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Abstract

The biggest problem that networked control systems face is the random time-varying delay, which often causes system
instability and even collapse. Aiming at this problem, a new modeling scheme for the networked control systems, moti-
vated from a variable-period sampling approach, is presented in this paper. Here, the time delay to occur at current sam-
pling step is taken as the sampling period between current sampling step and next sampling step. To predict online the time
delay induced in the networked control systems, a BP feedforward neural network is adopted and the training algorithm of
the BP neural network is given. To make the BP neural network adapt to the changing environment of the networked con-
trol systems and improve its prediction accuracy, the BP neural network is designed to further update according to its pre-
diction error after each prediction. At each sampling step, good approximation to actual time delay becomes available and
different sampling period is obtained. Control simulations using the variable sampling period and fixed sampling period are
compared. Simulation results show that this new approach can alleviate the influence of time delay to the greatest extent
and improve the performance of the networked control systems.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Over the past decade, major advancement in communication, computer networks, and control theories,
etc., has made many ideas available to realize. This has opened a new research field, i.e., networked control
systems where instantaneous flow of control signals is no longer sufficient, and the feedback loop of the con-
trol systems is closed through a real-time communication network [1]. When a feedback control system is
closed via a communication channel, which might be shared with other nodes outside the control system,
0096-3003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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the control system is then called a networked control system (NCS). Many attractive advantages (for example,
high system testability and resource utilization, as well as low requirement to weight, space, power and wiring)
of introducing a communication network into a control system motivate the research on NCS. NCS is now
widely used in process control [2], remote control [3], tele-manipulation [4], robotics [5], etc.

Generally an important issue of NCS is the network-induced delay that occurs during data exchanging
among devices connected to the shared medium. In an NCS, time delay usually varies even at random. There-
fore, many scholars have endeavored to study the modeling and analysis of NCS.

In the analysis of time delay and stability of NCS, Branicky et al. [6] discussed the influence of the sampling
rate and network delay on system stability, and further studied the stability of NCS using a hybrid system
stability analysis technique. Mahmoud and Ismail [7] indicated the impact of delay sources on the stability
and performance of NCS, and showed a complete diagnostic profile of the role of delays in NCS. Nilsson
[8] analyzed NCS in discrete-time domain, and further modeled the network delay as constant, independently
random, and random but governed by an underlying Markov chain. By solving a LQG optimal control prob-
lem, he generated a controller that guaranteed the system stability. However the design of the controller used
the knowledge of known distribution or the state of Markov chain. Liu and Yao [9] used hidden Markov mod-
els to analyze NCS with delay governed by an underlying Markov chain with unknown probability distribu-
tion, and designed a stochastic optimal controller for NCS. Zhang et al. [10] also investigated in discrete-time
domain the stabilization problem of NCS with random delay, and modeled the sensor-to-controller delay and
the controller-to-sensor delay as two Markov chains. They established the necessary and sufficient conditions
on the existence of the stabilizing controllers, and used an iterative linear matrix inequality approach to cal-
culate the state-feedback gains.

In the sampling control of NCS, Montestruque and Antsaklis [11] adopted fixed-rate sampling of contin-
uous plant to do an extended structural analysis of NCS. They also presented a model plant that provided
state estimation, and used the error between the actual plant and the model plant to construct an augmented
state vector. Walsh et al. [12] introduced a try-once-discard (TOD) protocol, where the next node to transmit
data on a multi-node network was decided dynamically based on the highest weighted error from the last
transmission, and defined a maximum allowable transfer interval (MATI) supposing that successive sensor
messages were separated by at most MATI seconds. They further showed an analytic proof of global expo-
nential stability for the new protocol. Its goal was to find MATI so that the desired performance of NCS
was guaranteed.

To compensate the time delay, Li et al. [13] regarded the time-varying delay as the sum of the mean delay
and uncertain delay, and modeled an NCS with long time delay as a discrete-time model with structural uncer-
tainty for its time-varying network-induced delay. Based on the model, a new control law via an iterative
linear matrix inequality approach was presented. Wang et al. [14] showed a delay-dependent stabilization con-
dition of discrete-time linear system with time-varying delay. Based on this condition, a stabilization controller
was constructed and the solutions were given through an iterative procedure of a linear matrix inequality min-
imum problem. Based on the analysis of both the network-induced delay and the data packet dropout in trans-
mission, Yue et al. [15] proposed a delay-dependent approach for NCS controller design, and determined the
feedback gain of a memoryless controller and the maximum allowable value of the network-induced delay by
solving a set of linear matrix inequalities.

