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Abstract: On the basis of sliding-mode control, two sliding-mode controller models based on
incremental hierarchical structure and aggregated hierarchical structure for a class of under-
actuated systems are presented. The design steps of the two types of sliding-mode controllers
and the principle of choosing parameters are given. At the same time, to guarantee the system’s
stability, two determinant theorems are presented. Then, by theoretical analysis, the two types
of sliding-mode controllers are proved to be globally stable in the sense that all signals involved
are bounded. The simulation results show the validity of the methods. Therefore an academic foun-
dation for the development of high-dimension under-actuated mechanical systems is provided.
1 Introduction

Under-actuated mechanical systems are characterised by
the fact that they have fewer actuators than degrees of
freedom to be controlled. That is to say, if the system has
n degrees of freedom and m actuators (m , n), then there
are n 2 m state-dependent equality constraints on the
feasible acceleration of the system that are sometimes
referred to as second-order non-holonomic constraints.
Examples of such systems include robot manipulators
with passive joints (such as the Pendubot and the
Acrobot), spacecraft, underwater robots, overhead cranes
and so on. It is obvious that under-actuated mechanical
systems have many advantages that include decreasing the
actuators’ number, lightening the system, reducing costs
and so on.

Many papers concerning the control of under-actuated
mechanical system models have been published in the last
few years. Bullo and Lynch [1] proposed a notion of kin-
ematic controllability for second-order under-actuated
mechanical systems and used the structure of the system
dynamics to naturally decouple the problem into path plan-
ning followed by time scaling. Xin and Kaneda [2]
presented a robust controller for the Acrobot and the simu-
lation results proved the validity of the swing-up control.
Fantoni et al. [3] solved the control of the Pendubot on
the basis of an energy approach and the passivity properties
of the system. The gain-scheduling controller for an
overhead crane was studied by Corriga et al. [4]. Other
under-actuated mechanical systems have been the subject
of much recent research [5–14]. However, the control of
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nonlinear under-actuated mechanical systems has proved
challenging because the techniques developed for fully
actuated systems cannot be used directly. At the same
time, there are many difficulties in the control of under-
actuated mechanical systems because of the high non-
linearity, change of the parameters and multi-object to be
controlled.

As a kind of highly robust variable structural control
method, the sliding-mode controller (SMC) is able to
respond quickly, invariant to systemic parameters and
external disturbance. Therefore one can consider using
SMC to implement the control of the under-actuated
mechanical systems. The SMC [15–17], a kind of variable
structural control system, is a nonlinear feedback control
whose structure is intentionally changed to achieve the
desired performance. Therefore the SMC method has
gained in popularity in both theory and application.
Usually, SMC laws include two parts: switching control
law and equivalent control law. The switching control law
is used to drive the system’s states towards a specific
sliding surface and the equivalent control law guarantees
the system’s states to stay on the sliding surface and
converge to zero along the sliding surface. Levant [18] pre-
sented a universal single-input–single-output sliding-mode
controller with finite-time convergence. But this method is
not suitable for large-scale under-actuated mechanical
systems. Poznyak et al. [19] adopted an integral sliding-
mode idea to solve the control problem of multi-model
linear uncertain systems. However, this method increased
the computational complexity. With an increase of system
scale, analysis of convergence and stability problems
associated with the system states will become more
and more difficult. Therefore the controller structure is
very important for controlling complex large-scale non-
linear systems. Many researchers have worked on this
problem including Wang [20], who presented a hierarchical
fuzzy system. In the design part, he derived a gradient
decent algorithm for tuning the parameters of the hierarch-
ical fuzzy system to match the input–output pairs and the
simulation results showed that the algorithm was effective.
Yi et al. [21] presented a new fuzzy controller for anti-
swing and position control of an overhead travelling crane
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based on ‘single input rule modules’ dynamically connected
to a fuzzy inference model. Mon and Lin [22] presented a
hierarchical sliding-mode controller. However, it only guar-
anteed that the second-layer sliding surface was stable and
that the total control, including only one subsystem’s equiv-
alent control, could not guarantee that other subsystems’
sliding surfaces were existent. As a result, the anti-
disturbance ability of the SMC could be lost. Wang et al.
[23] also proposed a hierarchical sliding-mode controller
for a second-order under-actuated system, but the method
was only suitable for simple under-actuated systems that
only included two subsystems. For high-dimension under-
actuated systems, it is difficult to guarantee the stability of
the system according to the hypothesis proposed in that
paper. That is, using proper controller structure will
predigest the design process and the complex degree of
the controller. A systematic way to obtain stabilising con-
trollers for under-actuated mechanical systems with only
one input needs to be studied.

