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EMD Sifting Based on Bandwidth

Bo Xuan, Qiwei Xie, and Silong Peng

Abstract—Empirical-mode decomposition (EMD) provides a
powerful tool for adaptive multiscale analysis of nonstationary
signals. Aiming at the intrinsic mode function (IMF) criteria
in sifting process and the scale mixing problem in EMD, this
paper proposes a bandwidth criterion for IMF. By analyzing the
simulated signal, it is confirmed that the IMFs obtained with the
bandwidth criterion approximate the real components better and
reflect the intrinsic information of the analyzed signal. Further-
more, the criterion based on bandwidth can weaken the scale
mixing problem.

Index Terms—Empirical-mode decomposition (EMD), intrinsic
mode function (IMF), instantaneous frequency (IF), local narrow-
band signal.

I. INTRODUCTION

MPIRICAL-MODE decomposition (EMD), introduced by

N. E. Huang et al. [1] in 1998, is a method for decom-
posing complex, multicomponent signal into several elementary
intrinsic-mode functions (IMFs). Unlike Fourier analysis and
wavelet analysis, which have predefined bases, EMD only uses
the original signal. From this point of view, EMD is a local, fully
data-driven and self-adaptive analysis approach [1]-[3]. More-
over, the combination of EMD and the associated Hilbert spec-
tral analysis can offer a powerful method for time—frequency
analysis.

Although it has been proved remarkably effective in many ap-
plications [1]-[5], EMD has many problems. Besides the math-
ematical model and problems during the sifting process (SP)
(such as boundary effect, overshoots, undershoots, etc.), there
are two major problems about IMF. The first is scale mixing:
IMF often contains local oscillations with dramatically different
frequencies [2]. The second is IMF criteria problem. IMF cri-
teria determine how to select IMF and when to stop a sifting
process in EMD. But it is a pity that all of the criteria considered
so far [5]-[7] are constraints on the amplitude and are unrelated
to frequency and phase information. So IMF obtained based
on those criteria would have dramatically different frequencies,
and the associated Hilbert spectral analysis would have light
meaning.
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This paper proposes the bandwidth criterion for IMF, aiming
at getting a better approximation to the real component of the an-
alyzed signal and weakening the scale mixing problem in EMD.

II. EMD BASsICS

In order to make its instantaneous frequency (IF) have mean-
ingful interpretation, the IMF has to satisfy two conditions [1]:
1) in the whole data set, the number of extrema and the number
of zero-crossings must either be equal or differ, at most, by one
and 2) at any point, the local average of upper and lower en-
velope is zero. They are necessary conditions for reasonable IF
and instantaneous amplitude.

EMD uses sifting process to extract IMFs from the analyzed
signal. We will present EMD in brief, and details are available
in [6] and [8].

A. Sifting Process

Given areal valued signal z(t), let r(t) = z(t),k = 1,i =0,
the process of EMD can be summarized as follows.

1) Find all local minima and maxima of r(t).

2) Get the upper envelope epax(t) by interpolating between
maxima. Similarly get the lower envelope emin(t) with
minima.

3) Compute the mean envelope as an approximation to the
local average m(t) = (emax(t) + emin(t))/2.

4) Let4 = 2+ 1 and define the protomode function (PMF) as
pi(t) = r(t) — m(t), and let r(t) = p;(t).

5) Repeat steps 1)-4) on PMF p;(¢) until it is an IMF, then
record the IMF imfy,(¢) = p;(t).

6) Let r(t) = r(t) — imfy(¢), if the extremum point number
of r(t) is larger than three, let k = k + 1,7 = 0, and go to
step 1); otherwise, finish the sifting process.