There are also several approaches to estimate and predict time delay or plant outputs. Beldiman et al. [16]
separately designed an open-loop structure predictor and a closed-loop structure predictor for estimating the
plant outputs in between two successive transmission times, and improved NCS performance without affecting
system stability. By using an event-driven actuator and a time-driven actuator simultaneously, Wang et al. [17]
designed a new undelayed plant state estimator and predicted current control signals in every sampling
interval to compensate the long delay. Wu et al. [18] adopted a generalized predictive control approach
and established an error predictive model based on BP neural network. The error predictive value was used
to compensate output predictive value. Hur et al. [19] presented a predictive controller based upon stochastic
methods to compensate the time-delay. The predictive controller estimated future outputs using a linear pre-
diction function and a probability function in terms of previous outputs. To find the bounds on the delay
induced by the network, Zhang et al. [20] discussed the stability of NCS using a hybrid systems stability anal-
ysis technique, and captured the relationship between the sampling rate and the network-induced delay using a
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stability region plot. After adopting a fixed sampling period and modeling the network with constant delay,
they further presented an undelayed plant state estimation approach to compensate the network-induced delay
using the time-domain solution of the plant model.

As discussed above, time delay in NCS is inevitable and generally changes at random. Although there were
several approaches [13–20] to compensate the network-induced time delay or estimate the plant outputs, these
approaches basically adopted a fixed sampling rate to control an NCS. Because of the randomness of the net-
work-induced time delay, control action at each sampling interval cannot be expected to function exactly.
Therefore, compensation to such time delay was investigated [13–15]. To realize satisfactory compensation,
however, complex control algorithm was required and large calculation was necessary.

In this paper, motivated from the concept of variable-period sampling, we investigate this time delay prob-
lem and propose a new modeling scheme with variable-period sampling for NCS. Since the time delay varies at
random, the time delay to occur at current sampling step is regarded as the sampling period between current
sampling step and next sampling step. To make the scheme available, the sampling period has to be deter-
mined adequately. Huang et al. [21] also addressed that adopting variable-period sampling was effective in
NCS, however, they only designed a network-induced time delay compensator. Here, a BP feedforward neural
network [22,23] is adopted to online predict the time delay. The predicted time delay is then used as the sam-
pling period. To make the BP neural network adapt to changing environment of NCS and improve prediction
accuracy, the BP neural network is designed to further update according to its prediction error after each pre-
diction. This new scheme can alleviate the influence of the time delay to the greatest extent and improve the
performance of the control system. To show the effectiveness of this new scheme, some networked control sim-
ulations are given.

This paper is organized as follows. In Section 2, we present our new scheme for modeling an NCS. In Sec-
tion 3, we address the issue of time delay prediction based on a BP feedforward neural network, and describe
the training algorithm of the BP neural network in detail. In Section 4, a typical control plant is selected for
simulation, and several control simulations are illustrated. Comparison with fixed sampling rate is discussed.
Finally in Section 5, some conclusions are given.

2. Variable-period sampling model of NCS

As stated above, there are several approaches in modeling networked control systems. From the sampling
perspective, these approaches can be regarded as adopting fixed-period sampling. Adopting fixed-period sam-
pling in NCS is defective, and does not accord with actual time delay conditions:

(1) Actual time delay in an NCS is time-variant or even random, and does not have any regulation. It is not
easy to choose a suitable sampling period in modeling an NCS.

(2) The existence of the time delay factor in an NCS makes the performance of control law deteriorate
greatly.

(3) In order to compensate for the time delay, some compensation control strategies should be carried out,
and even some special controllers taking account of the network-induced delay should be designed. But
the system performance may not be very good.

These situations have undoubtedly caused the difficulty of the application and development of NCS. There-
fore, it is necessary to develop a new approach for NCS to overcome the shortcomings and attain better
results. As a candidate, we can take variable-period sampling into consideration in NCS, that is, using differ-
ent sampling period at each sampling step. However, how to determine the sampling period at each sampling
step is a big problem. Because the time delay induced in NCS changes at random, the variable sampling period
should reflect the time delay. Without losing generality, therefore, it is reasonable to select the time delay as
the sampling period. Here, the time delay to occur at current sampling step is taken as the sampling period
between current sampling step and next sampling step.