This paper proposes two types of sliding-mode
controllers based on the incremental hierarchical structure
and the aggregated hierarchical structure for a class of
under-actuated systems. For the incremental hierarchical
structure sliding-mode controller (IHSSMC), the design
steps are as follows: first, two states are chosen to construct
the first-layer sliding surface. Second, the first-layer sliding
surface and one of the left states are used to construct the
second-layer sliding surface. This process continues until
the last-layer sliding surface is obtained. For the aggregated
hierarchical structure sliding-mode controller (AHSSMC),
the idea behind this method are as follows: first, the under-
actuated system is divided into several subsystems. For each
part, we define a first-layer sliding surface. Then, the first-
layer sliding surfaces are used to construct the second-layer
sliding surface. By theoretical analysis, the conclusion is
made that all sliding surfaces of the two SMC structures
are asymptotically stable. Simulation results show the
validity of the two methods.

2 Dynamic model of under-actuated systems

The general dynamic model of under-actuated mechanical
systems with m actuated units from a total of n units can
be expressed as follows

MðqÞ€qþ Cðq; _qÞ_qþ GðqÞ ¼ t ð1Þ

MðqÞ ¼
M11ðqÞ M12ðqÞ

M21ðqÞ M22ðqÞ

� �
ð2Þ

Cðq; _qÞ ¼
C11ðq; _qÞ C12ðq; _qÞ

C21ðq; _qÞ C22ðq; _qÞ

� �
ð3Þ

GðuÞ ¼
G1ðqÞ

G2ðqÞ

� �
; q ¼

q1

q2

� �
; t ¼

t1

0

� �
ð4Þ

where q ¼ [q1, q2]T [ Rn is the vector of state variables.
Here, q1 [ Rm represents the vector of the m actuated unit
variables and q2 represents the vector of the n 2 m under-
actuated unit variables. M(q) is the n � n inertia matrix,
C(q, q)q̇ the vector of the Coriolis and centripetal torques,
G(q) the gravitational term and t1 the vector of control
torque.

This kind of under-actuated mechanical system has the
following property

(P1) The inertia matrix M(q) is symmetric and positive
definite for all q.
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In this paper, we only consider single-input–
multiple-output (SIMO) under-actuated mechanical
systems such as the Pendubot, the Acrobot, multi-degree
inverted pendulum, overhead crane, and so on. If we
suppose that m ¼ 1, the model of the under-actuated
systems can then be converted as follows

€q ¼ MðqÞ�1
½t� Cðq; _qÞ_q� GðqÞ�

¼ �MðqÞ�1
½Cðq; _qÞ_qþ GðqÞ� þMðqÞ�1t

¼ Fðq; _qÞ þ Bt1 ð5Þ

Note that this paper works with a system processing only
one input that appears many times in practice. The model of
the SIMO under-actuated mechanical system can then be
rewritten as

€q1 ¼ f1ðq; _qÞ þ b1t1

€q2 ¼ f2ðq; _qÞ þ b2t1

..

.

€qn ¼ fnðq; _qÞ þ bnt1

ð6Þ

The control objective is to design a single input t1 to guar-
antee simultaneously the states qi, i ¼ 1, . . . , n, to achieve
the desired performance.

3 Design of the IHSSMC

For SIMO under-actuated mechanical systems, the math-
ematical model can be translated into the following form

_x1 ¼ x2

_x2 ¼ f1ðX Þ þ b1ðX Þu

_x3 ¼ x4

_x4 ¼ f2ðX Þ þ b2ðX Þu

..

.

_x2n�1 ¼ x2n

_x2n ¼ fnðX Þ þ bnðX Þu

ð7Þ

where X ¼ (x1, x2, . . . , x2n)T is a state variable vector;
f1(X), . . . , fn(X) and b1(X), . . . , bn(X) the nominal
continuous nonlinear functions and u the control input.
f1(X), . . . , fn(X) and b1(X), . . . , bn(X) are abbreviated as
f1, . . . , fn and b1, . . . , bn in the following description.
This class of under-actuated mechanical system belongs
to a kind of SIMO nonlinear coupled system. Therefore
we can divide this system into several subsystems and the
system variable (x2i21, x2i), i ¼ 1, . . . , n, can be treated
as the states of the ith subsystem, respectively. The
control objective is to design a single input u to
simultaneously control the states X ¼ (x1, x2, . . . , x2n)T to
achieve the desired performance. This form can be treated
as a norm expression of a class of SIMO under-actuated
systems (such as the Pendubot, the Acrobot, overhead
crane, pendulum etc.).

