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Abstract—Rough set theory is a useful tool for data mining. It is based on equivalence relations and has been extended to covering-

based generalized rough set. This paper studies three kinds of covering generalized rough sets for dealing with the vagueness and

granularity in information systems. First, we examine the properties of approximation operations generated by a covering in

comparison with those of the Pawlak’s rough sets. Then, we propose concepts and conditions for two coverings to generate an

identical lower approximation operation and an identical upper approximation operation. After the discussion on the interdependency of

covering lower and upper approximation operations, we address the axiomization issue of covering lower and upper approximation

operations. In addition, we study the relationships between the covering lower approximation and the interior operator and also the

relationships between the covering upper approximation and the closure operator. Finally, this paper explores the relationships among

these three types of covering rough sets.

Index Terms—Rough sets, approximation, covering, data mining, reduct, fuzzy sets, granular computing, computing with words.
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1 INTRODUCTION

ACROSS a wide variety of fields, data are being collected
and accumulated at a dramatic pace, especially in the

age of the Internet. There is much useful information
hidden in the accumulated voluminous data, but it is very
hard for us to obtain it. Thus, there is an urgent need for a
new generation of computational theories and tools to assist
humans in extracting knowledge from the rapidly growing
volumes of digital data; otherwise, these huge data are
useless for us.

For data in an information system, the acquisition of
knowledge and reasoning may involve vagueness, incom-
pleteness, and granularity. In order to deal with the
incomplete and vague information in classification, concept
formulation, and data analysis, researchers have proposed
many methods other than classical logic, for example, fuzzy
set theory [53], rough set theory [21], [22], [23], [24],
computing with words [26], [38], [54], [55], [56], [57], [58],
granular computing [2], [7], [10], [16], [49], [50], formal
concept analysis [40], quotient space theory [60], [61], and
computational theory for linguistic dynamic systems [39].
The advantage of the rough set method is that it does not
need any additional information about the data, like
probability in statistics or membership in fuzzy set theory.

The main idea of the rough set theory comes from
Pawlak’s work [20]. Many researchers made contributions
to this theory [15], [33], [46], [63]. Applications of the rough
set method to process control, economics, medical diag-
nosis, biochemistry, environmental science, biology, chem-
istry, psychology, conflict analysis, and other fields can be

found in the literature [25], [27], [28], [29], [36], [48], [52],
[62], [64], [71].

In Pawlak’s rough set theory [20], the lower and upper
approximation operations are two key concepts. An
equivalence relation, that is, a partition, is the simplest
formulation of the lower and upper approximation opera-
tions, but many interesting and meaningful extensions have
been made based on binary relations [6], [30], [31], [34], [35],
[74] and coverings [30], [37], [59], [78]. In this paper, we
study covering-based rough sets. Extensive research on this
subject can be found in [3], [4], [5], [8], [9], [11], [12], [13],
[18], [41], [42], [43], [67], [68], [69], [73]. Yao also studied a
kind of covering-based rough sets, called neighborhood
system, in [47], [51].

For the partition-based lower and upper approximation
operations, different partitions of a set will generate
different lower and upper approximation operations on
this set. However, in the covering-based rough set model,
different coverings may generate the same lower or the
same upper approximation operation. Therefore, it is
necessary to find the conditions under which two coverings
generate the same lower or the same upper approximation
operation.

If we omit a member of a partition, it will not be a
partition anymore; thus, there is no redundancy problem
for a partition. As for a covering, if we omit a member from
it, it can still be a covering and, furthermore, the new
covering and the original one can generate the same lower
or the same upper approximation operation. This phenom-
enon shows that there may exist redundancy in a covering.
As a result, how to get rid of the redundancy from a
covering is an important research issue in the covering
rough set theory.

Lower and upper approximation operations in Pawlak’s
rough set model are dual; therefore, the lower approxima-
tion operation uniquely determines the upper approxima-
tion operation and vice versa. However, in the covering-
based rough set model, lower and upper approximation
operations are no longer dual. The next question, of course,
is whether the lower approximation operation can uniquely
determine the upper approximation operation and vice
versa.
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Another important problem is to find the essential
properties for the lower and the upper approximation
operations. In other words, there is a need to establish an
axiomatic system for the lower and the upper approxima-
tion operations. Last, there are several possibilities to define
upper approximation operations in a covering setting. In
this paper, we present three types of upper approximation
operations and examine the relationships among these three
types of upper approximation operations.

The generalization of the classical rough set theory
attracts many researchers. Yao extensively reviewed and
compared the constructive and algebraic approaches in the
study of rough sets and characterized several classes of
rough set algebras by different sets of axioms [45]. Yao’s
axioms of approximation operations guarantee the exis-
tence of certain types of binary relations producing the
same approximation operations. His focus was on binary-
relation-based rough set models. In a sense, Yao’s works
[44], [45], [46], [47] had made an exhaustive study of the
familiar binary relations on a universe of discourse and
given the corresponding axiomatic systems for the general-
ized rough set models related to those binary relations.
There is a one-to-one correspondence between equivalence
relations and partitions on a universe of discourse, but,
unfortunately, there is no such correspondence between all
binary relations and all coverings on a universe of discourse
[1]. Zakowski studied a set of axioms on approximation
operations [59]. Lin and Liu gave a set of six axioms on
approximation operations by the topological method [17].
Zhu and He presented a compact axiomatic system [65].
These axiomatic systems are all for Pawlak’s rough set
model.

Zakowski first extended Pawlak’s rough set theory by
using a covering of the domain, rather than a partition [59].
Based on the mutual correspondence of the concepts of
extension and intension, Bonikowski et al. have formulated
the necessary and sufficient conditions for the existence of
operations on rough sets, which are analogous to classical
operations on sets [4]. Pomykala studied the second type of
the covering rough set model [30]. His main method was
the interior operator from topology. The redundancy
problem and the axiomization problem have not been
considered in his work. A third type of covering general-
ized rough sets has been introduced in [37], but no
properties of this new class of covering generalized rough
sets have been discussed. Two other types of covering-
based rough set models have been proposed in [73], [77],
and [78], but we do not consider them in this paper.

The remainder of this paper is arranged as follows: In
Section 2, we present the fundamental concepts and
properties of the classical rough set theory originated from
Pawlak, and these are all bases our discussion starts from.
We also define some concepts that will be used in the
remainder of this paper. Section 3 discusses the first type of
covering generalized rough sets. In Section 3.1, by compar-
ing with Pawlak’s rough set theory, we detail the similar
and the different points between those two rough set
models. In Section 3.2, we propose one of the core concepts
in this paper, reduct, to reduce a covering to its simplest
form while not changing the covering lower approximation
operation and the first type of covering upper approxima-
tion operation. Still, through this concept, we get a
necessary and sufficient condition for two coverings to
generate the same lower approximation operation or the
same upper approximation operation and establish the

interdependency between the lower and the upper approx-
imation operations. Section 3.3 presents an algorithm to
compute the reduct of a covering. Axiomization of the
covering lower approximation operation is the topic in
Section 3.4. We try to find the essential properties for the
covering lower approximation operation, and come up with
an axiomatic system for the covering lower approximation
operation, which introduces a logical and algebraic struc-
ture of this operation. Contrary to the situation of the lower
approximation, the current popular properties of the upper
approximation operation are not sufficient to characterize
such an operation, as proved by an example in Section 3.5.
In Section 3.6, we study the relationships between the
interior operator and the lower approximation operation
and the relationships between the closure operator and the
first type of upper approximation operation. In Sections 4
and 5, we investigate similar issues as in Section 3 for the
second and third types of covering generalized rough sets.
Section 6 presents some results about relationships among
these three types of covering generalized rough sets
discussed in this paper. We establish the conditions under
which two types of upper approximation operations are
identical. This paper concludes in Section 7 with remarks
for future works.

