that the camera frame is denoted as , and the work space frame as . The transformation 

from  to  is known as the extrinsic parameters for the camera 
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where [xw, yw, zw] are the coordinates of a point in the object frame, and cMw is the extrinsic parameter 

matrix of the camera, i.e. the transformation from the frame  to . In cMw, [ ]Tzyx nnnn =v  is the 

direction vector of the x-axis, [ ]Tzyx oooo =v  is that of the y-axis, [ ]Tzyx aaaa =v  is that of the 

z-axis for the frame expressed in the frame , and [ ]Tzyx pppp =v  is the position vector. 

3 Self-calibration of the intrinsic parameters  

Here, a self-calibration method for the intrinsic model with four parameters is studied using two 

planar groups of orthogonal parallels, which are popular in the indoor environment. 

 



 7

 

 

 

 

 

As shown in Fig.1, a rectangle is formed with two groups of orthogonal parallels, which is projected 

as a quadrangle on the image plane of a camera. Assume that the four vertexes P1 to P4 have the 

coordinates as [a, b, 0], [-a, b, 0], [-a, -b, 0] and [a, -b, 0] in a Cartesian frame established at the 

quadrangle’s center, and [u1, v1], [u2, v2], [u3, v3], [u4, v4] in image space. Combining equation (1) and 

(2), we have [22] 
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Applying the coordinates of the four points to equation (3), and eliminating the unknown parameter 

zc, we obtain 

141211341321311 mbmammubmuamu ++=++                  (4) 

242221341321311 mbmammvbmvamv ++=++                  (5) 

141211342322312 mbmammubmuamu ++−=++−                  (6) 

242221342322312 mbmammvbmvamv ++−=++−                  (7) 

Fig. 1 Parallels and their imaging lines 
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141211343323313 mbmammubmuamu +−−=+−−                  (8) 

242221343323313 mbmammvbmvamv +−−=+−−                  (9) 

141211344324314 mbmammubmuamu +−=+−                  (10) 

242221344324314 mbmammvbmvamv +−=+−                  (11) 

Combining equations (4), (6), (8), (10), and equations (5), (7), (9), (11) respectively, we can derive 
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here 343131 / mamm =′ , 343232 / mbmm =′ , 034 >= zpm . 

The variables m′31 and m′32 can be resolved with equation (12). Define the temporary variables 

341111 / mamm =′ , 341212 / mbmm =′ , 341414 / mmm =′ , 342121 / mamm =′ , 342222 / mbmm =′  and 

342424 / mmm =′ . They can be computed with Least Square Method via substituting m′31 and m′32 into 

equations (4) to (11). Then the following can be deduced according to equation (3). 
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Notice that vector nv  is orthogonal to vector ov . Thus 
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If nz≠0 and oz≠0, then 
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Changing the camera’s pose relative to the parallel lines, many nonlinear equations as given in (15) 

can be generated. With the temporary variables defined in (16), equation (17) can be deduced from two 

equations as shown in (15) [23]. 
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2121221213212102121 )()()( jjiijjiijjiijjii uuuuhvvvvhvvvvuuuuu −=−−−−++−−+         (17) 

where [ui1, vi1]=[m′i11/m′i31, m′i21/ m′i31], [ui2, vi2]=[m′i12/m′i32, m′i22/m′i32], [uj1, vj1]= [m′j11/m′j31, m′j21/ 

m′j31], [uj2, vj2]=[m′j12/m′j32, m′j22/m′j32]. 

There are three unknown parameters in equation (17), u0, h2 and h3. They can be resolved with three 

or more equations. Then v0 is calculated with h2 and h3 according to the third formula in (16). 

Submitting parameters u0, v0 and h2 into equation (15), we have parameter kx. Finally, ky is computed 

from the second formula in (16) with kx and h2. It can be found that at least four equations as shown in 

(15) are needed for the resolving of the intrinsic parameters such as u0, v0, kx and ky. In other words, at 

least four views of the two groups of orthogonal parallels are necessary to determine the four intrinsic 

parameters. 

