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Modeling and Analysis of Local Comprehensive
Minutia Relation for Fingerprint Matching

Xiaoguang He, Jie Tian, Senior Member, IEEE, Liang Li, Yuliang He, and Xin Yang

Abstract—This paper introduces a robust fingerprint matching
scheme based on the comprehensive minutia and the binary re-
lation between minutiae. In the method, a fingerprint is repre-
sented as a graph, of which the comprehensive minutiae act as
the vertex set and the local binary minutia relations provide the
edge set. Then, the transformation-invariant and transformation-
variant features are extracted from the binary relation. The
transformation-invariant features are suitable to estimate the
local matching probability, whereas the transformation-variant
features are used to model the fingerprint rotation transforma-
tion with the adaptive Parzen window. Finally, the fingerprint
matching is conducted with the variable bounded box method
and iterative strategy. The experiments demonstrate that the pro-
posed scheme is effective and robust in fingerprint alignment and
matching.

Index Terms—Adaptive Parzen window, binary minutia rela-
tion, fingerprint identification, transformation-invariant feature,
transformation-variant feature.

I. INTRODUCTION

A T PRESENT, fingerprint identification is much more re-
liable than most other biometric identification methods

such as signature, face, and speech [1]. Various algorithms
and techniques have been developed rapidly for fingerprint
identification systems in the past decade. In fact, a fingerprint is
the identity card that people carry for a lifetime. The classical
fingerprint identification was applied in security systems like
prison and criminal identification [1]. Recently, with the devel-
opment of the technology, it is increasingly used for civilian
daily life, such as access control, financial security, verification
of firearm purchaser [2], etc.
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A fingerprint is a pattern of ridges and valleys on skin sur-
face. The uniqueness of a fingerprint can be determined with an
overall pattern of ridges and valleys as well as local ridge anom-
alies, such as ridge endings and bifurcations, i.e., minutiae.
Many experts have designed fingerprint representation schemes
under the strong assumption that the input fingerprint and
template fingerprint are acquired by the same sensor. Therefore,
those schemes usually characterize the same intensity range
and admit a certain type of noise. In current years, techniques
[3]–[8] are developed to recover geometric distortion and mis-
alignment of fingerprints. However, these methods are time and
memory consuming since they usually align all minutiae one by
one with the local transformation information.

In this paper, a robust fingerprint matching scheme is de-
signed to explore comprehensive information of minutiae and
ridges and the relations between minutiae. The method intro-
duces a graph in fingerprint representation. In the graph, the
vertex set is the comprehensive minutiae, and the edge set is
the local binary minutia structures. Local structure is subject
to the positional constraints, and it helps to represent a local
fingerprint region and prevent false matching caused by insuffi-
cient minutiae. Compared with the ternary minutia structure as
other researchers adopted [3]–[8], [19], binary structure makes
a proper tradeoff between the performance and computational
expense. The proposed feature representation is inexpensive in
time and memory cost.

Two types of features are extracted from the binary compre-
hensive minutia structure. One is the transformation-invariant
features, which are used for the local matching probabil-
ity measurement between local structures. Another is the
transformation-variant features, and they are used to model
the rotation transformation with the adaptive Parzen window,
which statistically explores the transformation information
from local structures and admits the periodic property of ro-
tation angle. Finally, the variable bounded box method [9]
and iterative strategy are used for rechecking local matching
probability. Both the variable bounded box method and iterative
strategy globally reduce the influence of deformation on match-
ing. Experimental results on the database of the International
Fingerprint Verification Competition (FVC) 2002 [17] have
proven that our technique is efficient in terms of fingerprint
alignment and matching.

The rest of this paper is organized as follows: Section II in-
troduces and analyses the representation of fingerprint feature.
Section III describes the measurement of transformation para-
meter. Section IV presents the scheme of fingerprint matching.
Section V provides the experimental results. The final section
concludes our work with future perspectives.