2 BACKGROUNDS

In this section, we present concepts such as classical rough
sets, coverings, and interior and closure operators.

2.1 Fundamentals of Pawlak’s Rough Sets

Let U be a finite set and R be an equivalence relation on U .
R will generate a partition U=R ¼ fY1; Y2; . . . ; Ymg on U ,
where Y1; Y2; . . . ; Ym are the equivalence classes generated
by R. 8X � U , the lower and upper approximations of X,
are, respectively, defined as follows:

R�ðXÞ ¼ [fYi 2 U=RjYi � Xg
R�ðXÞ ¼ [fYi 2 U=RjYi \X 6¼ �g:

Proposition 1. Let � be the empty set and �X the complement of
X in U . Pawlak’s rough sets have the following properties:

ð1LÞ R�ðUÞ ¼ U ðConormalityÞ
ð1HÞ R�ðUÞ ¼ U ðConormalityÞ
ð2LÞ R�ð�Þ ¼ � ðNormalityÞ
ð2HÞ R�ð�Þ ¼ � ðNormalityÞ
ð3LÞ R�ðXÞ � X ðContractionÞ
ð3HÞ X � R�ðXÞ ðExtensionÞ
ð4LÞ R�ðX \ Y Þ ¼ R�ðXÞ \R�ðY Þ ðMultiplicationÞ
ð4HÞ R�ðX [ Y Þ ¼ R�ðXÞ [R�ðY Þ ðAdditionÞ
ð5LÞ R�ðR�ðXÞÞ ¼ R�ðXÞ ðIdempotencyÞ
ð5HÞ R�ðR�ðXÞÞ ¼ R�ðXÞ ðIdempotencyÞ
ð6Þ R�ð�XÞ ¼ �R�ðXÞ ðDualityÞ
ð7LÞ X � Y ) R�ðXÞ � R�ðY Þ ðMonotoneÞ
ð7HÞ X � Y ) R�ðXÞ � R�ðY Þ ðMonotoneÞ
ð8LÞ R�ð�R�ðXÞÞ ¼ �R�ðXÞ ðComplementÞ
ð8HÞ R�ð�R�ðXÞÞ ¼ �R�ðXÞ ðComplementÞ
ð9LÞ 8K 2 U=R;R�ðKÞ ¼ K ðGranularityÞ
ð9HÞ 8K 2 U=R;R�ðKÞ ¼ K ðGranularityÞ:
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Properties (3L), (4L), and (8L) are characteristic proper-
ties for the lower approximation operation [17], [65], [66],
[72], that is, all other properties of the lower approximation
operation can be deduced from these three properties.
Correspondingly, (3H), (4H), and (8H) are characteristic
properties for the upper approximation operation.

2.2 Basic Concepts

In this paper, we will investigate three types of covering-
based rough set models. They have the same lower
approximation but different upper approximations. To begin
with, we present the basic concepts we need in this paper.

Definition 1 (Covering). Let U be a domain of discourse and C
a family of nonempty subsets of U . If [C ¼ U , C is called a
covering of U .

It is clear that a partition of U is certainly a covering of U ,
so the concept of a covering is an extension of a partition.

In the following discussion, unless stated to the contrary,
the coverings are considered to be finite, that is, coverings
consist of a finite number of sets in them.

First, we list some definitions about coverings to be used
in this paper.

Definition 2 (Covering approximation space). Let U be a
nonempty set and C a covering of U . We call the ordered pair
< U;C > a covering approximation space.

Definition 3 (Minimal description). Let < U;C > be a
covering approximation space, x 2 U .

MdðxÞ ¼ fK 2 Cjx 2 K ^ ð8S 2 C

^ x 2 S ^ S � K ) K ¼ SÞg

is called the minimal description of x.

In order to describe an object, we need only the essential
characteristics related to this object, not all the character-
istics for this object. That is the purpose of the minimal
description concept.

Corresponding to the minimal description, we define the
concept of the maximal description.

Definition 4 (Maximal description). Let < U;C > be a
covering approximation space, K 2 C. If no other element of
C contains K, K is called a maximal description in C. All
maximal descriptions in C are denoted as MaximalDðCÞ.

Definition 5 (Indiscernible neighborhood). Let < U;C >
be a covering approximation space. 8x 2 U , [fKjx 2 K 2
Cg is called the indiscernible neighborhood of x and denoted as
FriendsðxÞ.

Definition 6 (Close friends). Let < U;C > be a covering
approximation space, x 2 U , [fMdðxÞg is called the close
friends of x and denoted as CFriendsðxÞ.

Definition 7 (Unary). Let C be a covering of a set U . C is called
unary if 8x 2 U , jMdðxÞj ¼ 1.

Definition 8 (Pointwise covered). Let C be a covering of U . If
8K 2 C and x 2 K, K � CFriendsðxÞ, we call C a
pointwise-covered covering.

The following two concepts, interior and closure opera-
tors, are from topology. They are essential concepts in
topology.

Definition 9 (Interior and closure operators). For an

operation c : P ðUÞ ! P ðUÞ, where P ðUÞ is the power set of

U , if it satisfies the following axioms, then we call it a closure

operator on U . 8X;Y � U :
Axiom I. cðX [ Y Þ ¼ cðXÞ [ cðY Þ.
Axiom II. X � cðXÞ.
Axiom III. cð�Þ ¼ �.
Axiom IV. cðcðXÞÞ ¼ cðXÞ.
For an operation i : P ðUÞ ! P ðUÞ, if it satisfies the

following axioms, then we call it an interior operator on U .
8X;Y � U :

Axiom I0. iðX \ Y Þ ¼ iðXÞ \ iðY Þ.
Axiom II0. iðXÞ � X.
Axiom III0. iðUÞ ¼ U .
Axiom IV0. iðiðXÞÞ ¼ iðXÞ.

Proposition 2. Let U be a finite set, the domain of discourse, and

R an equivalence relation on U . The lower and upper

approximations generated by R are the interior and closure

operators, respectively.

3 FIRST TYPE OF COVERING GENERALIZED

ROUGH SETS

In this section, we study the first type of covering-based
rough sets. We will address the following issues. First, we
present the similarity and difference between the properties
of this type of rough sets and those of classical rough sets.
Then, we explore the conditions under which two coverings
generate the same lower or upper approximations. We also
consider the interdependency of the lower and upper
approximations. The axiomization of lower and upper
approximations is the next problem we investigate in this
paper. Last, we study the relationships between the lower
approximation operation and the interior operator and the
relationships between the upper approximation operation
and the closure operator.

3.1 Concepts and Properties

Definition 10 (CL and FH). Let C be a covering of U . The

operations CL and FH : P ðUÞ ! P ðUÞ are defined as

follows: 8X 2 P ðUÞ,

CLðXÞ ¼ [fK 2 CjK � Xg;
FHðXÞ ¼ CLðXÞ [ fMdðxÞjx 2 X � CLðXÞg:

We call CL the covering lower approximation operation
and FH the first type of covering upper approximation
operation.

Proposition 3 [4]. CLðXÞ ¼ X if and only if X is a union of

some elements of C.

Proposition 4 [4]. FHðXÞ ¼ X if and only if X is a union of

some elements of C.

Corresponding to the properties of Pawlak’s rough sets

listed in Section 2.1, we have the following results.