Discussions: 

(1) If nz=0, the optical axis of the camera is perpendicular to the two parallel horizontal sides of the 



 10

rectangle. Therefore, the horizontal sides are also parallel lines in the image space. In other words, 

there is no intersection between the horizontal sides in the image space. In this case, equation (15) is 

not satisfied because of the absence of the vanishing point between the horizontal sides. Similarly, if 

oz=0, there does not exist a vanishing point in the image space between the perpendicular sides. If nz=0 

and oz=0, the optical axis of the camera is perpendicular to the rectangle. There will be no vanishing 

point in the image space. Therefore, it is a necessary condition for the intrinsic parameter calibration 

based on parallels that the camera’s optical axis must not be perpendicular to the parallels. 

To prevent equation (15) from being ill-conditioned, the parallelism of the parallels in the image 

space should be checked. The cosine function of the angle between two lines in the image space can be 

employed as the parallelism index, as given below 
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where [ui1, vi1] and [ui2, vi2] are the image coordinates of two points on a line Li, [uj1, vj1] and [uj2, vj2] 

are the image coordinates of another two points on a line Lj, ),( ji LL∠  is the angle between the two 

lines Li and Lj in the image space, Fp is the parallelism index between Li and Lj. 

If Fp=1, the imaging lines of the parallels are parallel. The camera’s optical axis is perpendicular to 

the parallels. If |Fp-1|<ε, where ε is an infinitely small positive value, then the imaging lines of the 

parallels are almost parallel. In this case, equation (15) is also ill-conditioned. The smaller Fp is, the 
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more robust equation (15) will be. Therefore, in self-calibrating the camera’s intrinsic parameters, 

equation (18) can be used to check if a pair of parallels is acceptable or not to form an equation as 

given in (15). 

(2) If [u0, v0] is known in advance, assuming kx=ky=k, then k can be obtained with one view of two 

groups of parallels, as given below  

)/)(/()/)(/( 03222031210321203111 vmmvmmummummk −′′−′′−−′′−′′−=          (19) 

here, k is a parameter containing the focal length and the magnification factor from the image size in 

mm to the imaging coordinates in pixels. Generally, the magnification factor can be known from the 

camera and the frame grabber manufacturer’s specifications. The focal length can thus be calculated 

from k and the magnification factor. In fact, the points [m′11/m′31, m′21/m′31] and [m′12/m′32, m′22/m′32] 

are two vanishing points and the focal length can be deduced using geometry from the two orthogonal 

vanishing points in a single image [18]. 

(3) If both kx and ky are taken as k, then equation (15) can be rewritten as  

0))(())(( 2
0000 =+−−+−− kvvvvuuuu vvihvivvihvi                (20) 

where iivviiihviiivviiihvi mmvmmvmmummu 3222312132123111 /,/,/,/ ′′=′′=′′=′′= , are the image coordinates of 

the vanishing points. 

Obviously, two groups of orthogonal parallels at one view can only provide one equation as given in 

(20). If there are three views or three groups of orthogonal parallels, we can deduce from (20) 



 12











−+−=
−−++−−+

−+−=
−−++−−+

22332233

0223302233

11221122

0112201122

)()(

)()(

vvhvvvhvvvhvvvhv

vvhvvvhvvvhvvvhv

vvhvvvhvvvhvvvhv

vvhvvvhvvvhvvvhv

vvvvuuuu
vvvvvuuuuu

vvvvuuuu
vvvvvuuuuu

             (21) 

Then, u0 and v0 are computed from equation (21). k can be resolved from equation (19). 

We can conclude that any three groups of orthogonal parallels with different poses are sufficient for 

the calibration of a camera with a three intrinsic parameter model. The method proposed by Bénallal et 

al [17] is a special case, which employs a cubic object to extract three orthogonal vanishing points and 

deduce the intrinsic parameters for a camera.  

4 Pose detection 

4.1 Camera pose determination 

Parallels often exist in indoor environments, such as doors, windows and tables. It is natural to select 

parallel lines as reference. Consider the case of two groups of parallels, in which there are at least two 

lines in each group, and each line in a group is perpendicular to the lines in the other group. The world 

frame  is assigned to describe the poses of the lines. Its origin Ow can be selected at any place. Its X-axis 

Xw is set to be parallel to the lines in one group and its Y-axis Yw parallel to the lines in the other group. 