1083-4419/$25.00 © 2007 IEEE
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II. REPRESENTATION OF FINGERPRINT FEATURE

Many popular fingerprint representation schemes, based on
image analysis, can be classified into three types. The first type
is the minutia-based technologies, which are predominantly
dependent on local landmarks [1], [3], [10], i.e., ridge endings
and bifurcates. This is widely used for its time saving and less
memory consumption. However, a minutia set cannot charac-
terize overall patterns of a fingerprint, and it is hard to further
improve the performance. The second type is the exclusive
global feature-based approaches [11]. With these methods,
the holistic patterns of fingerprint texture are used to calcu-
late the maximum mutual information between two finger-
prints. The approaches are employed not only in identification
[11], [12] but also in indexing [13], [14]. However, these
methods require the exact determination of central point, and it
is difficult to deal with distortion in the fingerprints. Moreover,
the exclusive global information-based method needs much
memory to store a fingerprint template. The third type is
technologies based on comprehensive feature [12], [15]. In
these schemes, fingerprints are matched by fusing minutiae,
local features, and global features with a hybrid method. Local
features accelerate the alignment of the input minutia pat-
terns in different sizes, and the global features are used to
overcome the shortage of minutiae and local features in low-
quality fingerprints. In addition, these methods may combine
various technologies, such as bounding box method and mutual
information method. These approaches are popular for their
robust performance with acceptable memory expense in recent
years. However, these methods are not omnipotent for some
special conditions with large deformation.

This paper introduces a comprehensive feature-based tech-
nique with two novel aspects: 1) a fingerprint pattern is charac-
terized by the comprehensive minutiae and the binary relations
between minutiae; and 2) as an improvement of our previous
work [9] in alignment, the adaptive Parzen window is proposed
to model the relationship between the local matching probabil-
ity and the fingerprint transformation.

A. Comprehensive Minutia

A poor-quality fingerprint may be too dry or too wet, or the
foreground area may be narrow with insufficient reliable minu-
tiae. In some cases, even two fingerprints from the same finger
fail to match for lack of common minutiae. Therefore, associ-
ated ridge information is combined to improve the fingerprint
representation. As demonstrated in Fig. 1, a comprehensive
minutia Mn includes a minutia and the associated ridge feature,
formally

Mn = {xn, yn, θn, βn} ∪ {ϕnm|m = 1, 2, . . . , L} (1)

where (xn, yn) is the coordinate, and θn is the tangent direction.
βn is the local gray variance of an area centered on (xn, yn).
ϕnm is the direction from (xn, yn) to Rnm, which is a point
sampled on the ridge derived from the minutia. {ϕnm|m =
1, 2, . . . , L} embodies the information of the ridge curvature
and the local shape, and L is the number of sampled points on
the associated ridge. Here, the type information of the minutiae,

Fig. 1. Comprehensive minutiae and binary comprehensive minutia structure.

e.g., ending or bifurcate, is not employed since it usually makes
false matching in our experiments.

In this paper, the comprehensive minutia set of a finger-
print F is denoted as MF = {Mn|n = 1, 2, . . . ,m(F )}, where
m(F ) is the minutia number of F . MF contains the compre-
hensive information of all minutiae.

B. Binary Comprehensive Minutia Structure

In fingerprint representation, minutia is a unary property.
There is the binary or higher order relation that conveys the
contextual constraints, which are crucial in fingerprint match-
ing. In this algorithm, binary structure between minutiae is
introduced. For each pair of comprehensive minutia points
Mi and Mj , where Mi,Mj ∈ MF and Mi �= Mj , if their
Euclidean distance d(Mi,Mj) =

√
(xi − xj)2 + (yi − yj)2

satisfies dl ≤ d(Mi,Mj) ≤ dh, then Mi and Mj are connected
as a local binary structure Ek, formally
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where sk and ek denote the serial numbers of the binary minu-
tiae in minutia set MF . As shown in Fig. 1, sk = i and ek = j.
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k} stands for the transformation-variant fea-

tures; it describes the information that is affected by fin-
gerprint transformation, where vk = arctan((yi − yj)/(xi −
xj)), θs
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transformation-invariant features; it represents the unchanged
information under transformation, where dk = d(Mi,Mj),
βs

k = βi, βe
k = βj , αs

k = θi − vk, and αe
k = θj − vk.
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The binary comprehensive minutia structure set is formally
EF = {Ek|k = 1, 2, . . . , e(F )}, where e(F ) is the number of
structures. e(F ) is much smaller than m(F )(m(F ) − 1)/2
because the Euclidean distance d of most minutia pair do not
satisfy dl ≤ d ≤ dh. The size of EF can be controlled by
modifying the values of dl and dh. The minutia set MF and
the binary structure set EF represent fingerprint F as a graph
GF = (MF , EF ), where MF acts as the vertex set, and EF

provides the edge set. GF explores the first- and second-order
minutia relations of fingerprint F , and the higher order relations
behave as the connected subgraphs of GF .