Proposition 5 [67], [69]. CL has properties (1L), (2L), (3L),

(5L), (7L), and (9L) in Proposition 1.

Proposition 6 [67], [69]. FH has properties (1H), (2H), (3H),
(5H), and (9H) in Proposition 1.

Remark 1. Properties (4L), (6), and (8L) in Proposition 1 do

not hold for CL. A counterexample is in [67] and [69].
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Remark 2. Properties (4H), (6), (7H), and (8H) in Proposi-
tion 1 do not hold for FH. A counterexample is in [67]
and [69].

The following theorems from [75] give the conditions
under which CL satisfies (4L), (6), and (8L) in Proposition 1,
and FH satisfies (4H), (6), (7H), and (8H) in Proposition 1.

Theorem 1. CL satisfies (4L) in Proposition 1, that is

CLðX \ Y Þ ¼ CLðXÞ \ CLðY Þ

if and only if C satisfies the following: 8K1; K2 2 C, K1 \K2

is a union of finite elements in C.

Proof () ). Since K1 \K2 ¼ CLðK1Þ \ CLðK2Þ ¼ CLðK1 \
K2Þ and CLðK1 \K2Þ is a union of finite elements in C
by definition, K1 \K2 is a union of finite elements in C.

(( ). By (7L) in Proposition 5, it is easy to see that

CLðX \ Y Þ � CLðXÞ \ CLðY Þ:

On the other hand, by Proposition 3, let CLðXÞ ¼
K1 [ . . . [Km and CLðY Þ ¼ K01 [ . . . [K0n, where

Ki;K
0
j 2 C; 1 � i � m; and 1 � j � n:

For any 1 � i � m and 1 � j � n, Ki \K0j � X \ Y . By
the assumption in this theorem, Ki \K0j is a union of
finite elements in C. Let us say Ki \K0j ¼W1 [ . . . [Wl,
w h e r e Wh 2 C, 1 � h � l. F o r 1 � h � l, s i n c e
Wh � Ki \K0j � X \ Y , we have Wh � CLðX \ Y Þ. Thus,
Ki \K0j � CLðX \ Y Þ for 1 � i � m and 1 � j � n. From

CLðXÞ \ CLðY Þ ¼ [mi¼1
n
j¼1ðKi \K0jÞ;

we prove that CLðXÞ \ CLðY Þ � CLðX \ Y Þ. Therefore,
CLðX \ Y Þ ¼ CLðXÞ \ CLðY Þ. tu

Theorem 2. FH satisfies (7H) in Proposition 1, that is,

X � Y ) FHðXÞ � FHðY Þ

if and only if C satisfies the following: 8K1, K2 2 C, and
K1 \K2 is a union of finite elements in C.

Proof () ).

FHðK1 \K2Þ � FHðK1Þ ¼ K1 and

FHðK1 \K2Þ � FHðK2Þ ¼ K2;

so FHðK1 \K2Þ � K1 \K2. By property (3H) in Propo-
sition 6,

K1 \K2 � FHðK1 \K2Þ;

so K1 \K2 ¼ FHðK1 \K2Þ. By Proposition 4, K1 \K2 is
the union of finite elements in C.

(( ). By the definition of FH, there exist y1; y2; . . . ym 2
X � CLðXÞ and K1; K2; . . .Km 2 C such that

Ki 2MdðyiÞ; 1 � i � m;
and FHðXÞ is expressed as CLðXÞ [K1 . . . [Km. It is
obvious that yi 2 Y . For 1 � i � m, if yi 2 Y � CLðY Þ, it
is easy to see that Ki � FHðY Þ. If yi 62 Y � CLðY Þ, then
yi 2 CLðY Þ. Thus, there exists a K0i 2 C such that
yi 2 K0i � CLðY Þ. By the assumption of this theorem,
Ki \K0i is a union of finite elements in C. Let us say

Ki \K0i ¼W1 [ . . . [Wl, where Wh 2 C, 1 � h � l. Since
yi 2 Ki \K0i, there exists 1 � j � l such that yi 2Wj. By
Ki 2MdðyiÞ and Wj � Ki, we have Ki ¼Wj. Thus,
Ki � K0i. Therefore,

Ki � CLðY Þ � FHðY Þ; 1 � i � m:

From property (7L) in Proposition 5,

CLðXÞ � CLðY Þ � FHðY Þ;

so FHðXÞ � FHðY Þ. tu
Before we investigate the issue of property (4H)

in Proposition 1, we prove a lemma to show that
property (4H) is equivalent to property (7H) in Proposi-
tion 1 for the first type of upper approximation
operations.

Lemma 1. FH satisfies

ð7HÞ X � Y ) FHðXÞ � FHðY Þ

if and only if FH satisfies

ð4HÞ FHðX [ Y Þ ¼ FHðXÞ [ FHðY Þ:

Proof () ). By (7H),

FHðXÞ � FHðX [ Y Þ and

FHðY Þ � FHðX [ Y Þ

so FHðXÞ [ FHðY Þ � FHðX [ Y Þ. On the other hand,
by property (3H) in Proposition 6,

X [ Y � FHðXÞ [ FHðY Þ:
By (7H), FHðX [ Y Þ � FHðFHðXÞ [ FHðY ÞÞ. By Pro-
position 4, FHðFHðXÞ [ FHðY ÞÞ ¼ FHðXÞ [ FHðY Þ, so
FHðX [ Y Þ � FHðXÞ [ FHðY Þ. Therefore,

FHðX [ Y Þ ¼ FHðXÞ [ FHðY Þ:

(( ). If X � Y ,

FHðY Þ ¼ FHðX [ Y Þ ¼ FHðXÞ [ FHðY Þ;

so FHðXÞ � FHðY Þ. tu

Theorem 3. FH satisfies (4H) in Proposition 1, that is,

FHðX [ Y Þ ¼ FHðXÞ [ FHðY Þ
if and only if C satisfies the following: 8K1, K2 2 C, and
K1 \K2 is a union of finite elements in C.

Proof. It comes from Theorem 2 and Lemma 1. tu

Combining Theorem 1, Theorem 2, and Theorem 3, we
have the following result.

Corollary 1. FH satisfies

ð4HÞ FHðX [ Y Þ ¼ FHðXÞ [ FHðY Þ

if and only if it satisfies

ð7HÞ X � Y ) FHðXÞ � FHðY Þ

and if and only if CL satisfies

ð4LÞ CLðX \ Y Þ ¼ CLðXÞ \ CLðY Þ:
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The following two theorems are about properties (8L)
and (8H) in Proposition 1 for the first type of upper
approximation operations.

Theorem 4. CL satisfies (8L) in Proposition 1, that is,

CLð�CLðXÞÞ ¼ �CLðXÞ

if and only if 8K1; . . . ; Km 2 C, �ðK1 [ . . . [KmÞ is a union
of finite elements in C.

Proof () ). 8K1; . . . ; Km 2 C,

CLð�ðK1 [ . . . [KmÞÞ ¼ CLð�CLðK1 [ . . . [KmÞÞ ¼
� CLðK1 [ . . . [KmÞ ¼ �ðK1 [ . . . [KmÞ;

so �ðK1 [ . . . [KmÞ is a union of finite elements in C.
(( ). By Proposition 3, CLðXÞ is a union of finite

elements in C, say, CLðXÞ ¼ K1 [ . . . [Km, where
K1; . . . ; Km 2 C. CLð�CLðXÞÞ ¼ CLð�ðK1 [ . . . [KmÞÞ.
By Proposition 3 and the assumption of this theorem,

CLð�ðK1 [ . . . [KmÞÞ ¼ �ðK1 [ . . . [KmÞ;

so CLð�CLðXÞÞ ¼ �CLðXÞ. tu

Theorem 5. FH satisfies (8H) in Proposition 1, that is,

FHð�FHðXÞÞ ¼ �FHðXÞ

if and only if 8K1; . . . ; Km 2 C, �ðK1 [ . . . [KmÞ is a union
of finite elements in C.