To make variable-period sampling possible for NCS, we need to establish newly the model of NCS. Now
from the variable-period sampling viewpoint, we are going to present a new modeling method below. Some
rational assumptions [1] for the NCS considered here are given before analyzing the new modeling:
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(1) The NCS basically is composed of a plant, an actuator, a controller, a sensor (or sensor set), and a com-
munication network.

(2) The actuator is directly connected both with the plant and the controller.
(3) No network and no transmission delay exist between the controller and the actuator and between the

actuator and the plant.
(4) The sensor is also connected directly to the plant and there is no network between the plant and the sen-

sor, so that the sensor can be seen as part of the plant model.
(5) The network effect is recognized only between the sensor and the controller.
(6) The sensor, controller and actuator are all event-driven.

Under these main assumptions, we will discuss the model of the NCS. The block diagram of the NCS is
given in Fig. 1. Besides Echelon Lonworks, Internet-based robots can also be regarded as having such a
structure.

Suppose the model of the plant is expressed in following continuous form:
_xðtÞ ¼ AxðtÞ þ BuðtÞ;
yðtÞ ¼ CxðtÞ;

ð1Þ
and the controller is given in a discrete form
uðkTÞ ¼ �KxðkTÞ; k ¼ 0; 1; 2 . . . ð2Þ

Here, x 2 Rn, u 2 Rm, y 2 Rp are separately the state variable, system input, and system output, and A, B, C, K

are the system parameters and feedback control gain. They are of compatible dimensions.
Sampling the system mentioned above with a fixed sampling period T, and considering the time delay sk, we

can get
xðk þ 1Þ ¼ UxðkÞ þ C1ðskÞuðkÞ þ C2ðskÞuðk � 1Þ;
yðkÞ ¼ CxðkÞ;
uðkÞ ¼ �KxðkT � skÞ;

ð3Þ
where
sk < T ;

U ¼ eAT ;

C1ðskÞ ¼
Z T�sk

0

eAs dsB;

C2ðskÞ ¼
Z T

T�sk

eAs dsB:
The time delay may be constant, time-variant, or even random. In sampling the system with fixed sampling
period, we must choose one upper limit of the time delay. The common method is to choose the maximum of
the time delay and then turn it forward into integer time of the sampling period. That is, we must guarantee
Plant

Network

Controller Actuator

Sensor

Fig. 1. Block diagram of the considered NCS.
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the delay is less than one sampling period T or d sampling periods dT. Apparently, this method is conservative,
and it does not accord with actual conditions.

In order to overcome the defect described above, therefore, we adopt the idea of variable-period sampling.
The idea is to sample at each sampling step the system model with a different time interval, i.e., different sam-
pling period, which should be determined according to control situations. As mentioned before, the time delay
is chosen as the sampling period here.

Suppose we know at sampling step k the time delay sk which will occur, and let the variable sampling period
Tk at sampling step k be equal to sk. Then, sampling the system (1) mentioned above with the variable sam-
pling period Tk at sampling step k, we obtain
xkþ1 ¼ AkðT kÞxk þ BkðT kÞuk;

yk ¼ Cxk;

uk ¼ �Kxk;

ð4Þ
where
Ak ¼ eAT k ;

Bk ¼
Z T k

0

eAsBds:
Note that in order to discriminate this variable-period sampling model (4) from the fixed-period sampling
model (3), we use here xk, yk, uk instead of x(k), y(k), u(k). Compared the variable-period sampling model (4)
with the fixed-period sampling model (3), we can find that the sampling period becomes a parameter of the two
system parameters Ak and Bk while the time delay disappears from the controller. In this way, the NCS
becomes a discrete-time time-varying system without time delay.

One potential benefit of transforming the fixed-period sampling model (3) to the variable-period sampling
model (4) is that without the delay term, the stability of the variable-period sampling model (4) becomes much
easier to analyze. We only need to judge whether or not all the eigenvalues of Ak � BkK are within the unit
circle at each sampling step k. Because the two system parameters Ak and Bk are time-variant, fixed feedback
gain K may be difficult to guarantee the stability of the model (4) for all sampling steps. Choosing adequate
feedback gain K remains part of our future work, however, K may possibly be chosen as time varying Kk also
to ensure eigen(Ak � BkKk) < 1 at each sampling step k.