The frame assignment is shown in Fig.2. The coordinates of point Pi are represented as [xwi, ywi, zwi] in the 

world frame. The four points P1 to P4 are arbitrarily selected on the two lines, i.e. two points for each line, 

for further pose computation in the camera frame. 
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The origin of the camera frame is assigned at its optical centre. Z-axis is taken as the direction of its 

optical axis from the camera to the scene. X-axis is selected as the horizontal direction of its imaging 

plane from left to right. Two frames,  1 and  2, are given for cameras Ca1 and Ca2 in Fig.3, in which 1T2 

and 1R2 are the translation and rotation from Oc1 to Oc2. 1H2, the transformation from  1 to  2, is 

expressed as (22) with homogeneous transformation. 
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If 1M2 is employed to denote the extrinsic parameters matrix from  1 to  2, then 1H2 is the 

homogeneous form of matrix 1M2. 

 

 

 

 

Fig. 2 The world frame of two groups of parallels 
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Firstly, the pose of the parallels relative to the camera frame  1 is considered. According to the 

orthogonal constraints in rotation matrix, for a point P on line Lk, from equation (2), we have 
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where ywk is the coordinates of line Lk at the Y-axis, zwk is that at the Z-axis in the frame . The subscript 

k represents a point on line Lk, subscript c1 represents the data in  1, subscript w means the frame , the 

combination of superscript 1 and subscript w indicates the data of extrinsic parameters from  1 to . 

Let 







+++=
+++=

wzwzwywywxwxwkk

wzwzwywywxwxwkk

papapazB
popopoyA

1111111

1111111

                         (24) 

For any points in the two groups of lines, zc1k≠0 are satisfied. Therefore, equation (23) can be rewritten 

as 
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where 1Ck= 1Ak/1Bk, kckck zxx 111 /=′  and kckck zyy 111 /=′ . 

All points on the line Lk have the same coordinate yw=ywk at the Y-axis, and zw=zwk at the Z-axis. The 

extrinsic parameters for any point on the line are also kept the same. Therefore, it is easy to conclude 

from equation (24) that 1Ak, 1Bk and 1Ck are constants for the line Lk. For two arbitrary points on the line 

Lk, such as points Pi and Pj, equation (26) is obtained via applying them to equation (25). Its simplified 



 15

form is equation (27), which results from its simplification using the orthogonal constraints of rotation 

matrix in 1Mw. 
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Any two points on a line that is parallel to the X-axis in the frame  satisfy equation (27). Therefore, 

k equations can be obtained for one camera from k parallel lines. According to the main direction of the 

lines in image space, one parameter in wnv1  can be removed from equation (27) with the reduction of a 

fraction. As a general case, assume 1nwx≠0. We have 
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where wxwywy nnn 111 /=′  and wxwzwz nnn 111 /=′ . 

Notice that x′1hi, y′1hi, x′1hj and y′1hj (h=1,…,k) can be obtained from equation (1) according to the 

imaging coordinates [u, v]. Therefore, N can be resolved with Least Square Method. 

LMMN T 1)( −=                                     (29) 

Then, wnv1  can be calculated with the constraint 11 =wnv . 

The vector wov1  can be obtained with a similar procedure. With the orthogonal constraint, wav1  is 

obtained as www ona vvv 111 ×= . The pose of the frame  relative to the frame 1 is represented as 
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[ ]wwww aonR vvv 1111 = . wR2 , i.e. the pose of the frame  relative to 2, can also be deduced with a 

similar method. The relative pose from  1 to  2 is calculated with rotation transformation, i.e. 

121
2

1 )( −= ww RRR . 

4.2 Pose detection for an object 

4.2.1 Pose detection for a line 

Any two points can be selected as features from a line Lk in the images of the two cameras. Here the 

feature matching of the points for the two cameras is not necessary. As shown in Fig.4, P11 and P12 are 

two feature points selected from a line for camera Ca1; P21 and P22 are for camera Ca2. The vector 

formed by P11 and P12 is denoted as 12
1

pL
v

 and 12
2

pL
v

 in  1 and  2 separately. The position vector of a 

point Pi is represented as icP 1

v
 and icP 2

v
 in  1 and  2. icP 2

1 v  is the representation of icP 2

v
 in  1. icP 1

v
 

and icP 2

v
 can be calculated from equation (1) according to the imaging coordinates of Pi in  1 and  2, 

as given in (30). 
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Fig.4 The pose detection sketch map 
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where Min1 is the intrinsic parameter matrix of camera Ca1 and Min2 is that of camera Ca2, [u1i, v1i] and 

[u2i, v2i] are the imaging coordinates of Pi in  1 and  2. 