Proof. It is similar to that of the above theorem. tu
Corollary 2. CL satisfies

ð8LÞ CLð�CLðXÞÞ ¼ �CLðXÞ

if and only if FH satisfies

ð8HÞ FHð�FHðXÞÞ ¼ �FHðXÞ:

Proof. It comes directly from Theorem 4 and Theorem 5. tu

As for property (6) in Proposition 1, we get only a partial
solution: a necessary condition so that property (6) in
Proposition 1 holds.

Theorem 6. If CL and FH satisfy (6) in Proposition 1, that is,

FHð�XÞ ¼ �CLðXÞ;

then 8K1; . . . ; Km 2 C, �ðK1 [ . . . [KmÞ is a union of finite
elements in C.

Proof. 8K1; . . . ; Km 2 C,

FHð�ðK1 [ . . . [KmÞÞ ¼ �CLðK1 [ . . . [KmÞ
¼ �ðK1 [ . . . [KmÞ;

so by Proposition 3, �ðK1 [ . . . [KmÞ is a union of finite
elements in C. tu

3.2 Interdependency of the Lower and Upper
Approximation Operations

In the classical rough set theory, two different equivalence
relations will certainly generate two different lower and
upper approximation operations. However, in the covering-
based rough set model, two different coverings might

generate the same lower and upper covering-based approx-
imation operations as shown in the following example:

Example 1 (Two different coverings generate the same CL

and FH). Let

U ¼ fa; b; c; dg; K1 ¼ fag; K2 ¼ fb; cg; K4 ¼ fdg;
K4 ¼ fa; dg;C ¼ fK1; K2; K3; K4g; and C0 ¼ fK1; K2K3g:

Then, C and C0 generate the same lower covering-based
approximation operation and the same first type of
upper covering-based approximation operation.

Thus, we want to investigate the conditions under which
two coverings generate the same covering lower and upper
approximation operations. Furthermore, in Pawlak’s rough
set theory, lower and upper approximation operations are
dual, so they are dependent on each other. As we can see
from Remarks 1 and 2, the covering-based operations CL
and FH on U are not dual. Now, we want to ask whether
CL and FH are dependent on each other. In this section, we
address these questions mainly based on the results
obtained in [67], [69].

We start to find the conditions under which two
coverings generate the same lower approximation operation
or the same first type of upper approximation operation.

Definition 11. Let C be a covering of a domain U and K 2 C. If

K is a union of some sets in C� fKg, we say K is reducible
in C; otherwise, K is irreducible.

Definition 12. Let C be a covering of U . If every element in C is

irreducible, we say C is irreducible; otherwise, C is reducible.

Proposition 7. Let C be a covering of a domain U . If K is

reducible in C, C� fKg is still a covering of U , and 8x 2 U ,
MdðxÞ in C� fKg is the same as it is in C.

Proposition 8. Let C be a covering of U , K 2 C, K be reducible
in C, and K1 2 C� fKg. K1 is reducible in C if and only if

it is reducible in C� fKg.

Proposition 7 guarantees that after deleting a reducible
element from a covering, it is still a covering. Proposition 8
shows that deleting a reducible element in a covering will
not generate any new reducible elements or make other
previous reducible elements irreducible. Consequently, we
can compute the reduct of a covering of a domain by
deleting all reducible elements or by deleting one reducible
element in a step. The remainder still consists of a covering
of the domain, and it is irreducible.

Definition 13. For a covering C of a domain U , the new

irreducible covering through the above reduction is called the
reduct of C and denoted by reductðCÞ.

Proposition 8 guarantees that a covering has only one
reduct.

Theorem 7. Let C1 and C2 be two coverings of U . C1 and C2

generate the same covering lower approximation operation if

and only if reductðC1Þ ¼ reductðC2Þ.
Theorem 8. Let C1 and C2 be two coverings of U . C1 and C2

generate the same first type of covering upper approximation
operation if and only if reductðC1Þ ¼ reductðC2Þ.
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Theorem 9. Let C1 and C2 be two coverings of U . C1 and C2

generate the same covering lower approximation if and only
if they generate the same first type of covering upper
approximation.

Theorem 9 shows that the upper approximation opera-
tion and lower approximation operation uniquely deter-
mine each other.

3.3 An Algorithm for Computing the Reduct

As you can see from the last section, reduct is one of the
core concepts in the first type of covering-based rough set
theory. We present an algorithm for computing the reduct
reductðCÞ of a covering C in Fig. 1. The basic idea for this
algorithm is based on the following observation. For any
member Ki in a covering C ¼ fK1; K2; . . . ; Kng of U , we
select all other members in C that are proper subsets of Ki.
Ki is reducible if and only if the union of these members is
equal to Ki.

Example 2 (Reduct of a covering). Let U ¼ fa; b; c; dg,
K1 ¼ fag, K2 ¼ fb; cg, K4 ¼ fdg, K4 ¼ fa; dg, a n d
C ¼ fK1; K2; K3; K4g. Since K4 ¼ K1 [K3, K4 is a
reducible element of covering C. K4 is the only
reducible element in C; thus, reductðCÞ ¼ fK1; K2; K3g.

3.4 Axiomization of Lower Approximation
Operations

As shown in Section 2.1, Pawlak’s lower and upper
approximation operations have been axiomatized. Now,
we need to know which are the characteristic properties for
the lower approximation operation and the first type of
covering upper approximation operation. We present an
axiomatic system of covering lower approximation opera-
tions as follows.

Theorem 10 [67], [69]. Let U be a nonempty set. If an operation
L : P ðUÞ ! P ðUÞ satisfies the following properties: For any
X;Y � U ,

ð1LÞ LðUÞ ¼ U ðConormalityÞ
ð3LÞ LðXÞ � X ðContractionÞ
ð5LÞ LðLðXÞÞ ¼ LðXÞ ðIdempotencyÞ
ð7LÞ X � Y ) LðXÞ � LðY Þ ðMonotoneÞ;

then there exists a covering C of U such that the covering
lower approximation operation CL generated by C is equal to

L. Furthermore, the above four properties for the covering

lower approximation operation are independent.

However, the axiomization of the first type of covering
upper approximation operations is still an open problem,

and, as we can see in the next section, this might not be an

easy task.

3.5 Axiomization of the First Type of Upper
Approximation Operations

The properties from (1L) to (9H) listed in Proposition 1 are

essential or sufficient for the lower and upper approxima-

tion operations of Pawlak’s rough sets. Theorem 10 in

Section 3.4 shows that properties (1L), (2L), (3L), (5L), and

(7L) listed in Proposition 5 are enough for covering lower

approximation operations. However, as shown in the
following example, properties (1H), (2H), (3H), and (5H)

listed in Proposition 6 are not sufficient to characterize the

first type of upper approximation operations.

Example 3. An operation H : P ðUÞ ! P ðUÞ satisfies proper-

ties (1H), (2H), (3H), and (5H) in Proposition 5, but there

is no covering C on U such that H is the first type of

upper approximation operation generated by C.
Specifically, let U ¼ fa; b; cg. Define H : P ðUÞ ! P ðUÞ

as follows:
Hð�Þ ¼ �, HðfagÞ ¼ fag, HðfbgÞ ¼ fbg, for all other

X � U , HðXÞ ¼ U .
It is obvious that H satisfies (1H), (2H), (3H), and

(5H), but there is no covering C on U such that H is its
first type of upper approximation operation FH since
such a covering C should have elements fag and fbg.
Clearly, in this case,

FHðfa; bgÞ ¼ fa; bg 6¼ fa; b; cg ¼ Hðfa; bgÞ;

thus, H is not the upper approximation operation

generated by C.

