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Abstract

One of the difficulties encountered in the application of reinforcement learning methods to real-world problems is their
limited ability to cope with large-scale or continuous spaces. In order to solve the curse of the dimensionality problem,
resulting from making continuous state or action spaces discrete, a new fuzzy Actor—Critic reinforcement learning network
(FACRLN) based on a fuzzy radial basis function (FRBF) neural network is proposed. The architecture of FACRLN is
realized by a four-layer FRBF neural network that is used to approximate both the action value function of the Actor and
the state value function of the Critic simultaneously. The Actor and the Critic networks share the input, rule and normal-
ized layers of the FRBF network, which can reduce the demands for storage space from the learning system and avoid
repeated computations for the outputs of the rule units. Moreover, the FRBF network is able to adjust its structure
and parameters in an adaptive way with a novel self-organizing approach according to the complexity of the task and
the progress in learning, which ensures an economic size of the network. Experimental studies concerning a cart—pole bal-
ancing control illustrate the performance and applicability of the proposed FACRLN.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Reinforcement learning is a framework for an agent to learn to act optimally based on reinforcement sig-
nals. Reinforcement learning methods have been widely applied to a variety of problems, such as autonomous
robot navigation and nonlinear control [7,22]. However, most conventional reinforcement learning methods
use a discrete state space to describe the interaction between the agent and its environment. They assume that
the task is a Markov Decision Process (MDP), in which a transition probability is defined for discrete states
given a discrete action. Reinforcement learning will encounter large-scale or continuous spaces when it is
applied to real-world problems. A straightforward approach to continuous spaces learning would be to make
the entire state space into discrete, equal-sized boxes. However, this will lead inevitably to the curse of
the dimensionality problem and cannot guarantee the performance of the reinforcement learning system.
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Therefore, in order to realize an approximation of the optimal value and policy functions for continuous state
or action spaces, reinforcement learning should have a capability of generalization. The essence of generaliza-
tion is to use a function to approximate unlearnt mapping from a state space to an action space [2]. The design
of a function approximator with high capabilities of generalization and computational efficiency has become a
major focus in the research field of reinforcement learning.

Value function approximation is widely taken into consideration in the generalization of reinforcement
learning. Q learning, Temporal Differences (TD) learning and Sarsa learning are algorithms normally used
in reinforcement learning with common characteristics, i.e., they all estimate the value function of MDP.
The corresponding behavior selection policies are fully determined by the estimation of the value function.
On the other hand, approximating the value and policy functions simultaneously basically adopts the Adap-
tive Heuristic Critic (AHC) algorithm under the Actor—Critic (AC) architecture proposed by Barto et al. [2]. In
the AHC algorithm, the Critic realizes the approximation of the value function and the Actor carries out the
approximation of the policy function. Barto et al. [2] designed an AHC algorithm based on two single-layer
neural networks to realize the control for an inverted pendulum under a discrete state. Anderson [1] further
realized the balancing control for an inverted pendulum under a non-discrete state by an AHC algorithm,
based on two two-layer feedforward neural networks. The algorithms proposed in [2,1] divided the state space
into finite numbers of sub-spaces without any generalization between sub-spaces. As a consequence, suitable
division results for complex and uncertain systems could not be obtained. Correlations between state variables
were difficult to be embodied into the algorithm and the control structure was excessively complex.

Wang and Mendel [27] proved that a fuzzy inference system (FIS) is actually a universal approximator
which can approximate any input—-output data with arbitrary precision on a compact set. In theory, fuzzy sys-
tems and neural networks are functionally equivalent under some mild restrictions [9]. But it should be noted
that these restrictions do not guarantee the equivalence of the two systems in terms of semantic meaning. The
main difference between neural networks and fuzzy inference systems is the ability for interpretation. FISs are
suitable for representing fuzzy and uncertain knowledge, which agrees quite well with the process of human
thinking [29,12]. But fuzzy systems lack self-learning and self-adaptive abilities. On the other hand, it is known
that neural networks have advantages of parallel computation, fault-tolerance and self-learning, but they are
not suitable for representing knowledge [6]. Hence, functional equivalence has made it possible to combine the
features of these two systems, which has been developed into powerful fuzzy neural network systems (FNNs).
In these hybrid systems, the fuzzy techniques are actually used to create neural networks or enhance their per-
formance, while neural networks are used to learn membership functions and fuzzy rules [18,20].