This process gets several IMFs and a residue (). So, for any
one-dimension discrete signal z, EMD can finally present it with
the following representation:

K
z(t) = Z imfy(t) + r(t). (1)

k=1

B. IMF Criteria

The second condition for IMF in the above is toorigid to use, so
we need to change it for the implementation of EMD. The essence
of the change is to make the instantaneous frequency of IMF
meaningful. To guarantee that the IMF components have enough
physical sense, Huang [ 1] limits the size of the standard deviation
(SD), and SD is computed from two consecutive PMFs as

= lpica () = pi(®)P
R D O ?

The SD constraint is a Cauchy-type criterion [5]. Since SD
is unrelated to the definition of IMF, the component obtained
with this criterion could not be an IMF. As an improvement to

t=0
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SD criterion, Rilling et al. [6] brought forward a 3-threshold
criterion. They define three thresholds 61, 62, and «, and define
a(t) = (emax(t) — emin(t))/2 and o(t) = |a(t)/m(t)|. EMD
iterates the sifting process until o(¢t) < 6; for fraction (1 —
«) of the total time and o(¢) < 65 for the remaining fraction.
The typical values of the thresholds are a = 0.05,6; = 0.05,
and 65 = 0.5. In the same paper, a local EMD criterion was
proposed to overcome the contaminating problem caused by the
singular area. The problem of the 3-threshold criterion is that the
thresholds do not adapt to the analyzed signal automatically.
Recently, based on the assumption that the components of
the analyzed signal are orthogonal mutually, Cheng et al. [5]
put forward the energy difference tracking (EDT) method. Sup-
pose signal z(¢) contains N mutually orthogonal components
{z:(t),i =1,2,..., N}, and the average of x;(t) is zero, then

/ sy () dE =0, i 4. 3)

When EMD decomposes () and obtains an IMF ¢4 (¢), and
after ¢q(t) has been separated from x(t), the energy variation
caused by decomposition is

[awa- [«vawal. @

From the Pythagorean Theorem, FE,, is a measure of the orthog-
onality of ¢ (¢) and of z:(¢) — ¢1(¢). Hence, we can track Ee,, in
sifting process. When FE.,, reaches a certain minimum and the
mean envelope values are small enough (use 3-threshold crite-
rion at first to make the mean envelop values small), the current
sifting process is completed and comes to the next IMF’s iter-
ation. Thus, the obtained IMF component is an orthogonal one
of the original signal. However, the EDT criterion cannot pick
the correct PMF as IMF when real components of the analyzed
signal have strong correlations.

Damerval et al. [7] proposed a criterion based on the number
of iterations and the number of IMFs for bidimensional EMD.
This criterion saves computational cost and has little boundary
effect in the sifting process. The number of iterations and IMFs
should be selected carefully. Too few sifting steps cannot elim-
inate the riding waves, and IMFs obtained will dissatisfy the
two IMF conditions. On the other hand, too many sifting steps
would sometimes obliterate the intrinsic amplitude variations
and make the results physically less meaningful.

In addition, none of the before-mentioned criteria uses fre-
quency or phase information of the analyzed signal. So IMFs
obtained with those criteria are prone to have a scale-mixing
problem and then have no reasonable interpretation.

Eerr =

III. BANDWIDTH CRITERION FOR IMF

Given a real valued signal z(t), using the Hilbert transform
and analytical signal theory, we can obtain a complex valued
signal whose real part is equal to z(t) [9]-[12]. The Hilbert
transform of signal z(¢) is defined by [11]

Hiz(t)] = 1 / (1) dr. ®)

T™) t—T
Due to the possible singularity at 7 = ¢, the integral is to be con-
sidered as a Cauchy principal value. The corresponding complex
valued signal (analytic signal) is [11]

Al (t)] = 2(t) + j H[(1)]. (6)
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For this reason, we use a complex valued signal directly here-
after in this section. Given a normalized (energy is 1) signal
2(t) = a(t)e??(®), the instantaneous frequency of z(t) is de-
fined as ¢ (). The Wigner distribution of z(t) is defined as [11]

P(t,w) = % /z* (t - %T) z (t + %T) e I dr. (7)