It is still an open problem to find an axiomatic system for

the first type of covering upper approximation operations.

3.6 Relationships with Closure and Interior
Operators

Yao studied Pawlak’s rough set through the topological

properties of lower and upper approximation operations

[44]. Pomykala studied the topological properties for a class

of generalized rough sets [32]. Lin and Liu investigated

axioms for approximation operations by the topological

method [17]. Now, we examine the topological properties of
the lower approximation operation and the first type of

upper approximation operation for covering generalized

rough sets.
Interior and closure operators are two core concepts in

topology, and for Pawlak’s rough sets, the lower and upper

approximation operations on a set are also the interior and

closure operators on this set, respectively. In this section, we
investigate the conditions under which the covering lower

and upper approximation operations are also the interior

and closure operators, respectively.
From Remarks 1 and 2, we know that, generally, FH is

not a closure operator, for Axiom I is not generally valid for
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FH, and, generally, CL is not an interior operator, for
Axiom I0 is not generally valid for CL.

Now, we present the condition under which CL is an
interior operator and the condition under which FH is a
closure operator. We have the following results.

Theorem 11 (Condition under which CL is an interior

operator). Operation CL is an interior operator if and only if
C satisfies the following: 8K1; K2 2 C, K1 \K2 are unions of
finite elements in C.

Proof. It comes from Proposition 5 and Theorem 1. tu
Theorem 12 (Condition under which FH is a closure

operator). Operation FH is a closure operator if and only if C

satisfies the following: 8K1; K2 2 C, K1 \K2 are unions of
finite elements in C.

Proof. It comes from Proposition 6 and Theorem 3. tu

Combining the above two theorems, we have the
following result.

Corollary 3. CL is an interior operator if and only if FH is a
closure operator.

4 SECOND TYPE OF COVERING GENERALIZED

ROUGH SETS

The second type of covering-based rough sets were already
studied in [18], [19], [30], [67]. In this section, we start to
address the similar issues for the second type of covering-
based rough sets as in the first type one in Section 3.

4.1 Concepts and Properties

For the second type of covering-based rough set model, the
lower approximation operation is the same as that in the
first type of covering-based rough set model; thus, we
define only the second type of covering upper approxima-
tion operation as follows:

Definition 14 ðSHÞ. Let C be a covering of U . The second type
of covering upper approximation operation SH is defined as
follows: 8X � U , SHðXÞ ¼ [fKjK 2 C, K \X 6¼ �g.

Proposition 9. If C is a partition of U , SHðXÞ is the upper
approximation operation as specified by Pawlak’s original
definitions.

Proposition 10. The second type of covering upper approxima-
tion has properties (1H), (2H), (3H), (4H), and (7H) in
Proposition 1.

Proof. Properties (1H), (2H), (3H), and (7H) are evident
from the definition of SHðXÞ.

For property (4H), by (7H), we have SHðXÞ �
SHðX [ Y Þ and SHðY Þ � SHðX [ Y Þ, so

SHðXÞ [ SHðY Þ � SHðX [ Y Þ:

As for

SHðX [ Y Þ � SHðXÞ [ SHðY Þ;

or any x 2 SHðX [ Y Þ, by the definition, there exists a
K 2 C such that x 2 K and K \ ðX [ Y Þ 6¼ �. From
K \ ðX [ Y Þ ¼ ðK \XÞ [ ðK \ Y Þ, K \X and K \ Y
cannot be both empty. If K \X 6¼ �, we have

x 2 SHðXÞ. Otherwise, we have x 2 SHðY Þ. Therefore,

x 2 SHðXÞ [ SHðY Þ. Now, we have proved that

SHðX [ Y Þ � SHðXÞ [ SHðY Þ. tu
Remark 3. Generally, properties (5H), (6), (8H), and (9H) in

Proposition 1 do not hold for the second type of covering

upper approximations. A counterexample is given as

follows:

Example 4. Let U ¼ fa; b; c; dg, K1 ¼ fa; bg, K2 ¼ fa; b; cg,
K3 ¼ fc; dg, and C ¼ fK1; K2; K3g. C is a covering of U .

(5H) If X ¼ fa; bg, we have SHðXÞ ¼ fa; b; cg. How-
ever, SHðfa; b; cgÞ ¼ fa; b; c; dg, so

SHðSHðXÞÞ 6¼ SHðXÞ:

(6) If X ¼ fa; bg, we have CLðXÞ ¼ fa; bg. However,
SHðð�XÞÞ ¼ SHðfc; dgÞ ¼ fa; b; c; dg, so

CLðXÞ 6¼ �SHðð�XÞÞ:

(8H) For X ¼ fag,

SHðXÞ ¼ fa; bg and

SHðð�SHðXÞÞÞ ¼ SHðfc; dgÞ ¼ fa; b; c; dg;

so, SHðð�SHðXÞÞÞ 6¼ �SHðXÞ.
(9H) Let K ¼ K2 ¼ fa; b; cg, we have

SHðKÞ ¼ U 6¼ K:

Now that properties (5H), (6), (8H), and (9H) in

Proposition 1 are not generally valid for SH, what are the

conditions that guarantee that any of them holds for SH?

We have the following conclusions [76].

Theorem 13. SH satisfies

ð5HÞ SHðSHðXÞÞ ¼ SHðXÞ ðIdempotencyÞ

if and only if C satisfies the following:

8K;K1; K2; . . . ; Km 2 C;

if K1 \K2 \ . . . ; Km 6¼ � and

K \ ðK1 [K2 [ . . . [KmÞ 6¼ �;

then K � ðK1 [K2 [ . . . [KmÞ.
Proof () ). 8K;K1; K2; . . . ; Km 2 C, if K1 \K2 \ . . . ; Km 6¼
� and K \ ðK1 [K2 [ . . . [KmÞ 6¼ �, then there exists an

x such that x 2 K1 \K2 \ . . . ; Km. By the definition of

SH,

K1 [K2 [ . . . [Km � SHðfxgÞ and

K � SHðSHðfxgÞÞ:

Since 8X � U , SHðSHðXÞÞ ¼ SHðXÞ, K � SHðfxgÞ;
thus, K � ðK1 [K2 [ . . . [KmÞ.

(( ). It is obvious that SHðXÞ � SHðSHðXÞÞ. Now,
we prove that SHðSHðXÞÞ � SHðXÞ. First, we prove
that SHðSHðfxgÞÞ � SHðfxgÞ.

According to the definition of SH, there exists
K1; K2; . . . ; Km 2 C such that

SHðfxgÞ ¼ K1 [K2 [ . . . [Km:
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8y 2 SHðSHðfxgÞÞ, there exists a K 2 C such that y 2 K,

and K \ SHðfxgÞ 6¼ �, so K \ ðK1 [K2 [ . . . [KmÞ 6¼ �.

By the property, K � ðK1 [K2 [ . . . [KmÞ ¼ SHðfxgÞ,
so y 2 SHðfxgÞ. Now, we have proved that

SHðSHðfxgÞÞ � SHðfxgÞ:

By property (4H) listed in Proposition 10, 8X � U ,

SHðSHðXÞÞ ¼ SHðXÞ. tu

Theorem 14. SH satisfies

ð8HÞ SHð�SHðXÞÞ ¼ �SHðXÞ

if and only if fSHðfxgÞjx 2 Ug is a partition.