To design stable IHSSMC, we make the following
assumptions for plant (7)

(A1) 0 � j fi(X)j � Mi, X [ Ad
c

(A2) 0 , jbi(X)j � Bi, X [ Ad
c

IET Control Theory Appl., Vol. 1, No. 1, January 2007



where Mi and Bi are finite positive constants and Ad
c is a set

given as follows

Ac
d ¼ X jkX � X0kp;w � D

n o
ð8Þ

where w is a set of weights and D is a positive constant that
denotes all state variables’ boundary. X0 [ R2n is a fixed
point and kXkp,w is a weighted p-norm, which is defined as

kXkp;w ¼
X2n

i¼1

xi

wi

� �p
" #1=p

ð9Þ

If p ¼ 1

kXk1;w ¼ max
jx1j

w1

� � �
jx2nj

w2n

� �
ð10Þ

If p ¼ 2 and w ¼ 1, kXkp,w will denote the Euclidean
norm kXk.

For the state variables (x1, x2), we can construct a suitable
pair of sliding surfaces as the first layer

s1 ¼ c1x1 þ x2 ð11Þ

where c1 is a real positive constant. Then, the first-layer
surface s1 can be considered as a general state variable.
The first-layer sliding mode variable and one of the left
system state variables can be used to construct the
second-layer surface s2, which is expressed as

s2 ¼ c2x3 þ s1 ð12Þ

where c2 is a constant that can change its sign according to
the states of the system. Similarly, the (i 2 1)th layer
surface si21 can also be thought of as a general variable
to construct the ith-layer surface si with one of the left
system state variables, which can be written as

si ¼ cixiþ1 þ si�1 ð13Þ

where ci is a constant that can change its sign according to
the states of the system. In turn, we can obtain the
(2n 2 1)th layer surface s2n21 as

s2n�1 ¼ c2n�1x2n þ s2n�2 ð14Þ

From the definition of the sliding surfaces, it is clear that
all the system’s states will be eventually reflected in the last
surface. The advantage of this idea is that it can change a
traditional high-order sliding-mode surface into several
first-order sliding mode surfaces. The coefficients of
subsliding-mode surface are easy to design, whereas for
high-order sliding mode-surfaces, the coefficients need to
satisfy the Hurwitz polynomial.

A group of Lyapunov functions can be defined as

V1 ¼
1
2

s2
1; . . . ;Vi ¼

1
2

s2
i ; . . . ;V2n�1 ¼

1
2

s2
2n�1

If we choose the coefficients to satisfy cixiþ1
. si21 . 0,

i ¼ 2, . . . , 2n 2 1, we can obtain that V1 � V2 � . . . �
Vi � . . . � V2n21. Then, the coefficients of the sliding-
mode surfaces can be chosen as

ci ¼ Ci signðxiþ1si�1Þ ð15Þ

where Ci is a positive constant. According to the conditions
si ¼ cixiþ1þ si21 and cixiþ1

. si21 . 0, we can obtain that si

and si21 are of the same sign. Therefore (15) will become

ci ¼ Ci signðxiþ1s1Þ ð16Þ
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In the following, we will derive the SMC to guarantee the
last layer to converge to zero. For the Lyapunov functions
V2n21 ¼ (1/2)s2n21