Further defining
zk ¼
xk

uk�1

� �
as the augmented state vector, then the augmented closed-loop system can be expressed by
zkþ1 ¼ Ukzk ¼
Ak � BkK 0

�K 0

� �
�

xk

uk�1

� �
; ð5Þ
where
Uk ¼
Ak � BkK 0

�K 0

� �
:

To apply this modeling scheme, however, we have to know the variable sampling period or the time delay at
each sampling step. Because of the characteristic of the NCS, we cannot know the time delay before it occurs.
Therefore, we adopt a BP neural network to predict the time delay at each sampling step.

3. Delay prediction based on BP neural network

Within the specific limits, the visit of the network and transmission amount of the data packets change with
time, which demonstrate that the time delay is continuous and has a bound from the macroscopic meaning.
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Further, current time delay is usually affected by previous time delays. In fact, the time delay was regarded
even as a Markov chain in [8–10]. Therefore, we suppose here that the time delay is correlated. This is exactly
the theoretical foundation that we adopt artificial neural network (marked as ANN) to predict the time delay
[22]. ANN is a powerful data modeling tool that is able to capture and represent complex input/output rela-
tionships. Theoretically, BP feedforward neural network [23] as one of the typical ANNs can approximate any
nonlinear functions. Therefore, we decide to use a three-layered feedforward neural network and adopt the BP
learning algorithm to predict the time delay induced in the NCS using previous time delay historical data.

Fig. 2 shows the configuration of the NCS with the time delay prediction model, where the Delay Predictor
denotes the BP neural network for predicting the time delay, spred is the predicted time delay, and sreal is the
real time delay.

As mentioned in Section 2, there exists a time delay induced in the network from the sensor to the control.
Because of the network characteristic, the time delay is not constant, and its value is unknown beforehand.
However, by introducing the Delay Predictor, we can obtain a predicated delay time at each sampling step.
Then we can calculate the augmented state vector according to Eq. (5).

In Fig. 2, the sensor, the network, and the Delay Predictor using a BP neural network make up a Virtual

Sensor. The virtual sensor adopts variable sampling period, which equals to the predicted delay obtained from
the Delay Predictor. If we only watch the whole virtual sensor box from its outside and do not consider its
internal structure, the NCS is then turned into an instant sampling system, i.e., there is no time delay. This
is consistent with the variable-period sampling model (4). Within the virtual sensor box, we make the time
delay prediction for the sampling period of the NCS to dispel the influence of the time delay.

Fig. 3 shows the detail BP feedforward neural network configuration for the Delay Predictor. The neural
network consists of three layers, i.e., input layer, hidden layer, and output layer. The neuron number of the
input layer is selected to be 5, and the input to the input layer is a vector of the known historical delay values,
which are upgraded constantly by a fixed-size sliding data window according to the delay time obtained newly.
For the simplification of calculation, the neuron number of the hidden layer is also selected to be 5. The output
layer has only one neuron, and its output is just the predicted time delay. Of course, the numbers of the neu-
rons in the input layer or the hidden layer can be set to different numbers according to actual requirement.
From our experience, the above setting is enough for the simulation in Section 4.
Plant
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Fig. 2. Configuration of the networked control system with delay prediction.
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Fig. 3. BP network configuration for delay prediction.
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Choosing the input Ii of the input layer neuron i, the weight W 1
ji from the input layer neuron i to the hidden

layer neuron j, and the threshold h1
j of the hidden layer neuron j, the output Hj of the hidden layer neuron j is

calculated by
H j ¼ f
X

i

w1
ji � I i þ h1

j

 !
; ð6Þ
where f(Æ) denotes following sigmoid function:
f ðxÞ ¼ 1

1þ expð�xÞ : ð7Þ
According to the output Hj of the hidden layer neuron j, the weight W 2
j from the hidden layer neuron j to

the output layer, and the threshold h2 of the output layer, the output value spred of the output layer can be
obtained, which represents just the predictive value of the network-induced time delay:
spred ¼ f
X

j

w2
j � H j þ h2

 !
: ð8Þ
At sampling step k, the BP neural network (the Delay Predictor) is to predict the time delay to occur
according to the real time delay values from sampling step k � 5 to sampling step k � 1. In order to make
the BP neural network predict reliably, the BP neural network has to be trained properly. Here, the BP algo-
rithm is used to update the weight values and the threshold values of the hidden layer and the output layer.
The updating rules are as follows:
W 2
j ¼ W 2

j þ a � ðspred � srealÞ � spred � ð1� spredÞ � H j;

h2 ¼ h2 þ b � ðspred � srealÞ � spred � ð1� spredÞ;
W 1

ji ¼ W 1
ji þ a � ðspred � srealÞ � W 2

j � Hj � ð1� H jÞ � I i;

h1
j ¼ h1

j þ b � ðspred � srealÞ � W 2
j � H j � ð1� HjÞ;