Proof () ). Since SH also satisfies (3H) and (4H), by [17],

[65], and [66], SH is a classical upper approximation

operation, so fSHðfxgÞjx 2 Ug is a partition.
(( ). If fSHðfxgÞjx 2 Ug is a partition, by property

(4H) listed in Proposition 10, SH is the classical upper
approximation operation generated by the partition
P ¼ fSHðfxgÞjx 2 Ug, so SHð�SHðXÞÞ ¼ �SHðXÞ. tu

Corollary 4. If SH satisfies

ð8HÞ SHð�SHðXÞÞ ¼ �SHðXÞ;

then it also satisfies

ð5HÞ SHðSHðXÞÞ ¼ SHðXÞ:

Proof. It comes directly from Theorem 13 and Theorem 14.tu

As for property (6), we get the following result.

Theorem 15. CL and SH satisfy

ð6Þ SHð�XÞ ¼ �CLðXÞ

if and only if C is a partition.

Proof () ). 8K1; K2 2 C, if K1 \K2 6¼ �, let us assume that

x 2 K1 \K2. By CLðK1Þ ¼ K1 and property (6), we have

SHð�K1Þ ¼ �K1, so K2 � K1. Otherwise, there exists

y 2 K2 such that y 2 �K1. By the definition of SH,

x 2 SHð�K1Þ. This contradicts to SHð�K1Þ ¼ �K1. In

the same way, we can prove that K1 � K2; thus,

K1 ¼ K2. Therefore, C is a partition.
(( ). It is evident. tu

Theorem 16. SH satisfies

ð9HÞ 8K 2 C; SHðKÞ ¼ K

if and only if C is a partition.

Proof () ). 8K, K0 2 C, and K0 6¼ K, since SHðKÞ ¼ K,

by the definition of SH, we have K0 \K ¼ � or

K0 � K. If K0 � K, then, again by the definition of

SH, K � SHðK0Þ ¼ K0. This is a contradiction. Thus,

K0 \K ¼ �. Therefore, C is a partition.
(( ). It is evident. tu

Corollary 5. SH satisfies property (9H) if and only if it satisfies

property (8H).

Corollary 6. If SH satisfies property (9H), then it also satisfies

property (5H).

4.2 Independence of the Covering Lower and Upper
Approximation Operations

In this section, we investigate whether the lower approx-
imation operation uniquely determines the second type of
covering upper approximation operation and whether the
second type of covering upper approximation operation
uniquely determines the lower approximation operation.

The concept of reduct is a powerful tool for dealing with
lower and upper approximation operations for the first type
of covering generalized rough sets, but it is not so useful for
the second type of upper approximation operations. In the
next two examples, we prove the independence of the
second type of lower and upper approximation operations.

Example 5. reductðCÞ and C do not generate the same
second type of covering upper approximation operations.

Let U ¼ fa; bg, K1 ¼ fag, K2 ¼ fbg, and K3 ¼ fa; bg.
For covering C ¼ fK1; K2; K3g, the corresponding second
type of covering upper approximation operation SH1 is

SH1ð�Þ ¼ � and SH1ðXÞ ¼ U; 8� � X � U:

For covering reductðCÞ ¼ fK1; K2g, the correspond-
ing second type of covering upper approximation
operation is

SH2ðXÞ ¼ X; 8X � U:

These two second type of covering upper approxima-
tion operations are not the same. On the other hand, by
Theorem 1 in [69], C and reductðCÞ generate the same
covering lower approximation operation. As a conse-
quence, we reach at an important conclusion that for
two coverings, the same covering lower approximation
operations do not imply the same second type of covering
upper approximation operation.

Example 6. Two different coverings can generate the same
second type of covering upper approximation operation
but different covering lower approximation operations.

Let U ¼ fa; bg, K1 ¼ fag, and K2 ¼ fa; bg. For cover-
ings C1 ¼ fK1; K2g and C2 ¼ fK2g, the corresponding
second type of covering upper approximation operations
are the same:

SHð�Þ ¼ � and SHðXÞ ¼ U for others:

On the other hand, the corresponding second type
of covering lower approximation operations are
different. For covering C1, CL1ð�Þ ¼ CL1ðfbgÞ ¼ �,
CL1ðfagÞ ¼ fag, and CL1ðUÞ ¼ U .

For covering C2, CL2ð�Þ ¼ CL2ðfagÞ ¼ CL2ðfbgÞ ¼ �,
and CL2ðUÞ ¼ U .

Now, we draw a conclusion about interdependency of
the lower and the second type of upper approximation
operations.

Theorem 17. The covering lower approximation operation and
the second type of upper approximation operation cannot
uniquely determine each other.

Proof. From Example 5 above, the covering lower approx-
imation operation does not uniquely determine the
second type of upper approximation operations. From
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Example 6 above, the second type of upper approxima-
tion operation does not uniquely determine the covering
lower approximation operations. tu

4.3 Exclusions of Coverings

For the upper approximation operation in the second type
of covering generalized rough sets, the concept of reduct is
no longer a very useful tool, so we propose an alternative
concept, exclusion, as a partial solution to the problem under
which conditions two coverings generate an identical
second type of upper approximation operations.

Definition 15. Let C be a covering of U and K an element of C.
If there exists another element K0 of C such that K � K0, we
say that K is an immured element of covering C.

Definition 16 (semireduced [18]). Let C be a covering of U . C
is called semireduced or semi-irredundant if it satisfies the
following condition:

8K1; K2 2 C; and K1 � K2 ) K1 ¼ K2:

In other words, there is no K1; K2 2 C such that K1 � K2.

Proposition 11. A covering C of a set U is semireduced if and
only if it has no immured elements.

Proposition 12. A covering C of a set U is semireduced if and
only if MaximalDðCÞ ¼ C.

Proposition 13. A covering C of a set U is semireduced if and
only if it satisfies the following condition: 8x 2 U and
8K 2 C:

x 2 K , K 2MdðxÞ:

Proposition 14. Let C be a covering of U and K an immured
element of C, then C� fKg is also a covering of U .

Proposition 15. Let C be a covering of U and K an immured
element of C, then C and C� fKg generate identical second
type of upper covering approximation operations.

Proposition 16. Let C be a covering of U , K and K0 two
elements of C, and K an immured element of C. K0 is an
immured element of C if and only if K0 is an immured element
of the covering C� fKg.

Definition 17 (Exclusion). Let C be a covering of U . When we
remove all immured elements from C, the set of all remaining
elements is still a covering of U , and this new covering has no
immured element. We call this new covering an exclusion of
C, and it is denoted by exclusionðCÞ.

Proposition 17. Let C be a covering of U ,

MaximalDðCÞ ¼ exclusionðCÞ:

Proposition 18. Let C be a covering of U . C and exclusionðCÞ
generate an identical second type of upper covering approx-
imation operations.

Proof. It comes from Proposition 16. tu
Proposition 19. Let C and C0 be two coverings of U . If
exclusionðCÞ ¼ exclusionðC0Þ, C and C0 generate an
identical second type of upper covering approximation
operation.

Example 7 (Two different coverings generate identical

second type of lower and upper approximation opera-

tions). Let

U ¼ fa; b; c; dg; K1 ¼ fag; K2 ¼ fbg;
K3 ¼ fa; bg; and K4 ¼ fa; b; c; dg:

C ¼ fK1; K2; K4g and C0 ¼ fK1; K2; K3; K4g are two

coverings of U . It is easy to see that reductðCÞ ¼
reductðC0Þ and

exclusionðCÞ ¼ exclusionðC0Þ;

thus, they generate the same lower and upper approx-

imation operations.