In general, fuzzy systems can be realized in an architecture isomorphic to a neural network, i.e., a multiple-
layer perceptron (MLP) network, where each unit performs a function such that the entire network becomes
perfectly equivalent to a fuzzy system. Back propagation algorithm will still be possible to train the network,
such as ANFIS (adaptive-network-based fuzzy inference system) by Jang [8] or FALCON (fuzzy adaptive
learning control network) by Lin et al. [17]. Fuzzy neural networks have good characteristics; therefore, much
attention has been focused on utilizing ANFIS or FALCON to realize reinforcement learning. Typical exam-
ples of FNN-based reinforcement learning systems include ARIC (approximate reasoning based intelligent
control) [3], GARIC (generalized ARIC) [4], RNN-FLCS (reinforcement neural-network-based fuzzy logic
control system) [15] and FALCON-RL (reinforcement learning strategy based on fuzzy adaptive learning con-
trol network) [16]. Most of these reinforcement learning systems adopted two separate MLP networks to fulfill
the functions of Actor and Critic networks. The architecture of the system is complex. ANFIS, ARIC and
GARIC belong to a category of off-line training systems, i.e., they require a set of training data available
beforehand, first to set up the structure and then to tune the parameters appropriately. Moreover, they do
not have a capability of structure learning, i.e., the network structure is determined and fixed in advance.
Although the topology structure and the parameters of the networks can be tuned on-line simultaneously
in RNN-FLCS [15] and FALCON-RL [16], the number and configuration of membership functions for each
input and output variable have to be decided by an expert in advance. Another AHC algorithm based on a
decomposition of the adaptive basis function was proposed in [23] where the total state space was divided
according to approximation errors. The algorithm has some adaptability, but it could not solve the problem
of low learning efficiency with the increased complexity of the network structure. Jouffe [11] designed two
fuzzy reinforcement learning methods such as fuzzy AC learning (FACL) and fuzzy Q learning (FQL) based
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on dynamic planning theory. These two methods merely tuned the parameters of the consequent part of a FIS
by using reinforcement signals received from the environment, while the premise part of the FIS was fixed dur-
ing the learning process. Therefore, they could not realize the adaptive establishment of a rule base, limiting its
learning performance. Kondo and Ito [13] proposed an evolutionary state recruitment strategy for AC learn-
ing. The strategy was able to allocate appropriate numbers and sizes of normalized Gaussian network units,
but it still required an off-line training phase to decide its model parameters in advance.

Radial basis function (RBF) neural networks, capable of universal approximation, utilize basis functions in
the hidden layer. The advantages of a RBF network are twofold: the training procedure is substantially faster
than the MLP network and there is no local minimum problem [19,21]. Based on this analysis, we propose a
new fuzzy Actor—Critic reinforcement learning network (FACRLN) including a system architecture and a
learning algorithm based on a fuzzy RBF (FRBF) network. We use a four-layer FRBF network to approx-
imate both the action function of the Actor and the value function of the Critic simultaneously. The reinforce-
ment learning method can solve the curse of the dimensionality problem resulting from making continuous
spaces discrete. As well, a novel self-organizing approach is proposed to add and merge units in the rule layer
of the FRBF network dynamically, which makes it possible to obtain a reasonably sized network after the
learning process.

The paper consists of five sections. Based on our analysis of the functional equivalence between a RBF net-
work and a fuzzy inference system, the fuzzy Actor—Critic reinforcement learning architecture is proposed in
Section 2. Section 3 provides the learning algorithm for tuning the structure and the parameters of the FRBF
network in a self-organizing manner. In Section 4, we apply the proposed FACRLN to a cart—pole balancing
problem and compare it with other reinforcement learning methods. The last section presents some concluding
remarks.

2. FACRLN architecture
2.1. Functional equivalence between a RBF network and a FIS

A RBF network is one of the most important neural networks, which can approximate any nonlinear func-
tion with arbitrary precision, without local minimum problem [21]. A RBF network with a single hidden layer
and single output can be described as:

b Z - /<||>C jujll)’ (1)

where x € R" denotes a n dimensional input observation, ¢;(-) the jth radial basis function or receptive field
unit, u; € R" and g; € R" the center (mean) and the width (variance) vectors of the jth basis function respec-
tively, w; the weight or firing strength of the jth basis function, j a basis function index and / the number of
basis functions. Eq. (1) can be described as Eq. (2) when the basis function of the RBF network is a Gaussian
function and the output of the RBF network is normalized.

i lw,nexp[ ﬂ

(2)

y:

On the other hand, a FIS is a system based on knowledge or rules. The most important part of a FIS is its
rule base made up of a number of ‘if-then’ rules. A T-S model is a very important fuzzy inference system that
has wide applications in fuzzy modeling and fuzzy control domains [25,26]. The jth ‘if-then’ fuzzy rule of a
T-S model can be described as:

R;: if xis 4, and x,is 4, and ... and x, is 4/ then y' = a} + a|x| + - + a'x,, (3)

where the input variable vector is x = [x,xp, - - - ,x,,]T. A’ denotes the jth fuzzy set of the ith input variable, 1’
the output of the consequent part of the jth fuzzy rule and i an input variable index, i = 1,2,... n. The ‘if” part
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of a T-S model is similar to the premise part of a common fuzzy rule of the Mamdani model, but the conse-
quent part of a T-S model is described by a crisp function of the input variables. A T-S model includes not
only the qualitative knowledge represented by the premise part, but also the quantitative knowledge repre-
sented by the consequent part. Thus, these two kinds of knowledge are easily formulated into a unified math-
ematical framework by using a T-S model.

Given the input vector, the overall output of the fuzzy system can be obtained by:

Z?:l [ﬁsj :fl ¢ij(xi):|

- , @)
Zj:l l.;rl ‘Pij(xi)

y:

where ¢;;(x;) denotes the membership function for fuzzy set Al fis; a crisp function of x; and T a conjunction
operator in fuzzy set operations. In order to obtain an adaptive fuzzy inference system, ¢;;(x;) should be dif-
ferentiable and normalized. Therefore, the membership function ¢(-) can be adopted as a multi-dimensional
Gaussiannfunction. We can obtain Eq. (2) from Eq. (4) if we substitute the multi-dimensional Gaussian func-
tion for I_II ¢;;(x;) in Eq. (4).