The three vectors, 12
1

pL
v

, 11
1

cP
v

 and 12
1

cP
v

, are linearly correlated as they form a vector triangle in a 

plane. Therefore 

0

12
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where [ ]Tzyxcc PPPPP 1111111111
1 ==

vv
, [ ]Tzyxcc PPPPP 1212121212

1 ==
vv

, [ ]Tzyxp LLLL 12
1

12
1

12
1
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1 =
v
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The evaluations of 11
1

cP
v

 and 12
1

cP
v

 are as shown in expression (30). 

Equation (31) can be rewritten as 
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On the other hand, icP 2
1 v  is transformed from icP 2

v
 with rotation transformation 1R2,  
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In the same way, the following can be deduced with three linear correlation vectors, 12
1

pL
v

, 21
1

cP
v

 

and 22
1

cP
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From equations (32) and (34), 12
1

pL
v

 can be determined through the constraint 112
1 =pL
v

. Then 

12
2

pL
v

 becomes 

12
11

2
1

12
2 )( pp LRL

vv
−=                             (35) 

4.2.2 Pose detections for a plane and rigid object 

For a plane, at least three points are selected for its norm detection. Any two points among them 

form a vector, whose pose can be determined as described above. There are only two independent 

vectors among the three vectors formed with the three points. With the poses of the independent vectors, 

the pose of the plane norm can be obtained with vector product.  

Furthermore, the pose detection based on vector measurement can be extended to pose determination 

for a rigid object. For example, the pose of a cuboid can be detected from three vectors of the edges 

with the above method. The details are omitted here. 

5 A new visual control scheme based on pose estimation 

5.1 The system configuration 

A task for an industrial robot to approach an object with a desired pose for its end-effector is 

considered here. The system configuration for the task is sketched in Fig.5. Suppose that the object is 

rigid with parallel line edges. No further information about it is known. The two cameras, with frames 

1 and 2, are located where the object and the end-effector are all in their field of view. The axes of 
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frame 1 are parallel to the axes of frame r, the world frame of the robot. That is, when the 

end-efector is moved in the direction of X-axis of the frame r, the image coordinates of the end-effector 

vary only in the horizontal direction. When the end-efector is moved in the direction of Z-axis of the 

frame r, its image coordinates vary only in the vertical direction. In addition,  and o represent the 

end-effector frame and the object frame. 

 

 

 

 

 

 

 

5.2 The control strategy 

In frame 1, the poses of the sidelines of the rectangle surface of the object are detected with the 

method in Section 4.2. Then the norm of the surface is calculated using vector product of the two 

neighbor sidelines. Now, 1Ro, the pose of the frame o expressed in  1, is obtained. 1Red, the desired 

pose of the end-effector in  1, is determined from 1Ro. rRem, the currently measured pose of the 

end-effector in r, can be given from the robot’s controller. 

Fig.5 The configuration of visual control for a manipulator to 
approach an object based on pose detection 
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Assume that the pose of frame r is 1Rr in the frame  1. Frame r is selected as the reference. 

Assume that the pose adjustment is rRea in the frame r. Based on frame r, equation (36) is deduced 

from frame transforms. Then rRea is obtained as given in (37). 

em
r

ea
r

edr RRRR =− 111 )(                           (36) 

1111 )()( −−= em
r

edrea
r RRRR                          (37) 

In fact, rRea is the pose error between the desired and measured poses. It can be represented as a 

rotation around an axis fr
v

 with an angle rθ, as expressed in equation (38). θθ
rk  is employed as the 

actual angle adjustment value in one control step for pose control. The actual pose adjustment control 

value in one control step is computed in equation (39). 