4.4 Axiomization of the Second Type of Upper
Approximation Operations

As in Section 3.5, the properties in Proposition 10 are not

enough for the upper approximation operations in the

second type of covering generalized rough sets.

Example 8. An operation H : P ðUÞ ! P ðUÞ satisfies proper-

ties (1H), (2H), (3H), (4H), and (7H) in Proposition 5;

however, there is no covering C on U such that H is the

second type of upper approximation operation generated

by C.
Let U ¼ fa; bg. Define H : P ðUÞ ! P ðUÞ as follows:

Hð�Þ ¼ �, HðfagÞ ¼ fa; bg, Hðfa; bgÞ ¼ fa; bg, a n d
HðfbgÞ ¼ fbg. U has four possible coverings, given as
follows:

1. fa; bg,
2. fag; fbg,
3. fag; fa; bg, and
4. fbg; fa; bg,

but none of them can generate H as their second type of

covering upper approximation operations.

It is still an open problem to find an axiomatic system

for the second type of covering upper approximation

operations.

4.5 Relationships between the Upper
Approximation Operation and the Closure
Operator

From Remark 3 in Section 4.1, we know that, generally, SH

is not a closure operator, since Axiom IV is not generally

valid for SH. In this section, we investigate the conditions

under which SH is a closure operator.

Theorem 18 (Condition under which SH is a closure

operator). Operation SH is a closure operator if and only if

8x 2 U and K 2 C, either K � FriendsðxÞ or

K \ FriendsðxÞ ¼ �:

Proof. If 8x 2 U and K 2 C, either K � FriendsðxÞ or

K \ FriendsðxÞ ¼ �, then 8x 2 U , SHðSHðxÞÞ ¼ SHðxÞ.
Thus, by property (4H) in Proposition 10, 8X � U ,

SHðSHðXÞÞ ¼ SHðXÞ.
On the other hand, if there exists an x 2 U and K 2 C

such that K 6� FriendsðxÞ and K \ FriendsðxÞ 6¼ �, then
there is a y 2 K such that y 62 FriendsðxÞ. As a result,
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SHðxÞ ¼ FriendsðxÞ, and y 2 K � SHðSHðxÞÞ. Thus,
SHðSHðxÞÞ 6¼ SHðxÞ. tu

5 THIRD TYPE OF COVERING GENERALIZED

ROUGH SETS

A third type of covering generalized rough sets has been

introduced in [37]. The proposed third definition of the

upper approximation operation is considered to be more

reasonable than those of the first and second types, but no

properties of this new class of covering generalized rough

sets have been discussed. In this section, we investigate the

corresponding issues for this type of upper approximation

operations.

5.1 Concepts and Properties

Definition 18 ðTHÞ. Let C be a covering of U . The third type of

covering upper approximation operation TH is defined as

follows: 8X � U ,

THðXÞ ¼ [fMdðxÞjx 2 Xg:

Proposition 20. If C is a partition of U , THðXÞ is the upper

approximation operation as specified by Pawlak’s original

definitions.

Proposition 21. The third type of covering upper approximations

have properties (1H), (2H), (3H), (4H), and (7H) in

Proposition 1.

Remark 4. Properties (5H), (6), (8H), and (9H) in Proposi-

tion 1 do not hold for the third type of covering upper

approximations. The following is a counterexample.

Example 9. U ¼ fa; b; cg, C ¼ ffa; bg; fb; cgg,

ð5HÞ X ¼ fag; THðXÞ ¼ fa; bg;
THðTHðXÞÞ ¼ fa; b; cg:

ð6Þ X ¼ fag; CLð�XÞ ¼ fb; cg; THðXÞ ¼ fa; bg;
� THðXÞ ¼ fcg:

ð8HÞ X ¼ fag;�THðXÞ ¼ fa; bg;
THð�THðXÞÞ ¼ U:

ð9HÞ K ¼ fa; bg 2 C; THðKÞ ¼ U:

5.2 Interdependency of Lower and Upper
Approximation Operations

As in Section 3.2, reduct is also a useful concept for upper

approximation operations in the third type of covering

generalized rough sets. We use this concept to achieve

results partially similar to those in Section 3.2.
First, we prove that the lower approximation uniquely

determines the upper approximation.

Proposition 22. K 2 C is reducible if and only if

8x 2 U;K 62MdðxÞ.
Proof. IfK 2 C is reducible, then there exist K1; . . . ; Km 2 C

such that K ¼ K1 [ . . . [Km and Ki � K for i ¼ 1; . . . ;m.

8x 2 U , if x 62 K, it is obvious that K 62MdðxÞ. If x 2 K,

there must be an i such that 1 � i � m and x 2 Ki; thus,

K 62MdðxÞ.

On the other hand, if 8x 2 U;K 62MdðxÞ, by the
definition of MdðxÞ, 8x 2 K, there exists a Kx 2 C such
that Kx � K. As a result, K � [fKxjx 2 Kg � K. That
proves that K ¼ [fKxg; thus, K is reducible. tu

Proposition 23. Let C be a covering of U . C and reductðCÞ
generate the same third type of covering upper approximation
operation.

Proof. The conclusion about the third type of covering
upper approximation operation comes from its definition
and Proposition 22. tu

Theorem 19. Let C1 and C2 be two coverings of U . If
reductðC1Þ ¼ reductðC2Þ, C1 and C2 generate the same
third type of covering upper approximation.

Proof. It comes from Proposition 23. tu
Theorem 20. Let C1 and C2 be two coverings of U . If C1 and C2

generate the same covering lower approximation operation,
then they also generate the same third type of covering upper
approximation.

Proof. If C1 and C2 generate the same covering lower
approximation operation, by Theorem 7,

reductðC1Þ ¼ reductðC2Þ:

By Theorem 19, C1 and C2 generate the same third type
of covering upper approximation. tu
Theorem 20 shows that the lower approximation opera-

tion uniquely determines the third type of upper approx-
imation operation. Now, we will prove that the upper
approximation operation does not uniquely determine the
lower one by the following example:

Example 10 (Two coverings yield the same upper
approximation operation, but their reducts are not
equal [70]). Let U ¼ fa; b; cg, K1 ¼ fa; bg, K2 ¼ fb; cg,
K2 ¼ fa; cg, K4 ¼ fa; b; cg, C1 ¼ fK1; K2; K3g, a n d
C2 ¼ fK4g. Then, 8X 6¼ �, THðXÞ ¼ fa; b; cg in both
coverings. On the other hand, reductðC1Þ ¼ C1, and
reductðC2Þ ¼ C2. From Theorem 7, it also means that
C1 and C2 generate different covering lower approx-
imation operations.

In the end of this section, we present the condition under
which two coverings generate an identical third type of
upper approximations.

Theorem 21. Let C1 and C2 be two coverings of U . C1 and C2

generate the same third type of covering upper approximations
if and only if 8x 2 U , CFriendsðxÞ is the same for these two
coverings.