Then, we have

wp = Lpl(t) = /wP(w |t) dw (8)
where
__ P(w)
Plwlt) = [Pt w)dw 2

Consider a multicomponent signal comprised of N compo-
nents
N

2(t) = a(t)e’¥®) = Z Tp(t) = Z m (£)e3#m ®

m=1

(10)

where a,,, (t) and p,, (¢) are the amplitude and phase of the com-
ponent 2., (t), respectively. Then

N
(1) =Y wm(t) (11)
where )
N
W () = Y am(D)an(t) coslm (1) — @n(D)]. (12)
n=1

Calculating the derivative of z(t), from (10)—(12), we can obtain
]\T

Jn=S mdomrcn  ay
where
N N ’
6= 30 3. 5D sinfon ) - a0l (19
m=1n=1

Equation (13) shows that the instantaneous frequency for the
multicomponent signal has two parts: the first part is a weighted
average of the instantaneous frequencies of its components, the
second part is related to the amplitude values of its components.
When w,, (t) < 0, the instantaneous frequency of z(t) tends to
go beyond the instantaneous frequency range of its components
[10]. For this reason, (13) has some apparent paradoxes associ-
ated with instantaneous frequency and yields an irrational ex-
planation of IF.

Equation (13) also implies that the signal tends to have a
meaningless IF if it is not monocomponent. For the lack of an
exact definition of the monocomponent signal by now, Huang
[1] uses two IMF conditions to replace the monocomponent re-
quirement. As mentioned before, IMF conditions are not suffi-
cient conditions for reasonable instantaneous frequency. So the
IFs of IMFs are usually meaningless because the IMFs are not
monocomponent signals.

This paper will show that a better substitution for the mono-
component signal than the two IMF conditions is the local nar-
rowband signal. We call a signal z(t) = a(t)e?#?*) narrowband
if a(t) is a bandlimited signal and the highest frequency of a(t)
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is far less than ¢ (t). If any little segment of a signal is narrow-
banded, then we call the signal local narrowband.

On the other hand, the instantaneous bandwidth of the signal
z(t) at time ¢ is [11]

5)

The instantaneous bandwidth is a measure of how P(¢,w) con-
centrates in the center IF w, at time ¢. When B, is very small,
z(t) is considered as a local narrowband signal and from (9), the
IF has perfect physical sense. If S(w) is the Fourier transform
of z(t), B is the bandwidth of z(t), and the energy of z(t) is 1,
from the knowledge of Fourier analysis, we have [11]

W=/W—Mﬂﬂ@Ww

2
- /z*(t) G% - (w)) 2(t) dt (16)
where
@ = [@atwd= [ ona
Substituting z(t) = a(t)e?*® into (16), we obtain
B? = B, + B} (18)

where

(20)

Equation (18) implies that bandwidth B has two terms B,
and By. We call By the frequency bandwidth and B, the am-
plitude bandwidth. B, results from the changes of a(t) and is
only associated with amplitude modulating. Furthermore, B2 is
the weighted sum of (By)?. By is the result of changes of IF and
reflects the consistency of the IF at all time extents. The smaller
the By, the closer the scale characteristics at different times are,
and the slighter the scale-mixing problem is.

In brief, we modify the sifting process as follows.

1) Use a 3-threshold criterion with large thresholds in the
sifting process so that PMFs almost satisfy two IMF con-
ditions.

2) Loop the sifting process until B; is smaller than the
threshold (4 in this paper) in the majority (90%) of the
time range so that PMF is a local narrowband signal.

3) Continue sifting until we find the minimum of BJ%.

4) Separate the final PMF as an IMF and deal with the residual
signal for other IMFs.

In the implementation of this process, the calculation of
P(t,w) is unnecessary because we can use (6) to obtain the
analytic signal. Then, we can use (15), (17), and (20) to obtain
B; and B]%.

