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A new non-training complex wavelet hidden Markov tree (HMT)

model, which is based on the dual-tree complex wavelet transform and

a fast parameter estimation technique, is proposed for image denois-

ing. This new model can mitigate the two problems (high computa-

tional cost and shift-variance) of the conventional wavelet HMT model

simultaneously. Experiments show that the denoising approach with

this new model achieves better performance than other related HMT-

based image denoising algorithms.

Introduction: The compact representation of the discrete wavelet

transform (DWT) has led to many successful signal and image

processing algorithms. By capturing the dependencies between the

wavelet coefficients, we can improve the performance of wavelet-

based algorithms significantly. Among the many different approaches

to modelling the dependencies, the wavelet-domain hidden Markov

model is almost the most appropriate [1]. This model can effectively

characterise the joint statistics of wavelet coefficients and has been

applied to image denoising, segmentation and Bayesian image analy-

sis, etc. But the currently used wavelet-domain HMT model has two

disadvantages that undermine its usage in many applications. First,

the training of this model needs an iterative expectation-maximisation

(EM) algorithm, which results in high computation cost. Next, most

image processing algorithms based on this model have a tendency to

produce images with mild ringing artefacts around the edges. At the

heart of this problem is the fact that the real orthogonal wavelet

transform is not shift-invariant. To reduce computation cost of the

HMT model, Peng et al. [2] recently introduced a fast classification-

based parameter estimation technique for the wavelet-domain HMT

model, which does not need model parameter training. In [2], wavelet

coefficients in each subband were classified into two classes based on

spatially adaptive thresholds, and model parameters were estimated by

using the local statistics. Redundant wavelet denoising algorithms

(including [3], ‘cycle spinning’ [4], and the undecimated HMT [5]) all

tried to solve the problem of shift-variance, but their high transform

redundancy incurs a massive storage requirement that makes these

undecimated HMT models inappropriate for most applications.

Romberg et al. [6] also addressed the problem of shift-variance in

the wavelet HMT model. They extended the HMT modelling frame-

work to the complex wavelet transform and proposed the complex

wavelet HMT model (CHMT). But they still employed the iterative

EM algorithm to train a set of CHMT parameters, which is complex

and computationally expensive.

In this Letter, we present a new dual-tree complex wavelet HMT

model with localised parameters to mitigate the two problems of the

conventional wavelet HMT model simultaneously. And we apply this

non-training dual-tree complex wavelet HMT model to image denoising

to demonstrate its effectiveness.

Complex wavelet HMT model: The DT-CWT is a valuable enhance-

ment to the traditional real DWT, with important additional properties:

it is nearly shift invariant and directionally selective in two and higher

dimensions. There are six directional subbands capturing features

along lines at angles of {�15�, � 45�, � 75�} [7]. By providing

explicit information about singularities at a broader range of orienta-

tions, the DT-CWT allows us to distinguish between and characterise

images that are different in more subtle ways.

In the complex wavelet HMT model, we associate with each complex

coefficient ci¼ uiþ jvi a hidden state qi taking value m¼ S, L with

probability mass function (pmf) p(qi) depending on whether jcij is small

or large. The persistence of complex wavelet coefficient magnitudes

across scale is modelled by linking these hidden states across scale in a

Markov tree, which is similar to the wavelet HMT model [1]. Condi-

tioned on qi¼m, ci is Gaussian with mean, mi,m and variance si,m
2 . Thus,

its overall marginal pdf is given by

f ðciÞ ¼
P

m¼ S;L

pðqi ¼ mÞ f ðcijqi ¼ mÞ ð1Þ

Consider each complex coefficient ci as a random vector (ui, vi).

We approximate the marginal density f (ci) as a two-state, 2D Gaussian

mixture
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f ðcijqi ¼ mÞ ¼
1ffiffiffiffiffiffi

2p
p

si;m
expð�u2i =2s

2
i;mÞ expð�v2i =2s

2
i;mÞ ð2Þ

The complex wavelet HMT corresponding to (2) with scale-to-scale

Markov transitions has an almost identical structure to the real DWT

HMT; see [1, 5] for more details. The differences will be the substitu-

tion of (2) for (1) and the use of six subband trees instead of three.

Using r(i) to denote the index of the parent of node i, the parameter

ei,r(i)
m,n

¼ p(qi¼mjqr(i)¼ n) gives the probability that a child coefficient ci
has hidden state m when its parent cr(i) has state n. The HMT model

parameters consist of the Gaussian mixture means and variances, mi,m,
si,m
2 of the complex wavelet coefficient ci given its state qi¼m, the

transition probabilities ei,r(i)
m,n , and the pmf PS1

(m) for the root node S1.

Generally mi,m¼ 0. Group these into the parameter vector Y¼ {PS1
(m),

ei,r(i)
m,n , si,m

2 }. In image denoising, the estimation problem can be

expressed in the complex wavelet domain as ci¼ yiþ ni, where ci, yi
and ni denote the complex wavelet coefficients of the observed data, the

signal and the noise, respectively.