Proof. It is easy to see that THðxÞ ¼ CFriendsðxÞ. By
property (4H) in Proposition 21, we prove this theorem.tu

5.3 Axiomization of the Third Type of Upper
Approximation Operations

As in Sections 3.5 and 4.4, the properties in Proposition 21
are not enough to characterize the upper approximation
operation in the third type of covering generalized rough
sets. This conclusion comes from the following example:

Example 11. An operation satisfies (1H), (2H), (3H), (4H),
and (7H), but it is not a third type of covering upper
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approximation operation. Let U ¼ fa; b; cg. Define H :

P ðUÞ ! P ðUÞ as follows:

Hð�Þ ¼ �;HðfagÞ ¼ fa; bg; HðfbgÞ ¼ fb; cg; HðfcgÞ ¼ fcg;
Hðfa; bgÞ ¼ U;Hðfb; cgÞ ¼ fb; cg; Hðfa; cgÞ ¼ U;HðUÞ ¼ U:

It is obvious that H satisfies properties (1H), (2H),

(3H), (4H), and (7H), but it is easy to show that there is

no covering C of U such that H is its third type of

covering upper approximation operation.

It is still an open problem to find an axiomatic system for

the third type of covering upper approximation operations.

5.4 Relationships with Closure Operations

From Remark 4 in Section 5.1, we know that, generally, TH

is not a closure operation, since Axiom IV is not generally

valid for TH. We start to investigate the conditions under

which the third type of covering upper approximation

operation is a closure operator.

Definition 19 (Nonexpansive). Let C be a covering of U . C is

called a nonexpansive covering if 8x 2 U , K 2 C, and K \
CFriendsðxÞ is a union of elements of C.

Theorem 22 (Condition under which TH is a closure

operator). Operation TH is a closure operator if and only if C

is a nonexpansive covering of U .

Proof. It is easy to see that THðfxgÞ ¼ CFriendsðxÞ. If C is

nonexpansive, by the definition,

THðTHðfxgÞÞ ¼ THðfxgÞ:

By property (4H) in Proposition 21, 8X � U and

THðTHðXÞÞ ¼ THðXÞ.
On the other hand, if C is not nonexpansive, there

exists some x 2 U andK 2 C such thatK 6� CFriendsðxÞ,
and Y ¼ K \ CFriendsðxÞ is not a union of elements of C.
Thus, there exists a w 2 Y and Kw 2 C such that
Kw 2MdðwÞ, and Kw 6� Y . As a result, Kw 6� THðfxgÞ.
On the other hand, Kw � THðTHðXÞÞ; thus,

THðTHðfxgÞÞ 6¼ THðfxgÞ:

We have proved that TH is not a closure operator. tu

Corollary 7. If C is pointwise covered, then TH is a closure

operator.

6 RELATIONSHIPS AMONG THE THREE TYPES OF

COVERING ROUGH SETS

For a covering C of U , we have presented three types of

covering upper approximation operations in this paper. In

this section, we will study the relationships among these

three types of covering upper approximation operations.
Since

THðXÞ ¼ [fMdðxÞjx 2 Xg
¼ [fMdðxÞjx 2 CLðXÞg [ fMdðxÞjx 2 X � CLðXÞg

and 8x 2 X, MdðxÞ \X 6¼ �, from the definitions of three

types of upper approximation operations, it is easy to see

that the following rules hold: For a covering C of U and

X � U ,

FHðXÞ � THðXÞ � SHðXÞ: ð1Þ

But, generally, the corresponding equalities do not hold.

We have the following results about the conditions that

guarantee that these equalities hold [70].

6.1 Conditions under Which FH and TH Are
Identical

From the above discussion, for a covering C of U and

X � U , we have FHðXÞ � THðXÞ, and the equality does

not hold generally. In the following theorem, we present a

sufficient and necessary condition under which the equality

holds.

Theorem 23. FH ¼ TH if and only if C is unary.

Proof. If C is unary, from FHðXÞ ¼ CLðXÞ [ fMdðxÞjx 2
X � CLðXÞg and

THðXÞ ¼ [ fMdðxÞjx 2 Xg ¼ [fMdðxÞjx 2 CLðXÞg
[ fMdðxÞjx 2 X � CLðXÞg;

we need to prove only [fMdðxÞjx 2 CLðXÞg � CLðXÞ. In

fact, 8x 2 CLðXÞ, by the definition of CLðXÞ, there exists

a K 2 C such that x 2 K � X. Let K0 be the only element

in MdðxÞ. If K0 � K, it is obvious that K0 � CLðXÞ.
Otherwise, 9y 2 K0 such that y 62 K. By the definition of

MdðxÞ, there is some K00 such that K00 � K and

K00 2MdðxÞ. Since y 62 K, y 62 K00. It concludes K00 6¼ K0;
therefore, MdðxÞ has at least two elements. That contra-

dicts the assumption that C is unary.
If C is not unary, 9x 2 U such that MdðxÞ has at

least two different elements K and K0. By the
definition of the first type and third type of upper
covering approximations, we have FHðKÞ ¼ K and
THðKÞ ¼ [fMdðxÞjx 2 Kg; thus, K0 � THðKÞ. That
means FHðKÞ 6¼ THðKÞ. Otherwise, K0 � K; that
contradicts the minimum of K. tu

6.2 Conditions under Which SH and TH Are
Identical

From the above discussion, for a covering C of U and

X � U , we have THðXÞ � SHðXÞ, and the equality does

not hold generally. In the following theorem, we present a

sufficient and necessary condition under which the equality

holds.

Theorem 24. TH ¼ SH if and only if covering C is pointwise

covered.

Proof. If TH ¼ SH, 8x 2 U;K 2 C such that x 2 K, we

have K � SHðfxgÞ ¼ THðfxgÞ ¼ [MdðxÞ; thus, C is

pointwise covered.
On the other hand, if C is pointwise covered,

8X � U , SHðXÞ ¼ [fKjK 2 C ^K \X 6¼ �g. 8K 2 C
and K \X 6¼ �. Let x 2 K \X, we have x 2 K, x 2 X.
By the definition of a pointwise-covered covering,
K � [MdðxÞ; thus, K � THðXÞ, which proves that
SHðXÞ � THðXÞ. THðXÞ � SHðXÞ is obvious from
their definitions; therefore, SHðXÞ ¼ THðXÞ. tu
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6.3 Conditions under Which FH and SH Are
Identical

Theorem 25. FH ¼ SH if and only if covering C is a partition.

Proof. If C is a partition, it is easy to see that FH ¼ SH.
On the other hand, if FH ¼ SH, by inequality (1) in

this section, we have FH ¼ TH ¼ SH. From FH ¼ TH
and Theorem 23, C is unary. From SH ¼ TH and
Theorem 24, C is pointwise covered. Then, by Theorem 9
in [70], C is a partition. tu

7 CONCLUSIONS

Rough set is one of the useful tools for data mining. The
covering-based rough set model is an extension to the
classical rough sets. It is more flexible in dealing with
uncertainty and granularity in information systems. In this
paper, we have studied three types of covering-based rough
sets. First, a key concept, reduct, is proposed to establish the
interdependency between the lower and the upper approx-
imation operations in the first and third types of covering
generalized rough sets. We also propose another key
concept, exclusion, to establish the interdependency be-
tween the lower and the upper approximation operations in
the second types of covering-based rough sets. Then, we
discuss the axiomatic systems for lower and upper
approximation operations. Furthermore, we study the
relationships between the lower approximation operation
and the interior operator and the relationships between the
three types of upper approximation operations and the
closure operator. In the end, the relationships among the
three types of covering upper approximation operations are
explored.

There are several issues in covering-based rough sets
deserving further investigation. For example, finding a set
of axioms for the three types of covering upper approxima-
tion is still an open problem. Topological properties of the
covering-based rough set are also a potential topic for
future research. In addition, the generalization of covering-
based rough sets in fuzzy setting is also a promising topic.
On the other hand, the applications of covering-based
rough set methods to data mining and social computing
[14] are exciting areas to be explored. We will study these
issues in our future works.
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