It is clear that a RBF network and a FIS have functional equivalence when certain conditions are satisfied.
There are two aspects of equivalent characteristics. First of all, the membership functions of the input vectors
in a FIS should be equivalent to the basis functions of RBF hidden units. In addition, the consequent part of
each fuzzy rule is equivalent to the connection weight between the hidden layer and the output layer of a RBF
network. The functional equivalence between a RBF network and a FIS can be described by the following
theorem [9].

Theorem. A RBF network made up of radial basis functions and a fuzzy inference system made up of some fuzzy
rules have the same working mechanism. That is, the radial basis functions of a RBF network and the membership
functions of a FIS both can localize the input observation by using local receptive field characteristics to produce a
central weighted response. Functional equivalence between a RBF network and a FIS can be established if the
following criteria are met.

1. The number of RBF hidden units is equal to the number of fuzzy ‘if-then’ rules.

2. The output of each fuzzy ‘if-then’ rule is a constant (the fuzzy system is a zero-order T-S fuzzy system).

3. The radial basis function of each RBF hidden unit is the same as the membership function within each fuzzy
rule.

4. The multiplication operator is used to compute the firing strength of each rule.

5. Both the RBF network and the fuzzy inference system under consideration use the same method (i.e., either
weighted average or weighted sum) to derive their overall outputs.

We will concentrate on the zero-order T-S fuzzy system since it has the interesting property of being equiv-
alent to a RBF network as described above.

2.2. FACRLN architecture

Although the restrictions, imposed by Jang and Sun [9], do result in the functional equivalence between a
RBF network and a fuzzy system, they do not guarantee the equivalence of the two systems in terms of their
semantic meaning. The main difference between a RBF network and a fuzzy inference system is the ability for
interpretation. From the point of knowledge expression, a RBF network can, in fact, be viewed as a kind of
network expression form of fuzzy rules. Each hidden unit denotes a fuzzy rule. Therefore, we can combine a
FIS with a RBF network to form a fuzzy radial basis function (FRBF) network [10]. A FRBF network makes
its inner connecting structure more explicit and has adaptive learning ability. The FRBF network adopted
here is a four-layer feedforward network, which can describe the commonly used five steps of a fuzzy inference
system. Compared with ANFIS and FALCON, both of which adopt a five-layer MLP neural network to



3768 X.-S. Wang et al. | Information Sciences 177 (2007) 3764-3781

realize a fuzzy inference system, the FRBF network structure is much simpler. In this way, the learning time
can be reduced and the learning efficiency is further improved. During the learning process, the units in the
rule layer have self-organizing characteristics, i.e., the FRBF network has an adaptive adjustment mechanism
according to the complexity of the task and the progress in learning.

The architecture of FACRLN is schematically shown in Fig. 1. There are two essential components of this
associated reinforcement learning architecture. One is the Actor network, which learns the state-to-action
mapping and the other is the Critic network, which learns to estimate the value function of the policy followed
by the Actor [16,30]. The Actor network can choose a recommended action or decision according to the cur-
rent input vector. Moreover, a stochastic action modifier (SAM) is used to generate stochastically an actual
action according to the recommended action A;(x,), suggested by the Actor network and the estimated signal
V(x,) from the Critic network. The Critic network receives an external reinforcement signal (i.e., reward) r,
from the environment and produces a TD error (i.e., internal reinforcement signal) drp(¢) sent to the Actor
network. The network learning of the Actor and the Critic can proceed through the TD error signal.

It is to be noted that there is only one FRBF network, as shown in Fig. 2, which is used to implement the
Actor—Ceritic reinforcement learning. The Actor and the Critic networks share the same layers 1, 2 and 3 of the
FRBF network. Following are our reasons for adopting this course of action. In the first place, the inputs of
the Actor and the Critic are both the same vectors derived from the environment and their differences are lar-
gely due to their various outputs. The second reason is that the hidden layer of both Actor and Critic inter-
prets the input space by means of local responses. Therefore, from the viewpoint of space division, both Actor
and Critic can share the rule layer of the FRBF network. This routine can reduce the demands for storage
space from the learning system and avoid repeated computations for the outputs of the rule units. The definite
meaning of each layer is described as follows:

Layer 1 is an input layer. Each unit in this layer denotes a crisp input variable x; where 7 is an input index.
The input vector x = (x,xz, .. .x,,)T € R" is transmitted directly to the next layer.

Layer 2 is a rule layer. Each unit in the rule layer represents the premise part of a fuzzy rule and has » mem-
bership functions. In order to obtain an adaptive fuzzy inference system, the » membership functions take the
following differentiable Gaussian function:

2
203

2
MFiizexp<—M>, i=1,2,...n =12 h (5)

where MF; denotes the ith membership function in the jth rule unit. x; and o;; are the center and the width of
the membership function MF;, respectively. At time ¢, the output of the jth rule unit is computed from a n
dimensional input observation x, as Eq. (6). ¢;(x;) denotes the firing strength of the jth rule unit and is equal
to the multiplication of the inner » membership functions.