ð9Þ
where a and b are both the learning parameters, and sreal is the real time delay value. The values of a and b in
our following simulations are set to 0.7 and 0.6 respectively after trial and error. To use the BP learning algo-
rithm, we have to know the desired/target output. Here we select the real time delay sreal as the desired output.

Even though we cannot know the real time delay value in advance at current sampling step, we can have the
previous time delay values. Further, the real time delay value at current sampling step becomes available at
next sampling step. Therefore, we design following strategy to train the BP neural network.

At the training beginning, the BP network is first trained offline by using artificial data because there is no
real time delay data yet. After the initial learning, the BP network is switched online. According to the known
historical time delay data, the BP network gives a predicted time delay at current sampling step. With the pre-
dicted time delay value, the NCS is controlled to next sampling step. At the next sampling step, the real net-
work-induced time delay value is obtained, and comparison between the real time delay value and the
predicted time delay value is done. If the error is smaller than an established threshold, meaning that the cur-
rent prediction is still precise, the weight values and threshold values of the BP network can be used succes-
sively without being trained again. If the error is bigger than the established threshold, meaning that the
current prediction has a poor precision, the BP network has to be trained online according to the new time
delay data. Then, the data used in training are renewed according to the time delay data newly obtained,
and the weights and thresholds of the BP network are updated further using Eqs. (6)–(9).

Remark. We choose the BP network structure to be a three-layers one, and set the neuron numbers of the
input layer and the hidden layer both to 5. The purpose is to reduce the calculation cost of the neural network
to the greatest extent on the premise of guaranteeing prediction precision. In addition, through many
experiments we find that more than 90% of the time delay can be predicted effectively while the iteration
training number at each sampling step does not exceed 500 times. Therefore, we set the limit on the iteration
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number of the neural network to 500 times for each desired output. Under this setting, we can not only get the
variable sampling period with necessary precision but also improve the computing consumptions.
4. Numerical example

In order to verify the effectiveness of the modeling scheme, we perform a simulation study on a position
servo system [24], the actuator of which is a DC motor with a time constant 0.05 s. The DC motor is supposed
to be controlled through the control network that is formed on a field bus. The open transfer function of the
servo system is
h
u
¼ 32

sð0:05sþ 1Þ ; ð10Þ
where h is the angle displacement, u is the input control voltage to the DC motor. Selecting the angle displace-
ment h (marked as x1) and its angle velocity (marked as x2) as the system states, then the state space equation
of the plant is described by
_x1

_x2

� �
¼

0 1

0 �20

� �
x1

x2

� �
þ

0

640

� �
u: ð11Þ
Carrying on sampling to the state space Eq. (11) according to the fixed-period sampling model (3) and the
variable-period sampling model (4), we can get the corresponding discrete state equations respectively. Then
according to the discrete state description, control strategy can be designed.

First consider the control system without time delay. We adopt the pole placement approach to determine
the state feedback controller. If the closed-loop poles are selected as �4.4429 ± 4.4429j, then a continuous-
state feedback controller can be obtained by u = �Kx, where K = [0.0617,�0.0174]. Suppose that the initial
state of the plant is [0,2], and the control goal is [0, 0]. The fixed sampling period is set to 0.01 s. Fig. 4 shows
the control simulation result of the plant using the feedback controller. The result indicates that the two state
variables converge smoothly to their goal within 2 s. Hence, the designed feedback controller is adequate for
this plant without time delay.