),( θrr
ea

r fRotR
v

=                            (38) 

10),,( <<= θθ θ kkfRotR rr
ec

r
v

                      (39) 

where rRec is the actual pose adjustment control value in one control step, kθ is the factor of pose 

adjustment. 

To decouple the pose and position adjustments, the position of the end-effector is assumed to be 

fixed during the pose adjustment. The position and pose of the end-effector in frame r can be 

computed via the kinematics combined with the measured values of the joint angles of the industrial 

robot. Suppose that the measured position and pose of the end-effector is 
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The translation to compensate for the offset caused by pose adjustment is  

em
r

ece
r TRT 1

1 =−                             (41) 

At the beginning of the approaching task, the distance between the end-effector and the object is 

unknown. Therefore, the translation to approach the object can be evaluated with the constant step 

length along the direction from the end-effector to the object. 

10,)( 111
2 <<′= −

soerse
r kPRkT

v
                     (42) 

where oeP′
v1  is the unit vector of oeP

v
 in frame  1. oeP

v
 is a vector from the origin of the frame . to 

the origin of the frame o, which can be measured with the method in Section 4.2. ks is the position 

step factor at the beginning of the task. 

The distance moved by the end-effector can be computed with the position of the end-effector, which 

is read from the position controller of the robot. Assume that the end-effector is moved in the direction 

of vector oeP
v

. After the end-effector is moved at least two steps, the distance from the end-effector to 

the object can be estimated with the cross ratio invariance. Then 
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where di
ed1 is the estimated distance between the target and tool points using the camera Ca1 at the i-th 
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sampling, di
ed2 is the estimated distance via camera Ca2, ri

de1 is the image distance between the target and 

tool points in camera Ca1 at the i-th sampling step, ri
de2 is the image distance in camera Ca2, di

em is the 

distance of the end-effector moved between i-1-th and i-th sampling, ri
e1 and ri

e2 are the image distances 

of the end-effector moved in the image spaces of cameras Ca1 and Ca2 between i-1-th and i-th sampling, 

ri
e1 and ri

e2 are corresponding to di
em (i>2). 
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where [ud1, vd1] and [ud2, vd2] are the image coordinates of the object in cameras Ca1 and Ca2, [ui
e1, vi

e1] 

and [ui
e2, vi

e2] are the image coordinates of the end-effector in cameras Ca1 and Ca2 at i-th sampling. 

If ri
e1 is zero, di

ed1 cannot be estimated from equation (43). It is the same for di
ed2 if ri

e2 is zero. If only 

one image distance is nonzero, ri
e1 or ri

e2, then the only distance di
ed1 or di

ed2 estimated from equation 

(43) is taken as the distance di
ed. If both image distances are nonzero, then the average of di

ed1 and di
ed2 

is taken as the distance di
ed. If both image distances are zero, then the distance di

ed is zero. This means 

that the end-effector has reached the target. di
ed is the estimated distance between the target and tool 

points at the i-th sampling. 

With the errors di
ed and the vector oeP

v1 , the errors ei
ed between the target and tool points are expressed 

as (45), and the approaching control law with PID algorithm is given in (46). 
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where ∆xi
ce is the adjustment value of the end-effector in the direction of X-axis, ∆yi

ce is that in the 

direction of Y-axis, ∆zi
ce is that in the direction of Z-axis in frame r. Kp, Ki, Kd are PID gain matrixes. 

The adjustments to control the end-effector to approach the object are formed as equation (47) in 

frame r, the world frame of the robot. 
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r TTRH                            (47) 

where rHec is the actual adjustment control value in one control step. 

6 Sensitivity analysis 

6.1 Errors in line pose detection 

In the parameters of a line, there exists at least one parameter of non-zero value. Without losing 

generality, suppose 1L12z≠0. Considering P11z=P12z=1, we can deduce from equation (32) and (34)  
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where zxx LLL 12
1

12
1 /= , zyy LLL 12

1
12

1 /= . 