If the complex HMT model Y¼ {PS1
(m), ei,r(i)

m,n , gi,m
2 } for the noise

signal is estimated, then the conditional mean estimate of Yi given ci is

ŷi ¼ E½ yijci;Y� ¼
P

m¼ S;L

Pqi
ðqi ¼ mjci;YÞ

s2i;m
s2i;m þ s2n

ci ð3Þ

where si,m
2

¼max (0,gi,m
2

� sn
2). And then the final signal estimate is

computed as the inverse complex wavelet transform of these estimates

of the signal complex wavelet coefficients.

Localised parameters estimation for complex wavelet HMT model:

We can classify the complex wavelet coefficients into two states, large

and small, by introducing the adaptive thresholds T computed by

T¼sn
2=ss, where sn

2 is the additive noise variance and ss is the

localised standard deviation of the signal. A robust median estimator

is used to estimate sn:

ŝn ¼ medianðjyþ45� jÞ=0:6745 ð4Þ

where Yþ45�e complex wavelet coefficients of the subband oriented in

� 45� at the finest scale. The needed localised standard deviation ss is
computed by an approximate maximum likelihood:

s2s ½i; j� ¼ max 0;
1

hN ½i; j�i

P
½k;j �2N ½i;j �

jc½k; j�j2 � s2n

 !
ð5Þ

where jc[i, j]j denotes the magnitudes of the complex wavelet coeffi-

cients, N[i, j] denotes the neighbourhood of the location i in scale j, and

hN[i, j]i denotes the number of coefficients included in

N [i, j] We use a binary mask M [i, j] to denote the state of the

complex coefficients, where ‘1’ denotes ‘large’ state and ‘0’ denotes

‘small’ state:

M ½i; j� ¼
0 jc½i; j�j < T ½i; j�
1 jc½i; j�j � T ½i; j�

�
ð6Þ

Because large values of complex coefficients tend to propagate across

scales, M[i, j] is modified by its parent’s state:

M ½i; j� ¼ M ½i; j�*M ½rðiÞ; j þ 1� ð7Þ

When we have classified the complex wavelet coefficients into two

states, we can estimate (with no iterative training) the localised para-

meters Y¼ {PS1
(m),em,ni,r(i), g

2
i,m} of our new complex HMT model as

follows:

1. State probabilities of the root node S1 in the coarsest scale J:

PS1
ðmÞ ¼

1

hN ½i; j�i

P
½k;J �2N ½i;J �

Mm½k; J �; m ¼ 0; 1 ð8Þ

where Mm [k, J ] denotes the pixels whose state is m in M [i, j].

2. The state transition probability

em;ni;rðiÞ ¼
P

½k; j�2N ½i; j�

Tm½k; j�*Tn½rðkÞ; j þ 1�
.

�
P

½k; j�2N ½i; j�

Tn½rðkÞ; j þ 1� ð9Þ
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3. The state variance of the noisy signal:

l2i;m ¼
P

½k;j�2N ½i;j�

��c½k; j���2*Tm½k; j�
� P

½k;j�2N ½i;j�

Tm½k; j� ð10Þ

Using (3), the estimated complex wavelet coefficients are obtained, and

the final denoised image is computed by the inverse dual-tree complex

wavelet transform.

Experimental results: We tested our algorithm on three standard test

images, namely, ‘Lena’, ‘Boats’, and ‘Bridge’ to make a comparison

with other HMT-based image denoising algorithms [1, 2, 6]. We have

applied five decomposition stages of a dual-tree complex wavelet

transform for our denoising procedure. The noise variance sn is 25.5.
Table 1 gives the output PSNRs and computational times of the

various algorithms based on the HMT model. Fig. 1 shows the visual

metric of different denoising methods. As can be observed, our

algorithm not only gives superior performance in terms of PSNR,

but also can reduce computational time significantly. Also, we can see

that the subjective quality of the proposed approach is better than

other related methods in sharp edges and flat area.

Table 1: Comparisons of PSNR in dB and computational time in
seconds of different algorithms

Image
Lena Boats Bridge

PSNR Time PSNR Time PSNR Time

Noisy 20.02 20.05 20.03

[1] 29.34 265.6 27.68 248.6 25.19 274.8

[2] 30.36 19.74 28.32 20.61 25.41 19.76

[6] 30.53 272.6 29.28 254.0 25.79 285.8

Ours 31.13 19.17 29.67 17.25 26.44 18.45

Fig. 1 Visual metric of different denoising methods

a Part of noisy ‘Boats’ image, PSNR¼ 20.05 dB
b Denoised result using wavelet HMT [1], PSNR¼ 27.68 dB
c Denoised result using Xiao’s algorithm [2], PSNR¼ 28.32 dB
d Denoised result using proposed method, PSNR ¼ 29.67 dB

Conclusions: A simple and effective dual-tree complex HMT-based

image denoising algorithm using fast parameter estimation has been
ELECTRONIC
proposed. The competitive performance of the proposed approach is

because the estimated parameters are locally adaptive, with non-

training, and can characterise the properties of complex wavelet

coefficients more accurately; at the same time, the complex wavelet

HMT models can capture singularity more accurately than those based

on real wavelets.
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