@;(x,) = ﬁ MF;;(x;;) = exp ( i W) ' ©

i=1 ij

where x;, denotes the ith input variable within the input vector x, at time ¢.

/

| Critic network |«&

TD error 4 (x, )
S (1)
A, (t) Stochastic\ A, (z)
| Actor network Action Environment
Modifier

External reinforcement signal 7,

State x(t)

Fig. 1. Architecture of a FACRLN control system.
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I I I I
Input layer Rule layer Normalized layer Output layer

Fig. 2. FRBF-based Actor and Critic networks.

Layer 3 is a normalized layer. The number of units in this layer is equal to that of the rule layer. The effect
of the layer is to perform a normalization operation on each rule. Although the normalization operation
increases the computing complexity, it can make these points, located in overlapping receptive fields, to have
a better interposition performance. The output @;(x,) of the jth unit in this layer denotes the normalized firing
strength of the jth fuzzy rule.

n (Xiz*#i/)z
€X — 2 =
@) = =20 _ p< - 2”’2’)
I\ Zh— 0,(x,) h N Gamy)
1=1P 1\ X Do eXp (=D, 2

h
) (VX, Z Q/(X) = 1) : (7)

20y, ) =
Layer 4 is an Actor—Critic output layer. The layer is made up of an Actor part and a Critic part. The Critic
part carries out the estimation of the state value function, i.e., finding a mapping from a state to an expected
Critic value ¥ (x,) € R'. The Actor part acts as an action selector that realizes a mapping from a n dimensional
sensing state space x; € R” to a m dimensional action space 4(x;) € R”. The kth action output 4,(x,) of the

Actor part and the state value function ¥ (x,) of the Critic part are calculated as:

Ai(x,) = Z wi P (x:) (®)
) = 00, (x) o)

where wy; denotes the weight between the jth normalized unit and the kth Actor unit and v; the weight between
the jth normalized unit and the single Critic unit.

In order to solve the dilemma of ‘exploration’ and ‘exploitation’, the output 4;(x,) of the Actor part does
not directly act on the environment [13]. A noise term #, that has a normal distribution is added to Ay (x;).
Consequently the actual action 4, (x,) is modified as:

A (x) = Ar(x) + m(0,00(1)) (10)
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where oy (f) = m denotes the width of the Gaussian noise which can be interpreted as the range where
the output unit searches for a proper action. If ¥ (x,) is small, the exploratory range oy (¢) will be large. This
amounts to broadening the search range such that the actual action can have a high probability of being quite
different from the recommended action. In contrast, if ¥ (x,) is large, o (¢) is small. This amounts to narrowing
the search range such that the actual action can have a high probability of being very close to 4;(x;).

It is to be noted that FACRLN can be easily extended to realize other reinforcement learning methods, for
example, fuzzy Q learning. The meaning of the input, rule and normalized layers of a fuzzy Q learning network
are identical with that of FACRLN. The major difference between these two reinforcement learning networks
lies in the output layer. The output layer of a fuzzy Q learning network is made up actions and Q values.

3. FACRLN learning algorithm

When using a neural network to create a fuzzy inference system, the key problem is the design of a neural
network learning algorithm that optimizes the structure and the parameters of the network. The learning pro-
cess of FACRLN is in fact the FRBF network learning, which includes the following structure learning and
parameter learning:

3.1. Structure learning

We can obtain a better generalization performance and much higher convergence speed by keeping the net-
work structure compact during the learning process. Structure learning includes two operations. (1) adding
units: whether a new rule unit has to be added or not depends on the TD error and the if-part criteria. (2)
merging units: whether to merge similar units in the rule layer or not is based on the fuzzy similarity measure
criterion.

3.1.1. Adding units

(1) TD error criterion
The TD error criterion is proposed by defining the local errors of each basis function. At first, for the
whole Actor—Critic learning system, the exponential moving average (EMA) f of the TD error and
the exponential moving average i of the squared TD error can be calculated as follows, based on the
definition of EMA [5]:

ft+1) =1 =81 (1) + Som(1), (11)
it + 1) = (1 = ER(L) + €035 (1), (12)

where ¢ denotes a moving factor, drp(¢) the TD error and d3(¢) the squared TD error.

If the EMAS of the TD error and the squared TD error of the whole Actor—Critic learning system are
assigned to each basis function, then we can obtain the following definition of the local errors of each
basis function [23,24].

Definition. For each basis function @;, the exponential moving average f; of the TD error, weighted by ¢;(x/),
the firing strength of the basis function, and the exponential moving average /; of the squared TD error, also
weighted by ¢;(x;) are calculated by:

St +1) = (1= &)f5(0) + &0,(x) 0t (1), (13)
Bi(t+1) = (1 = &)hy(t) + éjqoj(xt)é%D(t)v (14)
where &; denotes a moving factor for the jth basis function with &; = y.®;(x,) and 7. an attenuating coefficient.