The solution of Lx and Ly can be expressed as  
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From equation (49), the differences ∆Lx and ∆Ly can be derived as in (51). The derivatives kx aL ∂∂ / , 

kx bL ∂∂ / , ky aL ∂∂ /  and ky bL ∂∂ /  are given in (52). For ijk ua ∂∂ /  and ijk ub ∂∂ / , most terms are 

zero. To simplify the discussion, a special case is considered that the relative poses between two 

cameras are unit matrices. In such a case, 1P11z=1P12z=1. The non-zero terms for ijk ua ∂∂ /  and 

ijk ub ∂∂ /  are given in (53), while the other terms are zero. 
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Applying formula (52) and (53) to (51), then ∆Lx and ∆Ly are obtained as  
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Generally, the parameters kx and ky are very close to each other. For the two cameras, kx1, ky1, kx2 and 

ky2 are taken as k to obtain approximate values of ∆Lx and ∆Ly. 
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The line pose 12
1

pL
v

 can be determined with Lx and Ly as  
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Therefore, the errors in line pose caused by ∆Lx and ∆Ly are given as 










++∆+∆−=

++∆−∆+=

++∆−∆+=

2/322
12

2/3222
12

2/3222
12

)1/()(

)1/(])1[(

)1/(])1[(

yxyyxxz

yxxyxyxy

yxyyxxyx

LLLLLLdL

LLLLLLLdL

LLLLLLLdL

                     (57) 

where dL12x, dL12y and dL12z are the errors in the line pose. 

Discussion: 
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Case 1: ∆u11=∆u12=∆u21=∆u22=∆v11=∆v12=∆v21=∆v21=euv. From formula (55), the errors ∆Lx and ∆Ly 

are computed as given in (58). When euv=1 and k=1000, the errors are about 0.001.  
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Case 2: ∆u11=-∆u12=eu, ∆u21=-∆u22=-eu, ∆v11=-∆v12=ev, ∆v21=-∆v22=-ev. This is a extreme case that the 

errors in the feature points in image space are opposite in directions. In this case, the errors ∆Lx and ∆Ly 

will reach the maximum values 
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The precision in calibrating the intrinsic parameters of the two cameras is quite satisfactory. For 

example, for camera Ca1, we have kx1=2499.9, ky1=2364.1, u01=367.4, v01=285.2 and for Camera Ca2, 

kx2=2478.1, ky2=2352.6, u02=374.1, v02=261.5. The feature points extracted from the line are [52, 247] 

and [221, 194] in camera Ca1, and [400, 242] and [566, 186] in camera Ca2. According to formula (50), 

the temporary variables are computed as a1=0.0224, a2=0.0676, a3=-0.0039, b1=0.0238, b2=0.0670, 

b3=-0.0003. The solution of Lx and Ly are computed according to (49), the results are Lx=2.2518 and 

Ly=-0.8048. The obtained line pose is 1L12x=0.8688, 1L12y=-0.3105, 1L12z=0.3858. If the errors in feature 

points are limited to 0.1 pixel, the errors calculated from (59) are ∆Lx =0.3064 and ∆Ly=-0.1053. The 

maximum errors in line pose will be dL12x=0.0180, dL12x=-0.0048, dL12x=-0.0445. With Hough 
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transform and Least Square Method, the accuracy of feature points in line can be improved further. 

Then the errors in the line pose estimation will be reduced proportionally. 

6.2 The errors in estimated distance  

Equation (43) on cross ratio invariance can be rewritten as  
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Let F denote the left side of equation (60). The derivatives of F with respect to the six variables are  
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The estimated distance i
edd 1  is the function of the other variables i

emd , 1−i
emd , i

er 1 , 1
1
−i

er  and i
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Consider the case that i
de

i
e

i
e rrr 11

1
1 <<=−  and i

ed
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em

i
em ddd 1

1 <<=− . Applying formulas from (61) to (66) 
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to equation (67), then i
edd 1∆  can be approximately expressed as   
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If the terms i
er 1  and i

edd 1/1  in the numerator of equation (68) is neglected, then equation (68) 

becomes 
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Equation (69) indicates that the main sources of errors in estimating the distance with cross ratio 

invariance are the errors in i
er 1  and 1

1
−i

er . The relative error in the estimated distance is proportional to 

the difference between the relative errors 1
1

1
1 / −−∆ i

e
i

e rr  and i
e

i
e rr 11 /∆ , with a gain of )/( 1

111
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For example, when 51
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e rr  and 501 =

i
der  pixels, the relative error i

ed
i
ed dd 11 /∆  is 5 times the 

error i
e

i
e

i
e

i
e rrrr 11

1
1

1
1 // ∆−∆ −− . Therefore, reducing i

der 1 or increasing i
er 1  or 1

1
−i

er can reduce the relative 

error i
ed

i
ed dd 11 /∆ .  