2 , the Lyapunov stability condition can
be derived as follows

_V 2n�1 ¼ s2n�1_s2n�1

¼ s2n�1ðc2n�1 _x2n þ _s2n�2Þ

¼ s2n�1½c2n�1ð fn þ bnuÞ þ c2n�2x2n

þ c2n�3ð fn�1 þ bn�1uÞ þ � � � þ c1x2 þ f1 þ b1u�

¼ s2n�1

�Xn

i¼2

ðc2i�1 fi þ c2i�2x2iÞ þ ð f1 þ c1x2Þ

þ

�Xn

i¼2

ðc2i�1biÞ þ b1

�
u

�
ð17Þ

The total control law of the IHSSMC can be assumed as

u ¼ ueq þ usw ð18Þ

where usw is the switching control of the IHSSMC. We can
then obtain

_V 2n�1 ¼ s2n�1_s2n�1

¼ s2n�1

�Xn

i¼2

ðc2i�1 fi þ c2i�2x2iÞ þ ð f1 þ c1x2Þ

þ

�Xn

i¼2

ðc2i�1biÞ þ b1

�
ðueq þ uswÞ

�

¼ s2n�1

�Xn

i¼2

ðc2i�1 fi þ c2i�2x2iÞ þ ð f1 þ c1x2Þ

þ

�Xn

i¼2

ðc2i�1biÞ þ b1

�
ueq

þ

�Xn

i¼2

ðc2i�1b2iÞ þ b1

�
usw

�
ð19Þ

Let

usw ¼ �
½h � signðs2n�1Þ þ k � s2n�1�Pn

i¼2 ðc2i�1biÞ þ b1

ð20Þ

ueq ¼ �

Pn
i¼2 ðc2i�1 fi þ c2i�2x2iÞ þ ð f1 þ c1x2ÞPn

i¼2 ðc2i�1biÞ þ b1

ð21Þ

Then, we have

_V 2n�1 ¼ �s2n�1 � h � signðs2n�1Þ � k � s2
2n�1

¼ �hjs2n�1j � k � s2
2n�1 � 0 ð22Þ

where k and h are positive constants.
Therefore the control laws (20) and (21) of the IHSSMC

can guarantee that the last-layer sliding surface is stable and
reachable in finite time.

Remark 1: When the last-layer sliding surface converges to
zero, all other sliding surfaces will converge to zero because
of the condition 0 � V1 � V2 � . . . � Vi � . . . � V2n21.
Therefore we can obtain that x3 ¼ x4 ¼ . . . ¼ x2n ¼
s1 ¼ . . . ¼ s2n21 ¼ 0. At the same time, the control law
becomes ueq ¼ 2(( f1þ c1x2)/b1), which is equal to the first-
layer sliding surface’s equivalent control law and satisfies
the reachable and stable condition of the SMC. Therefore
the control law will drive this subsystem’s states to converge
to zero along the first-layer sliding surface.
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4 Stability analysis of the IHSSMC

Theorem 1: Consider the SIMO under-actuated system (7)
with the SMC law defined by (18), (20) and (21). Let the
parameters of the incremental sliding surfaces be deter-
mined by (16) and let the assumptions (1) and (2) be true.
Then, the overall IHSSMC is globally stable in the sense
that all signals involved are bounded, with the errors
converging to zero asymptotically.