From the definition of the TD error it is known that the TD error has the characteristic of approaching zero
over time when the Actor—Critic learning converges. When the resolution of the state space is insufficient, the
variance of the TD error still remains high even though the learning of the value function of partial observa-
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TD error TD error
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X basis function X
X X
X X X X
x X x %

Fig. 3. TD error criterion for adding a new basis function.

tion space converges. Assume this part of the state space is covered by a single basis function and x’ denotes
the TD error (see Fig. 3). As seen from the distribution of the TD error in Fig. 3, the average of the TD error
approaches zero, while the average squared TD error is still large. That is, this single basis function does not
approximate the TD error sufficiently well. Therefore, a new basis function must be added to cover the current
input state space in order to obtain a better approximation.

Based on the above analysis, the criterion for adding a new unit is the ratio of 7; and f;. When L;(t) = ’;:—E;; is
larger than a threshold 0;, a new unit is added. When the environment is stationary, meaning that the state
transition probability is constant, the average of the TD error converges at zero and consequently L; diverges.
In order to avoid this problem, we add a rule of arresting the addition of units under the condition that 7; is

smaller than a constant 0,. Thus, the criterion of adding units based on the TD error is:
L;> 0, and F#; > 0,. (15)

(2) if-part criterion

Intuitively, a FIS should always be able to infer an appropriate control action for each state of the con-
trol system, which is called the “completeness’ property. The completeness property of a fuzzy control-
ler depends on its data base and rule base. From the point of view of the data base, the completeness
property largely means that the support of fuzzy sets should cover the related discourse domains with
a definite level ¢. This property of a FIS is called ¢-completeness [14]. Thus, the e-completeness property
ensures that there is always a dominant rule whose belief is greater than e. However from the point of
view of the rule base, the completeness property mainly denotes that an extra rule should be added when-
ever a fuzzy condition is not included in the rule base, or whenever the match degree (or firing strength)
between an input and the predefined fuzzy conditions, is lower than level ¢. Otherwise there will be no
dominant rule activated in the case of the rule base.

From a statistical point of view, the center and the width of a basis function correspond to the expec-
tation and variance of a distribution. If we assume that the input, i.e., the observed data, obeys a normal
distribution, then the probability of the input data located within the range (u; — 20, ; + 20;;) is
P(Jx — u| > 20) = 0.4256. However, the corresponding output of the basis function is only
o(]x — 1| > 20) < exp(—2) = 0.1354. Thus, the threshold for the output of each unit in the rule layer
is obtained as 0.1354 from Eq. (6) and consequently the parameter ¢ of the corresponding fuzzy rule
is set as 0.1354. Therefore, when Eq. (16) is satisfied, meaning that there are no units in the rule layer
covering the current input data x, perfectly, new units should be added to cover the current input data
so that the output of the membership function of each input data is larger than 0.1354.

¢ = argmax ¢,(x,) < 0.1354. (16)
J

If the TD error criterion Eq. (15) and the if-part criterion Eq. (16) are established for the current input x,, the
center and the width of the new unit are:
K =X = [xlmezy ce axnt]T
new T (17)
Opew = T[Ul,newv GZ,newv e 7O-n,new]
where 6; ey = min(|x; — p;|) denotes the distance between the ith input state variable and the center of its
nearest rule unit within the existing units and 7 is an overlapping coefficient that makes the basis functions

of adjacent units have proper overlapping regions.
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At the initial learning phase, there are no units in the rule layer and the first observed data set is viewed as
the first unit. The center of the first rule unit is defined as the first input, while its width can be set as a pre-
defined initial width. For the following input, we can check whether to add units or not according to these two
criteria.

3.1.2. Merging units

As the reinforcement learning continues to explore its environment, the number of rule units should
increase. It is, therefore, essential to merge any highly similar rule units in order to keep the size of the FRBF
network to a minimum without severely degrading its ability to search for the optimal control policy. A fuzzy
similarity measure can determine the similarity between two fuzzy sets, but the proposed methods in [15,28]
are too complex to compute. Therefore, we propose a similar but more practical method to measure the sim-
ilarity between two fuzzy sets. The shape and location of the membership function of each rule unit largely
depend on the center and the width of the Gaussian function. If the centers and widths of rule units j and
p satisfy the relationships in Eq. (18), we can conclude that these two units are similar.

{ H:uj - :up” < A:umin
Ho-j - GP” < AO_min

(18)

where Ay, and Agp,, denote merging thresholds. For any input variable x,, the outputs of the rule units j and
p meet the condition that

@;(x:) = @, (x). (19)

If criterion Eq. (18) is satisfied, the two units should be merged into one and the number of units in both the
rule layer and the normalized layer is reduced by one. The weights between the normalized layer and the out-
put layer are set as the following equations after merging:

{v =40+ ), )

Wi = Wg; + Wip-

3.2. Parameter learning

The parameter learning of a FACRLN system includes two parts: the Actor parameter learning and the
Critic parameter learning. Some parameters, including the connection weights between the normalized layer
and the output layer as well as the centers and the widths of the rule units, need to be adjusted on-line.

One feature of the Actor—Ceritic learning is that the Actor learns the policy function and the Critic learns the
value function using the TD method simultaneously. The TD error dtp is calculated by the temporal difference
of the value function between successive states in the state transition.

orp(t) = ri +yV (xi1) — Vix), (21)

where x, and x,,; denote the states at time 7 and (7 + 1), respectively, r, is the external reinforcement reward
signal and y is the discount factor used to determine the proportion of the delay to the future rewards.