In general, the distance estimated with cross ratio invariance is still a rough one. When it is used for 

control purpose, it is better to be combined with an image based visual control method to form an 

integrated system, or to add a limit unit in the robot controller to confine the step size in the visual.  

7 Experiment and results 

7.1 Experiment 1 

The experiment system is shown in Fig.5. The end-effector was mounted with a colored rectangle as 
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the tool. The white rectangle is the object to approach. The end-effector approaches the object’s centre 

along the opposite direction of the surface normal of the planar object. Two cameras were placed near 

the base of the industrial robot UP6, whose intrinsic parameters Min1 and Min2 were calibrated using the 

method proposed in Section 3. The relative pose 1R2 is computed with the method in Section 4.  

The task was to move the end point of the tool to the centre of the object. In the experiment, the 

control algorithm adopted was a proportional control law, i.e. with the gains Ki and Kd in formula (46) 

set to zero. The factor in formula (39) was assigned as kθ=0.4. The position step factor in formula (42) 

at the beginning of the approaching was set to ks=25 mm. The proportional gains were initially 

determined by simulation and finally tuned empirically in experiments and were set as  
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The experiment was conducted using the method in Section 5. Two scenes of the experiment are 

Tool Object Tool Object 

(a) The scene of experiment at start (b) The scene of experiment in the end

Fig.6 The scenes of experiment 
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shown in Fig.6. The scene of the tool and the object, denoted by a color rectangle and a white rectangle 

respectively, at the start of the experiment is given in Fig.6 (a). Fig.6 (b) shows the scene at the end. It 

can be seen that the tool reached the desired position and pose well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some experimental results are given in Fig.7. Fig.7 (a) shows the trajectory of the end-effector in the 

experiment. The three steps at the beginning were controlled using a constant step length with formula 

Fig.7 The experimental results 

(a) The trajectory of end-effector (b) The graphs of Euler angles 

(c) The estimated direction results from the 
end-effector to object 

(d) The distances between the tool and 
object in Cartesian and image space 
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(39), (42) and (47). Then the motions of the end-effector were controlled according to formula (39), (46) 

and (47). The end-effector was moved toward the object. Fig.7 (b) gives the desired and reached 

orientations of the end-effector in the experiment. It is seen that the orientation of the end-effector 

changed smoothly and achieved the desired one finally. The components in the estimated result are 

given in Fig.7 (c). There existed variations in the estimation because of noise disturbance. Fig.7 (d) 

shows the distances between the tool and the object in Cartesian and image space. The distance in the 

image space was calculated with the image coordinates of the tool and the object. The distance in 

Cartesian space was estimated with equation (43) and (44) according to cross ratio invariance. The 

distance varied considerably due to the sensitivity to noise. Besides the noise, the trajectory of the 

end-effector, which was not a line, also had a strong influence on the accuracy of the estimated distance. 

In our experiment, to reduce the aforementioned effect, the estimated distance was filtered with a 

low-pass filter before it was used to control the end-effector. Also the step size for each visual control 

sampling was limited to 25mm or less. 

7.2 Experiment 2 

The purpose of this experiment was to compare our pose-based visual control method with a 

traditional position-based method. In this experiment, the tool was a bar instead of the rectangle in the 

last experiment. Different from Section 5.2, the poses here were just the pointing direction of the tool 

and the normal of the planar object. Assume that the pointing direction of the tool was emav1  in frame  
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 1, the normal of the planar object was rav1  in frame  1. The rotation angle 1θ and axis f
v

1  in frame  

1 were computed via (71). Then the desired pose 1Red was determined with (72). Applying formula (72) 

to equation (37), the pose adjustment can be determined with formula (38) and (39). 
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An experiment for object approaching was conducted with our pose-based visual control method. 