Proof: Integrating both sides of (22) yieldsðt

0

_V 2n�1 dt ¼

ðt

0

ð�hjs2n�1j � ks2
2n�1Þ dt ð23Þ

Hence

V2n�1ðtÞ ¼ V2n�1ð0Þ �

ðt

0

ðhjs2n�1j þ ks2
2n�1Þ dt � 0 ð24Þ

Then, we can obtain that

lim
t!1

ðt

0

ðhjs2n�1j þ ks2
2n�1Þ dt � V2n�1ð0Þ , 1 ð25Þ

It is obvious that

0 �

ð1

0

hjs2n�1j dt , 1 ð26Þ

0 �

ð1

0

ks2
2n�1 dt , 1 ð27Þ

If the parameters of IHSSMC satisfy (16), then we have

0 � Vi � V2n�1 ð28Þ

Thenð1

0

Vi dt ¼

ð1

0

1

2
ðcixiþ1 þ si�1Þ

2 dt �

ð1

0

1

2
s2

2n�1 dt

¼

ð1

0

V2n�1 dt ð29Þ

Furtherð1

0

ðc2
i x2

iþ1þ2cixiþ1si�1þ s2
i�1Þdt�

ð1

0

s2
2n�1 dt , 1 ð30Þ

Because cixiþ1
. si21 . 0, we can obtainð1

0

x2
iþ1 dt, 1; xiþ1 [ L2 ð31Þ

ð1

0

s2
i�1 dt, 1; si�1 [ L2 ð32Þ

From (26), we haveð1

0

jcixiþ1þ si�1jdt¼

ð1

0

jcixiþ1jdtþ

ð1

0

jsi�1jdt

�

ð1

0

js2n�1jdt, 1 ð33Þ

Therefore we can obtainð1

0

jxiþ1jdt, 1; xiþ1 [ L1 ð34Þ

ð1

0

jsi�1jdt, 1; si�1 [ L1 ð35Þ
166
From (13), we have

jsi�1j¼

����Xi

j¼3

cj�1xjþc1x1þx2

�����kXk1;w; si�1 [L1 ð36Þ

where

w¼
1

c1

;1;
1

c3

;...;
1

ci

;...;
1

c2n

� �

is a set of weights.
From (16), (20) and (21), we can obtain

u ¼ u½X ; f ðX Þ� ð37Þ

Therefore u is bounded. Then, we can define that

UM ¼ sup
X [Ac

d

ðusw þ ueqÞ ð38Þ

For ṡi21, we can derive the following result

j_si�1j ¼

����Xi

j¼3

cj�1 _xjþ c1 _x1þ _x2

����

¼

Pi=2
j¼2

ðc2j�1 fjþ c2j�2x2jÞ

þð f1þ c1x2Þþ

�Pi=2
j¼2

ðc2j�1bjÞþ b1

�
u

���������

���������
; if i¼ even

Pði�1Þ=2

j¼2

ðc2j�1 fjþ c2j�2x2jÞþ ð f1þ c1x2Þ

þci�1xjþ1þ

� Pði�1Þ=2

j¼2

ðc2j�1bjÞþ b1

�
u

����������

����������
; if i¼ odd

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�

Pi

j¼1

MjþkXk1;wi
þ
Pi

j¼1

Bj �UM ; if i¼ even

Pi�1

j¼1

MjþkXk1;wi
þ
Pi

j¼1

Bj �UM ; if i¼ odd

8>>><
>>>:
�
Xi

j¼1

MjþkXk1;wi
þ
Xi

j¼1

Bj �UM

, 1 ð39Þ

Therefore we have

_si�1 [ L1 ð40Þ

From (32), (35), (36) and (40), and using the Barbalat
lemma, we have limt!1 si21 ¼ 0, that is to say, si21,
i ¼ 2, . . . , 2n 2 1, are asymptotically stable.

Similarly, we can obtain that xiþ1, i ¼ 2, . . . , 2n21, are
also asymptotically stable.

For s1 ¼ 0, we can find that u becomes u ¼ u1 ¼ ueq 1 ¼
2(( f1þ c1x2)/b1), which is equal to the equivalent law of
the first layer. Therefore x1 and x2 will slide to zero along
the surface of s1 ¼ 0.

Then, we have proved that all system states are stable and
will converge to zero. A

5 Design of the AHSSMC

The dynamic model of the under-actuated mechanical
system is shown as (7). The model can be divided into
IET Control Theory Appl., Vol. 1, No. 1, January 2007



several subsystems. Then, the AHSSMC can be designed as

s1 ¼ c1x1 þ x2 ð41Þ

s2 ¼ c2x3 þ x4 ð42Þ

..

.

si ¼ cix2i�1 þ x2i ð43Þ

..

.

sn ¼ cnx2n�1 þ x2n ð44Þ

where ci, i ¼ 1, . . . , n, are the sliding-mode coefficients,
which satisfy the Hurwitz polynomial. For the second-order
system, the coefficients are real positive constants.

The second sliding surface can be obtained by combining
the first sliding surfaces. This is expressed as

S ¼ a1s1 þ a2s2 þ � � � þ ansn ð45Þ

where ai, i ¼ 1, . . . , n are constants.
From the definition of the sliding surfaces, it is clear that

all the system states will be eventually reflected in the last
surface. The advantage of this idea is that it only needs to
construct a two-layer sliding surface for the whole system.
The coefficients of the subsliding-mode surface are easy
to design, whereas for a high-order sliding-mode surface,
the coefficients need to satisfy the Hurwitz polynomial.

Using the equivalent control method, each subsystem’s
equivalent control law ueqi can be obtained. The form is
as follows

ueqi ¼ �
fiðX Þ þ cix2i

biðX Þ
ð46Þ

To guarantee the system’s states to slide along the sliding
surfaces, the total control law needs to include the equival-
ent control law. Therefore we can adopt the total control law
as follows

u ¼
Xn

i¼1

ueqi þ usw ð47Þ

where usw is the switching control law.
According to the Lyapunov stabilisation theorem, we can

construct the switching control law usw. The Lyapunov
energy function is chosen as

V ¼ 1
2

S2
ð48Þ

Then, we can obtain

_V ¼ S _S ¼ Sða1_s1 þ a2_s2 þ � � � þ an_snÞ

¼ S½a1ðc1 _x1 þ _x2Þ þ a2ðc2 _x3 þ _x4Þ þ � � �

þ anðcn _x2n�1 þ _x2nÞ�

¼ S

a1 c1x2 þ f1ðX Þ þ b1

Pn
i¼1

ueqi þ usw

� �� �

þa2 c2x4 þ f2ðX Þ þ b2

Pn
i¼1

ueqi þ usw

� �� �

þ � � � þ an cnx2n þ fnðX Þ þ bn

Pn
i¼1

ueqi þ usw

� �� �

2
66666664

3
77777775

¼ S
Xn

i¼1

aibi

Xn

j¼1
j=i

ueqj

0
BB@

1
CCA

2
664

3
775þX

n

i¼1

aibiusw

8>><
>>:

9>>=
>>; ð49Þ
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Let

Xn

i¼1

aibi

Xn

j¼1
j=i

ueqj

0
BB@

1
CCA

2
664

3
775þX

n

i¼1

aibiusw

¼ �h signðSÞ � kS ð50Þ

where h and k are positive constants. Therefore we have

usw ¼ �

�Xn

i¼1

aibi

��1

�
Xn

i¼1

aibi

Xn

j¼1
j=i

ueqj

0
BB@

1
CCA

2
664

3
775þ h signðSÞ þ kS

8>><
>>:

9>>=
>>; ð51Þ

Therefore we choose the coefficient ai to guarantee thatP
i¼1
n aibi = 0. Then, formula (49) becomes

_V ¼ �hjSj � kS2
ð52Þ

We can then ascertain that the second-layer sliding-mode
surface is stable.

6 Stability analysis of the AHSSMC

From the earlier design process, we can find that the
second-layer sliding-mode surface is stable. Theorem 2
will prove that the first-layer sliding-mode surfaces are
not only stable, but also asymptotically stable.

Theorem 2: Consider the SIMO under-actuated system (7)
with the SMC law defined by (41–44). Let assumptions
(1) and (2) be true. Then, the overall aggregated SMC
system is globally stable in the sense that all signals
involved are bounded with the errors converging to zero
asymptotically.

Proof: Integrating both sides of (52) yieldsðt

0

_V dt ¼

ðt

0

ð�hjSj � kS2
Þ dt ð53Þ

Then, we have

V ðtÞ � V ð0Þ ¼

ðt

0

ð�hjSj � kS2
Þ dt ð54Þ

We can find that

V ðtÞ ¼
1

2
S2
¼ V ð0Þ �

ð1

0

ðhjSj þ kS2
Þ dt � V ð0Þ , 1

ð55Þ

Therefore we can obtain that S [ L1, that is

sup
t�0

jSj ¼ kSk1 , 1 ð56Þ

At the same time, from (49) we can find that

_V ¼ S _S � �hjSj � kS2 , 1 ð57Þ

It is obvious that Ṡ [ L1, that is

sup
t�0

j _Sj ¼ k _Sk1 , 1 ð58Þ
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From (43), we have

jsij ¼ jcix2i�1 þ x2ij � kXk1;w ð59Þ

where w ¼ f1/c2i21, 1g is a set of weights. Similarly, we
have

Xn

j¼1
j=i

sj ¼
Xn

j¼1
j=i

ðcjx2j�1 þ x2jÞ , kXk1;w ð60Þ

At the same time, from (43) we can find that

j_sij ¼ jci _x2i�1 þ _x2ij

¼ jcix2i þ fi þ biuj

� Mi þ kXk1;wi
þ Bj � UM , 1 ð61Þ

where UM ¼ supX[Ad
c (uswþ ueq). Hence, we can obtain that

si [ L1 and ṡi [ L1, that is

sup
t�0

jsij ¼ ksik1 , 1; sup
t�0

j_sij ¼ k_sik1 , 1 ð62Þ

For the second-layer sliding-mode surface, we can rewrite
formula (45) as

S ¼ aisi þ
Xn

j¼1
j=i

ajsj ð63Þ

From the deriving process of the AHSSMC, we can find
that ai does not influence the stability of the system. Hence,
we can construct two sliding surfaces as follows

S1 ¼ ai1si þ
Xn

j¼1
j=i

ajsj

0
BB@

1
CCA

S2 ¼ ai2si þ
Xn

j¼1
j=i

ajsj

0
BB@

1
CCA

ð64Þ

where ai1 and ai2 are arbitrary positive constants and
ai1 = ai2. Hence, S1 = S2. We might as well suppose
that 1 .