Now, we consider the control system with time delay using the same feedback gain, and compare the per-
formance of the variable-period sampling scheme with the fixed-period sampling scheme. To simulate the net-
worked circumstance, a random number generator is used to generate variable time delay. In the fixed-period
sampling, the time delay in the model (3) is allowed to equal to the maximum time delay of the control system.
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Fig. 4. State response using fixed-period sampling without time delay.
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Fig. 5. Simulation with maximum time delay 0.05 s: (a) state response using fixed-period sampling, (b) state response using variable-period
sampling and (c) real time delay and predicted time delay.
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Fig. 6. Simulation with maximum time delay 0.1 s: (a) state response using fixed-period sampling, (b) state response using variable-period
sampling and (c) real time delay and predicted time delay.
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Fig. 7. Simulation with maximum time delay 0.2 s: (a) state response using fixed-period sampling, (b) state response using variable-period
sampling and (c) real time delay and predicted time delay.
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In the variable-period sampling, the sampling period in the model (4) is predicted at each sampling step by the
BP network given in Section 3. By the way, the threshold in the BP learning is set to 0.005 s.

Fig. 5 shows the control result when the maximum time delay is less than 0.05 s. Figs. 5(a) and (b) display
separately the result by the fixed-period sampling and the result by the variable-period sampling. Although the
fixed-period sampling control can converge to the goal in about 3 s, the variable-period sampling control
achieves better result, which is almost the same with Fig. 4. It implies that when the time delay is only several
times as big as the fixed sampling period, the effect of using the variable-period sampling is almost equal to the
control without the time delay.

On the other hand, Fig. 5(c) denotes the real time delay and the predicted time delay during control. The hor-
izontal axis means the sampling step number, and the vertical axis means the time delay. The dots denote the real
time delay, and the lines denote the predicted time delay. We can see that at each sampling step, there exists some
error between the predicted time delay and its corresponding real time delay. However, the predicted time delay
follows well the change of the real time delay. Even though the prediction error is a bit big, therefore, the control
result under this variable-period sampling scheme is satisfactory. Of course, the prediction error can be reduced
if the threshold is set to a small value. However, it will take more time to train the Delay Predictor.

In Fig. 6, the control results are plotted when the maximum time delay is 0.1 s. From Fig. 6(a), it can be
seen that the control plant takes about 5 s to reach its goal under the fixed-period sampling. It is understood
intuitively that this result becomes worse than that in Fig. 5(a) because the time delay is twice as big as that in
Fig. 5. On the other hand, Fig. 6(b) shows that the control result using the variable-period sampling is much
better than that in Fig. 6(a). If we take a look at Fig. 6(b) and Fig. 5(b), we can find that the two control results
are very similar. Besides the predicted time delay and the real time delay, Fig. 6(c) also indicates that it takes
less than 100 sampling steps for the variable-period sampling control to finish the 5-s control task.

If the time delay gets bigger than 0.1 s, we can image that the fixed-period sampling control will become
more difficult. Fig. 7 represents such a control example when the maximum time delay becomes 0.2 s, which
is 20 times as big as the fixed sampling period. Fig. 7(a) shows that even after 5 s, the two state variables of the
control plant still keep oscillating under the fixed-period sampling. From Fig. 7(b), we can see that although
the control result by the variable-period sampling is not as good as that in Fig. 5(b) or Fig. 6(b), it converges to
the goal in about 2 s, much better than Fig. 7(a). Because most of the predicted time delays, i.e., the variable
sampling periods, are larger than the fixed sampling period, about 50 sampling steps in Fig. 7(c) cover a con-
trol length of 5 s while it takes 500 sampling steps in the fixed-period sampling.

From Figs. 5–7, it is clear that the control performance using the fixed-period sampling becomes worse if
the time delay gets bigger. However, the control result under the variable-period sampling scheme keeps
almost the same even though the time delay changes largely. In these simulations, the maximum time delay
changes from 0.05 s to 0.2 s. Nevertheless, the variable-period sampling control shows a satisfactory
performance.

5. Conclusion

In this paper, we first analyzed the modeling approaches for networked control systems, and then presented
a new modeling scheme motivated from the concept of variable-period sampling. In this scheme, the time delay
was taken as the variable sampling period. The variable-period sampling model was given, where the time delay
only appeared in the system parameters. To predict online the time delay induced in networked control systems,
a BP feedforward neural network was adopted. The online training algorithm of the BP neural network was
designed so that the BP network could predict reliably the changing time delay. With the aid of the time-delay
prediction based on the BP neural network, the variable-period sampling control for networked control systems
becomes possible. Networked control simulations indicated that this new approach alleviated the influence of
the time delay to the greatest extent and improved the performance of the control system.
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