In Eq. (21), the TD error is otp(¢) = #, + yV (x11) — V(x,) = r, — [V(x;) — yV (x,11)]- r; denotes the reinforce-
ment signal with respect to the actual action 4 (x,) and [V (x,) — yV (x.1)] is the reinforcement signal with
respect to the recommended action 4;(x,). The TD error indicates the goodness of the actual action. If
drp(f) > 0, the actual action 4, (x,) is better than the recommended action A4 (x,). Therefore, 4 (x,) should
be moved closer to 4, (x,). On the other hand, if drp(7) < 0, the actual action 4, (x,) is worse than the recom-
mended action A, (x,). In that case, 4;(x,) should be moved further away from 4, (x,). The goal of reinforce-
ment learning is to adjust correlated parameters in order to maximize the cumulative sum of the future
rewards. The Actor can learn its weights according to Eq. (22) based on the TD approach [15].

Al = A) g ) @)

wyi(t + 1) = wy(t) + aadrp(?) p_p g
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where 0 < aa < 1 is a learning rate and A;‘(%:)kw
mended actions.

The role of the Critic is to estimate the value function of the policy followed by the Actor, while the TD
error is the temporal difference of the value function between successive states in the state transition. There-
fore, the goal is to train the Critic to minimize the squared TD error

1

E(f) = E(ﬁD(r). (23)

the normalized difference between the actual and the recom-

In the following, we will utilize the gradient descent algorithm and the chain rule to update the parameters
including the weights v;, the centers y; and the widths a;; of the rule units of the Critic.
The Critic can learn its weights according to the following equation:

OB(r) OE(f) 06 (f) OV (x)
o0, = " TR V) Syl

vi(t+ 1) = v;(t) — oc = v;(t) + acdrp (¢) P;(x;) (24)

where 0 < ac < 1 is a learning rate.
The center updating of the rule unit is:

aE(t) GE(I) GéTD(t) 6V(x,) 6<Dj(xt)
i'tJFl = wit) =Nz~ = ;) — 1,
HAtE D =Rl =y Gy = 100 = M3 00 DV ) 00x) Oty )
- a(pj(xt)
- :uij(t) + ’7;¢5TD(I)Uj(t) a#ii(t) (25)
where 7, denotes a learning rate with 0 <5, < 1. E;i’ %’; can be calculated from Eq. (7), to obtain Eq. (26):
2
0P (x @;(x) @;(x:) Xie — Hyj Xie = My
5 J( t) _ - Jj\M _ - Jj\M ! > Z8 - ‘pj(xz)“ _ ¢j<xt)] ! > i (26)
w0 1) \ X, x) T3 T3
Substituting Eq. (26) into Eq. (25), obtain:
Yie — Ky
b 1) = i (0) + 80 (00, ()1 — )] {2 1). 27)
ij
A similar equation is derived for the change in width o;.
0E (1) OE(t) 0otp(t) OV (x,) 0P;(x,)
. 1) = a.(f) — =a,(t) —
7D = 0 ey = ) B 0 (5) 00, 5) D)
0P;(x (x,- - :ui')z
ul0) + 1,300 ) G = 0y0) + b (D501 — 5]
ij i

where 0 < 1, < 1 is a learning rate.
3.3. Algorithm description

Based on the above analysis, the entire set of design steps of the fuzzy Actor—Critic reinforcement learning
method can be summarized as follows:

. Obtain the state x, at time ¢.

. Calculate the normalized firing strength of each fuzzy rule from Eq. (7).

. Calculate the action output 4 (x,) and the Critic value function ¥V (x,) from Egs. (8) and (9), respectively.

. Calculate the actual action according to Eq. (10) and execute it, receive the reward r, and then let the
state transit from x; to x, ;.

5. Calculate the new Critic value function V' (x,,;) from Eq. (9) and the TD error drp(¢) from Eq. (21).

R S I
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6. Check whether to add a rule unit or not according to Egs. (15) and (16). If the criteria are met, add a new
unit whose parameters are set as Eq. (17), otherwise turn to the next step.

7. Adjust the weights wy; and v; from Eqgs. (22) and (24), respectively.

. Adjust the centers and the widths according to Egs. (27) and (28) respectively.

9. Check whether to merge units or not according to Eq. (18). If the criterion is met, merge similar units
according to Eq. (20), otherwise turn to the next step.

10. Determine whether the learning process is finished or not. If not, then ¢ < ¢+ 1 and return to step 1 to
start the next cycle of the fuzzy Actor—Critic reinforcement learning method.

o]

4. Experimental studies

In order to assess the learning performance of FACRLN and compare it with other reinforcement learning
methods, a typical example of the cart—pole balancing problem or the so-called inverted pendulum balancing
problem is presented in this section.

As shown in Fig. 4, a rigid pole is freely hinged on the top of a wheeled cart that is free to move on a one-
dimensional track of fixed length. Both the cart and pole can move only in the vertical plane, i.e., each has only
one degree of freedom [15,16]. The cart—pole balancing problem is a problem of learning how to balance the
upright pole.