Ð
0
1S1

2 dt .
Ð

0
1S2

2 dt � 0. From (55), we have

0 �

ð1

0

S2
1 dt ¼

ð1

0

ai1si þ
Xn

j¼1
j=i

ajsj

0
BB@

1
CCA

2

dt , 1 ð65Þ

0 �

ð1

0

S2
2 dt ¼

ð1

0

ai2si þ
Xn

j¼1
j=i

ajsj

0
BB@

1
CCA dt , 1 ð66Þ

Hence, we have

0 ,

ð1

0

ðS2
1 � S2

2 Þ dt

¼

ð1

0

ða2
i1 � a2

i2Þs
2
i þ 2ðai1 � ai2Þ � si �

Xn

j¼1
j=i

ajsj

0
BB@

1
CCA dt , 1

ð67Þ
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Further, we can obtainð1

0

ðS2
1 � S2

2Þ dt ¼

ð1

0

 
ða2

i1 � a2
i2Þs

2
i

þ 2ðai1 � ai2Þ � si �
Xn

j¼1
j=i

ajsj

!
dt

¼

ð1

0

ða2
i1 � a2

i2Þs
2
i

	
þ 2ðai1 � ai2Þ � siðS1 � ai1siÞ



dt

¼

ð1

0

�ðai1 � ai2Þ
2s2

i dt

þ

ð1

0

2ðai1 � ai2ÞsiS1 dt . 0 ð68Þ

From (55), we know that

0 �
1

2
S2
¼ V ð0Þ �

ð1

0

ðhjSj þ kS2
Þ dt ð69Þ

Further, we can obtainð1

0

ðhjSj þ kS2
Þ dt ¼

ð1

0

hjSj dtþ

ð1

0

kS2 dt � V ð0Þ , 1

ð70Þ

Then, we have
Ð

0
1hjSj dt � 0 and

Ð
0
1kS2 dt � 0. If the

summing of two positive numbers is finite, then the two
positive numbers are also finite. Therefore we can obtain
0 � h

Ð
0
1
jSjdt ¼ kSk1 , 1, S [ L1 (absolute integral).

Hence from (68), we haveð1

0

ðai1 � ai2Þ
2s2

i dt ,

ð1

0

2ðai1 � ai2ÞsiS1 dt

� 2

ð1

0

jðai1 � ai2Þs1S1j dt

� 2jai1 � ai2j

ð1

0

ksik1jS1j dt

¼ 2jai1 � ai2j � ksik1kS1k1 , 1

ð71Þ

Therefore ð1

0

s2
i dt , 1 ð72Þ

From (72), we have si [ L2 (square integral). Because
si [ L1 and ṡi [ L1, according to the Barbalat lemma,
limt!1 si ¼ 0. A

In summary, the first-layer subsystems’ sliding surfaces
si, i ¼ 1, . . . , n, are not only stable, but also asymptotically
stable.

Remark 2: Although both the IHSSMC and the AHSSMC
are hierarchical, there is some difference between them.
First, the layer number is different. The IHSSMC has a
multi-layer structure, whereas the AHSSMC has a two-layer
structure. Secondly, the parameters of the AHSSMC are less
than those of the IHSSMCs. Finally, the sliding-mode
surface parameters of the AHSSMC are constant, whereas
the sliding-mode surface parameters of the IHSSMC will
change according to the system’s states. In summary, the
IET Control Theory Appl., Vol. 1, No. 1, January 2007



structure of the AHSSMC is simpler than that of the
IHSSMC. But the design of the IHSSMC is more intuitio-
nistic. The effects of the two sliding-mode controllers will
be shown in the following section.

7 Simulation results

To assess the proposed IHSSMC and AHSSMC developed
in this paper, a simulation example is given. An overhead
crane system (shown as Fig. 1) is a typical under-actuated
system. The control objective of the overhead crane is to
move the trolley to its destination and complement
anti-swing of the load at the same time.

For simplicity, in this paper, the following assumptions
are made: (a) the trolley and the load can be regarded as
point masses; (b) friction force that may exist in the

M
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Fig. 1 Overhead crane system
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trolley can be neglected; (c) elongation of the rope
because of tension force is neglected and (d) the trolley
moves along the rail and the load moves in the x–y plane.

From Fig. 1 we can find that xm ¼ xþ L sin u and
ym ¼ 2L cos u. Using Lagrange’s method, we can obtain
the model of the overhead crane system as

x : ðmþMÞ€xþ mLð€u cos u� _u
2

sin uÞ ¼ F ð73Þ

u : €x cos uþ L€uþ g sin u ¼ 0 ð74Þ

where M and m are the masses of the trolley and the load,
respectively. u is the sway angle of load and L is the
length of suspension rope.