As thresholds in step 1) take large values, this process may
need fewer calculations than the 3-threshold criterion method.
Even some IMFs need more calculation; the other IMFs would
need fewer iterations. On all accounts, the number of sifting
iterations are adaptive to the analyzed signal automatically.
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Fig. 1. Simulated signal and its two components.

0 0.5 1
()]

Fig. 2. IMFs of z(t) obtained with 3-threshold criterion (real lines) and band-
width criterion (lashed lines).

IV. RESULTS

The following illustrate the decomposition results obtained
with 3-threshold, EDT, Damerval criterion, and bandwidth cri-
terion, respectively. In order to compare EDT and bandwidth
criterion, we choose a signal whose components are almost or-
thogonal mutually.

As shown in (21) and Fig. 1, the simulated signal z(¢) consists
of an amplitude-modulated signal and a sine signal

x1(t) = 4sin(207t) sin(0.27t)
x2(t) = sin(10xt)

x(t) = z1(t) + x2(t) (21)

where ¢ € [0, 1] and the sampling frequency is 1024 Hz.

The thresholds used in this paper are « = 0.05,0; = 0.05,
and 2 = 0.5 for 3-threshold and energy difference tracking cri-
terion; a = 0.1,60; = 0.1 and 65 = 0.5 for bandwidth criterion;
the number of iterations is 100 for the Damerval criterion.

Suppose the IMF corresponding to x;(t) is ¢;(t). We define
the error signal between z;(t) and ¢;(t) as

Di(t) = Ji(t) — ei(t)] (22)
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Fig. 3. Fourier spectrums for the IMFs of x(#) with different IMF criteria. Real
lines are spectrum for imf; , and dashed lines are spectrum for imf, . From left
to right and top to bottom: criterion is 3-threshold, Damerval, energy difference
tracking, and bandwidth criterion, respectively.
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Fig. 4. Part of D(#) with difference criteria. (Top): D1 (t). (Bottom): D (¥).

and define Fq;¢(7) as

Eai(i) = / D2 (t) dt. (23)
where D(t) describes the performance of EMD. Fg;i¢(4) is the
distance between z;(t) and the corresponding IMF.

Fig. 2 presents the decomposition results of xz(t) with
3-threshold criterion and bandwidth criterion. It is clearly
illustrated that the foresides of IMFs obtained with 3-threshold
criterion are all anamorphic and lose their physical sense.
As shown in Fig. 3, the IMFs obtained with 3-threshold and
Damerval criterion have a scale-mixing problem because
spectrum lines are disordered near 5 Hz. On the contrary,
the IMFs obtained with bandwidth have slight scale-mixing
problem and are close to the real components. From Fig. 4, we
know that D(¢) with bandwidth criterion are smaller than D(t)
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TABLE 1
Eg4ir OF THE SIMULATED SIGNAL WITH DIFFERENT IMF CRITERIA

EDT Bandwidth
0.110 0.107
0.110 0.105

Criterion 3-Threshold Damerval Criterion
E, (1) 0.331 0.198
Eu (2) 0.254 0.161

with the other three criteria in the majority of this time range.
Table I illustrates that the bandwidth criterion obtains the best
approximations to the real components of z(t). In addition,
¢co(t) needs only one iteration with bandwidth criterion. This
confirms that the numbers of sifting iterations are adaptive to
signal automatically.

This example also shows that the bandwidth criterion has
some superiority over the EDT criterion even when the real
components are nearly orthogonal mutually.

V. CONCLUSION

In this paper, a new IMF criterion is proposed based on two
types of bandwidth: instantaneous bandwidth and the frequency
bandwidth which is caused only by frequency changes. Com-
pared with criteria that have been considered so far, the band-
width criterion not only can find the IMFs reflecting the scale
and frequency characters of the analyzed signal but also make
the IMFs have reasonable meaning. In addition to what has been
said, the IMFs obtained with bandwidth criterion have a slighter
scale-mixing effect. The criterion proposed here are believed to
provide new insights in EMD and IMF, but it cannot resolve the
scale-mixing problem fully and requires further study.
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