There are four input state variables to describe the cart—pole system: 0, the angle of the pole with the ver-
tical (in degree); 0, the angular velocity of the pole (in degree/s); , the horizontal position of the center of the
cart (in m) and ¥, the velocity of the cart (in m/s). The only control action is F, the amount of force (in N)
applied to the cart to move it towards the left or right. Therefore, the input variables of the FRBF network
to control the system are the four state variables described above, while the outputs of the FRBF network are
the control action F and the Critic value V. The system fails when the pole falls past a certain angle or the cart
runs into the bounds of its track. The dynamic model of the cart—pole system is described by the following
nonlinear equations:

—F,—mpl('),2 sin Oy +pesgn(i) | [LpOr
me+mp mpl

] gsin@,—i—cosH,[

Ht o / [‘l _ mpcos? (),i| ’

3 me~+mp (29)
o Fitmyl {Otz sin 0, — 0, cos 0[} — pesgn(y,)
At = .

me + mp

The parameters of the studied cart-pole system are the same as those used in Refs. [2,1,4,15,16,11]. The
gravity acceleration g = —9.8 m/s?, the mass of the cart m, = 1.0 kg, the mass of the pole my, = 0.1 kg, the
half-pole length /= 0.5 m, the friction coefficient of cart on the track u. = 0.0005, the friction coefficient of
pole on the cart y, = 0.000, 002 and the control force F, = [—10,+410] N. The sampling period 75 = 0.02 s dur-
ing the experiment. The pole must be kept within +12° from the vertical and the cart must be kept within
+2.4 m from the center of the track. The only feedback signal received by the FACRLN controller from
the external environment is a failure signal. When the angle of the pole exceeds the range of [—12°,+12°]
or the cart collides with the end of the track at the position of —2.4 m or +2.4 m, the external environment
will issue a failure signal. Hence, the reward r, is defined as follows:

F—p
1

24m 0 +24m

Fig. 4. Cart—pole balancing system.
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0, 0,/<12° and |y|<24m,
r,= { ) | t| an |/(t| m (30)

—1, otherwise.

The goal of this control problem was to train the FACRLN such that it could determine a sequence of
forces applied to the cart to balance the pole as long as possible without failure. The control strategy was
deemed successful if it could balance the pole for 50000 steps within one trial. In order to acquire control expe-
rience from various situations, the FACRLN controller started to learn from a stochastic initial state until a
control failure occurred and restarted to learn after each failure.

When we designed the FACRLN controller, some parameters had to be predefined based on the following
selection principles. First, by adjusting the discount factor y, we were able to control the extent to which the
learning system is concerned with long-term versus short-term consequences of its own actions. In the limit,
when y = 0, the system is myopic in the sense that it is only concerned with immediate consequences of its
action. As y approaches 1, future costs become more important in determining optimal actions. Because we
were rather concerned with long-term consequences of its actions, the discount factor had to be large, i.c.,
we set y = 0.98. Second, if a learning rate is small, the learning speed is slow. In contrast, if a learning rate
is large, the learning speed is fast, but oscillation occurs easily. Therefore, we chose small learning rates to
avoid oscillation, such as oy = 0.1, ac = 0.01, 5, = 0.055 and 5, = 0.035, which, in fact, we used. Third,
yc, O0p, 0, and 7 are used to check whether to add a rule unit or not which should meet the following condi-
tions: 0 < yc <1,0. >1,0< 6, <1and 0 <t < 1. Fourth, in order to ensure that two rule units with high
similarity are merged, merging thresholds Ay,,;, and Ao, should be rather small; we used Ay, = 0.01 and
Aomin = 0.01. Based on these selection principles, the parameters for the FACRLN controller in the experi-
ment are set as shown in Table 1. It is to be noted that the choice of these parameters is not unique. Other
choices are possible, as long as the above selection principles are followed. Clearly different parameters will
lead to different experimental results. In order to make these parameters optimal, some optimal methods, such
as a genetic algorithm or evolutionary computation, may be applied in the future.

Table 1
Parameters for the FACRLN controller

Y LN dc Yc O, Oy T Aptiin Adimin m Ne
0.98 0.1 0.01 0.37 3.0 0.01 0.87 0.01 0.01 0.055 0.035

304

254

20

154

Trial number

10+

0 5 10 15 20 25 30 35 40 45 50
Run

Fig. 5. Trial number required to find a successful FACRLN for each run.



3776 X.-S. Wang et al. | Information Sciences 177 (2007) 3764-3781

In this example, 50 runs were performed and a run ended when a successful controller was found or a fail-
ure run occurred. A failure run is said to occur if no successful controller is found after 500 trials. The number
of pole balance trials was measured for each run and their statistical results are shown in Figs. 5 and 6. The
minimum and the maximum number of trials over these 50 runs are 3 and 28, while the average number of
trials is 8.68. It is clear from Fig. 6 that there are 16 runs whose trials are within the range of 6 and 10.
One of the successful results is shown in Figs. 7-10, where the learning performance of the FACRLN on
the cart—pole balancing problem pole (Fig. 7), the cart position y (Fig. 8), the pole angle 0 (Fig. 9) and the
control force F (Fig. 10) are displayed. The FACRLN could balance the pole for 50000 steps after four trials.