Similar to the experiment in Section 7.1, the estimated distance was filtered with a low-pass filter 

before it was used to control the end-effector. The step size for each visual control step was limited to 

25mm or less.  

Next, the position-based visual control method as described in [2] was used in the comparison 

experiment. The positions of the tool and target were calculated via stereovision. The poses of the tool 

and target were obtained via 3D reconstruction [2] in the comparison experiment. The positions and 

poses of the tool and target were calculated in each control step. The step size for each visual control 

step was also limited to 25mm or less.  

To compare our pose-based method with the position-based one, the results are plotted in Fig.8. The 

trajectories of the end-effector are shown in Fig.8 (a). Fig.8 (b) displays the actual tool directions in the 

robot frame. Fig.8 (c) shows the distances between the tool and the object in Cartesian space and image 
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space. It is seen that the estimated distance with cross ratio invariance has a higher precision in the end 

stage than other stages. This is consistent with the error analysis in Section 5.2. The scenes of 

experiments in the end stage with pose-based and position-based visual control method are given in 

Fig.9. 

It can be seen from Fig.8 and Fig.9 that the pose-based visual control method has similar effective- 

ness to the position-based one. However, the pose-based visual control method proposed in this paper is 

much easier to implement than the position-based one. It avoids the tedious calibration of the extrinsic 

parameters of cameras and does not need any position information of the environment or metric 

information of the object. 

 

 

 

 

 

 

 

 

 

(a) The trajectories of end-effector (b) The directions of tool 
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It is observed that in some pose detection experiments, the pose of a line could not be obtained with 

the method in Section 4.2.1. The reason was that the two equations, (32) and (34), were linearly 

correlated. With the active pose adjustment of the cameras, this problem could be solved as the two 

equations will then become non-correlated. 

Fig.8 The results with pose-based and position-based method 

(c) The estimated distances

(a) The scene with pose-based method (b) The scene with position-based method

Fig.9 The scenes of experiments in the end stage 
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8 Conclusions 

In this paper, a method for self-calibration of the intrinsic parameters of a camera is investigated 

using groups of parallel lines, which are orthogonal. If the image coordinates of lens center are known, 

and there is no difference between the magnification coefficients in the horizontal and vertical direction 

from the imaging plane coordinates to the image coordinates, then the magnification coefficient k can be 

self-calibrated with one view of two orthogonal groups of parallel lines. If there are three intrinsic 

parameters, one view of three groups or three views of two groups of parallel lines in orthogonal are 

necessary for the intrinsic parameter self-calibration. For a four parameter model, four views of two 

groups of parallel lines in orthogonal are needed. The analytic solutions for the self-calibration are 

presented. 

With the intrinsic parameters of a camera, the poses of the camera relative to two orthogonal groups 

of parallel lines in are deduced. For two cameras, their relative pose is computed from their poses 

relative to the parallel lines. With the intrinsic parameters and transformation between the two cameras, 

methods are proposed for calculating the poses of a line, plane and rigid object. Compared with stereo 

vision, our method does not need correspondence matching for feature points which is a main source of 

errors in 3D reconstruction. Rather line matching is performed and the poses are computed via 

selecting arbitrary two points on a line. As line matching is more robust than point matching, our method 

offers a more robust approach for visual control. 
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A new visual control method is developed using pose detection rather than 3D reconstruction. This 

avoids the tedious calibration of the extrinsic parameters of cameras and does not need any position 

information of the environment or metric knowledge about the object. An approaching task is 

performed with our pose-based visual control to show the application of the method. The object’s pose 

and the orientation of the vector from the tool to the object are estimated with the methods presented in 

this paper. In approaching the object, the distance between the tool and the object is estimated with 

cross ratio invariance. The experimental results verified the effectiveness of the proposed methods.  

The main features of our methods include automatic calibration of the camera intrinsic parameters 

based on parallel lines only without requiring metric knowledge of the target or environment, robust 

determination of the transformation between the two cameras using line matching rather than point 

matching, and an easily implementable visual control method based on pose detection rather than 3D 

reconstruction. The developed method will be useful for autonomous systems including mobile 

manipulators, humanoid robots. 
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