In summary, we can obtain f1, b1, f2 and b2 from (7)

f1 ¼
mL_u

2
sin uþ mg sin u cos u

M þ m sin2 u
ð75Þ

b1 ¼
1

M þ m sin2 u
ð76Þ

f2 ¼ �
ðmþMÞg sin uþ mL_u

2
sin u cos u

ðM þ m sin2 uÞL
ð77Þ

b2 ¼ �
cos u

ðM þ m sin2 uÞL
ð78Þ

where x1 ¼ e ¼ xd 2 x, x2 ¼ _xd 2 _x, x3 ¼ u and x4 ¼ u̇ are
the displacement error of the trolley in the horizontal
direction, the velocity error of the trolley in the horizontal
direction, the sway angle of the load and the sway angle
velocity of the load, respectively.
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7.1 Simulation results of the IHSSMC
The parameters of the overhead crane are chosen as [23]:
M ¼ 1 kg, m ¼ 0.8 kg and L ¼ 0.305 m, and the parameters
of the IHSSMC are chosen as c1 ¼ C1 ¼ 1.4, C2 ¼ 0.2,
C3 ¼ 0.1, k ¼ 0.1 and h ¼ 1.

The initial conditions of the overhead crane system are
(x0, _x0) ¼ (0, 0) and (u0, u̇0) ¼ (0, 0) and the expectations
are xd ¼ 2m, ẋd ¼ 0, ud ¼ 0 and u̇d ¼ 0, where xd, _xd, ud

and _ud are the expected displacement and velocity of
the trolley in the horizontal direction and the expected
swing angle and swing angular velocity of the load,
respectively.
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Fig. 2 shows the displacement and the velocity of the
overhead crane system and Fig. 3 shows the swing angle
of the load and its angle velocity with the IHSSMC. The
simulation results show that the IHSSMC can control the
trolley to its destination and implement anti-sway control
at the same time. Figs. 4 and 5 show the phase plane
curve of the first-layer sliding surface. We can find that
the first-layer sliding surface is existent and the first subsys-
tem’s states can converge to zero along the sliding surface.
Fig. 6 shows the convergent curve of all the sliding surfaces.
Fig. 7 shows the output torque of the controller. The
simulation results show the validity of the IHSSMC.

7.2 Simulation results of the AHSSMC

The parameters of the AHSSMC are chosen as c1 ¼ 0.8,
c2 ¼ 35, a1 ¼ 10, a2 ¼ 1, h ¼ 3.5 and k ¼ 6. Fig. 8
shows the displacement and the velocity of the overhead
crane system and Fig. 9 shows the swing angle of the
load and its angle velocity with the AHSSMC. The simu-
lation results show that the AHSSMC can control the
trolley to its destination and implement anti-sway control
at the same time. Figs. 10 and 11 show the phase plane
curve of the first-layer sliding surface. We can find that
the first-layer sliding surface is existent and the first
subsystem’s states can converge to zero along the sliding
surface. Fig. 12 shows the convergent curve of all the
sliding surfaces. Fig. 13 shows the output torque of the con-
troller. The simulation results show the validity of the
AHSSMC.
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Remark 3: From the simulation results, we find that the
control effects of the two sliding-mode controllers are
different. For the AHSSMC, although its structure is two-
layered, the control output torque is larger than that of the
IHSSMCs. It is noticeable that the AHSSMC has a rapid
response speed and a big initial swing angle. It requires
that the controller has a larger output and the controlled
object has a firm structure. It follows, therefore, that the
AHSSMC suits a fast situation whereas the IHSSMC
adapts to the slow situation that requires safety.
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8 Conclusion

Two types of sliding-mode controller models based on
incremental hierarchical structure and aggregated hierarch-
ical structure for a class of SIMO under-actuated mechan-
ical systems are presented in this paper. This paper has
proved that the last-layer sliding surface is stable and all
other sliding surfaces and system states can converge to
zero asymptotically. At the same time, both the IHSSMC
and the AHSSMC can reduce the dimension of the sliding
surface and predigest the stability analysis. The simulation
results also show the validity of the methods. In general,
for the classical sliding-mode control methodology, a
unique surface yielding a very hard algorithm needs to be
defined and may be impossible to apply for some practical
problems, whereas this work divides the problem into
several layers (very simple ones) making the calculation
very easy. The ideas of this paper are to simplify and to
obtain a systematic tool for stabilising mechanical
systems, in general, where no constraint on the kinematics
is imposed, such as the non-holonomic ones, for instance.
Therefore, this paper yields a systematic way to obtain sta-
bilising controllers for under-actuated mechanical systems
with only one input where it is possible to see how the pre-
sented methodology converges in the limit to the classical
SMC process.
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