2 6 10 14 18 22 26 30
Trial number

Fig. 6. Statistical result of the trials required to find a successful FACRLN for each run.

50000 T T

45000

T
1

40000

35000

30000

Step

25000 b

20000

15000

10000

5000 .

1 2 3 4 5
Trial

Fig. 7. Performance of the FACRLN on the cart—pole balancing problem.
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Fig. 8. Position of the cart.
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1481 4
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Fig. 9. Angle of the pole.

From the results, we see that only small deviations on both position and angle are left via learning. The aver-
age position and angle deviations are 0.6 m and 1.5°.

The exponential moving average of the weighted squared TD error %, and the ratio of the moving average
of the weighted squared TD error to TD error L; are shown in Figs. 11 and 12. The growth of the rule units is
presented in Fig. 13 based on the TD error and the if-part criteria. The abscissa of Figs. 11-13 indicate the
time of this particular run. It is clear from Figs. 11 and 12 that #; > 0, = 0.01 and L; > 0 = 3 at the initial
learning phase. Obviously, there are few rule units in the rule layer at the initial learning phase, which means
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Fig. 10. Control force.
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Fig. 11. Exponential moving average of the weighted squared TD error.

that no rule unit can cover the input vectors, i.e., ¢ = argmax;;(x;) < 0.1354. Therefore, the growing speed
of the rule units is high. The number of rule units quickly increased from 1 to 4 at the initial learning phase.
Because the squared TD error converges at zero (i.e., /i; < §, = 0.01) along with the progress in learning, the
number of rule units is fixed at 11 although L; > 0, = 3 after 1650 s.

We now compare the performance of our system with that of other existing AC reinforcement learning sys-
tems. The performance indices considered are continuous states and actions, a priori knowledge, number of
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Fig. 12. Ratio of the moving average of the weighted squared TD error to TD error.
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Fig. 13. Growth of the rule units.

fuzzy rules, structure learning and number of trials. The detailed comparison is presented in Table 2, from
which we see that our FACRLN system required the smallest number of trials. The number and configuration
of membership functions for each input and output variable do not need to be decided by an expert in advance
in our FACRLN system, i.e., a priori knowledge is not necessary. Moreover, two additional sets of experi-
ments were performed to verify the adaptation capability of the FACRLN system. In the first set, we varied
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Table 2
Performance comparison of various Actor—Critic reinforcement learning systems
Continuous Continuous A priori Number of fuzzy Structure Number of
states actions knowledge rules learning trials
AHC [2] No No No No 35
Anderson [1] Yes No No No 8000
GARIC [4] Yes Yes Yes 13 No 300
RNN-FLCS [15] Yes Yes Yes 35 Yes 10
FALCON-RL Yes Yes Yes 10 Yes 15
[16]
FACL [11] Yes Yes No 54 Yes 13
FACRLN Yes Yes No 11 Yes 8.68

the length of the pole from 0.5 m to 0.25 m. In another set, we doubled the mass of the cart to 2 kg from
1 kg. We found that the proposed FACRLN system was able to complete the control task of balancing the
pole.

5. Conclusions

Reinforcement learning has the ability to make use of evaluative feedback from the environment to guide
the learning process. It has been widely applied to the application of planning, control and decision making.
One of the difficulties encountered in the application of reinforcement learning methods to real-world prob-
lems with large-scale or continuous spaces is the well known ‘curse of dimensionality’. Thus, in order to apply
reinforcement learning to complicated systems, based on the analysis of the functional equivalence between a
RBF network and a fuzzy inference system, a new fuzzy Actor—Critic reinforcement learning network based
on a four-layer fuzzy RBF neural network has been proposed in our investigation, which takes full advantage
of the knowledge representing property of the FIS and the self-learning property of the RBF network.

Because the FRBF necural network is able to approximate both the action function of the Actor and the
value function of the Critic simultaneously, this routine can reduce the demand for storage space from the
learning system and avoid repeated computations for the outputs of the rule units. Therefore, the Actor—Critic
reinforcement learning system based on the four-layer FRBF is much simpler than other reinforcement learn-
ing systems realized by two separate neural networks.

Furthermore, the FRBF network has the ability of adding and merging rule units dynamically with a novel
self-organizing approach according to the complexity of the task and the progress in learning. At the initial
learning phase, there are no units in the rule layer and the first input is viewed as the first unit. For the fol-
lowing input, we can check whether to add units or not according to the TD error and the if-part criteria. As
the reinforcement learning continues to explore its environment, it is essential to merge any highly similar rule
units according to a fuzzy similarity measure criterion in order to keep the size of the FRBF network to a
minimum.

Experimental studies concerning the cart—pole balancing control demonstrate the validity and performance
of the proposed FACRLN, with its advantages for generalization, a simple control structure and a high learn-
ing efficiency. The disadvantage of the FACRLN is that the choice of control parameters should be deter-
mined beforehand according to experience and some guiding principles. In order to make these parameters
optimal, some optimal methods, such as a genetic algorithm or evolutionary computation, may be applied
in the future. As well, future work also will focus on applying the FACRLN to practical problems in the real
world, for example to mobile robot navigation.
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