III. MEASUREMENT OF TRANSFORMATION PARAMETER

It is important to align the input minutiae with the template
during matching. The alignment generally includes rotation,
translation, and shearing. This matching algorithm is designed
assuming that the input and template fingerprints are captured
by the same device in the same condition but with little scaling
deformation. Since the fingerprint matching performs well in
polar coordinate, the translation of the input features to the
template is not concerned if the central point is set in advance.
One of the most important tasks in alignment is to find the
optimal rotation parameter.

A. Matching Probability of Binary Comprehensive
Minutia Structure

Since the transformation-invariant features remain un-
changed under fingerprint transformation, they are ideal for
the matching probability estimation of local comprehensive
minutia structures. For each pair of local structures Ei and Et,
where Ei ∈ EI , Et ∈ ET , and EI and ET denote the local
structure sets of input fingerprint I and template fingerprint T ,
respectively, then similarity Sit between Ei and Et is estimated,
formally

Sit =

{
0, eit > ε and e′it > ε

1 − min(eit,e
′
it)

ε , otherwise
(3)

eit =
(
(di − dt)2 + (βs
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t )2 + (βe

i − βe
t )2

+ (αs
i − αs

t )
2 + (αe
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t )

2
) 1

2
(4)

e′it =
(
(di − dt)2 + (βs
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t )2 + (βe
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t )2
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i − αs

t − 180)2
) 1

2
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where ε is the matching threshold of transformation-invariant
feature. If Sit = 0, Mi and Mt are not matched; otherwise
they are. The more similar the Ei and Et are, the larger the
Sit is. However, two local structures, which are not from the
same location of the same fingerprint, can be false matched
accidentally. The false-matching cases can be excluded with
the variable bounded box method, and the detail is presented in
Section IV. All of the matching probability values construct a
similarity matrix S = [Sit]1≤i≤e(I),1≤t≤e(T ), which represents

the local comprehensive similarity between fingerprints I and
T . In the next section, the rotation parameter is statistically
analyzed with S, and in Section IV, S is used for adjusting
translation transformation with iterative strategy.

B. Adaptive Parzen Window for Modeling
Rotation Transformation

The transformation-variant feature is useful for the rotation
parameter estimation since it reflects the rotation transforma-
tion of a fingerprint. The local rotation parameter between local
structures Ei and Et is denoted as δit, and it is estimated as
follows:

δit =
∆υit + ∆θit + ∆Ψit

3
(6)

∆υit = υi − υt (7)

∆θit =
θs

i + θe
i − θs

t − θe
t

2
(8)

∆Ψit =
1

2L
((ϕsi1 + ϕsi2 + · · · + ϕsiL)

+ (ϕei1 + ϕei2 + · · · + ϕeiL)

− (ϕst1 + ϕst2 + · · · + ϕstL)

−(ϕet1 + ϕet2 + · · · + ϕetL)) . (9)

Then, the Parzen window is an effective method for estimat-
ing the probability density. When Gaussian function is chosen
as the smooth kernel, the probability density f(δ) of rotation
parameters δ is formally

f(δ) =

∑
1≤i≤e(I)

∑
1≤t≤e(T )

K(δ − δit)

e(I) · e(T )
(10)

K(δ − δit) =
1√

2πσ2
exp

(
− (δ−δit)

2

2σ2

)
(11)

where σ controls the size of the Parzen window. However,
the Parzen window is not appropriate for the estimation since
f(δ) is a periodic function and the similarity information of
local binary structures is very important for the estimation.
Therefore, the adaptive Parzen window is proposed as follows:

f(δ) =

∑
1≤i≤e(I)

∑
1≤t≤e(T )

K(δ − δit)

e(I) · e(T )
(12)

K(δ − δit)=


+∞∑

n=−∞
1√

2πσ2
it

exp

(
− (δ−δit+360n)2

2σ2
it

)
, Sit �= 0

1
360 , Sit = 0

(13)

where σ2
it = 1/2π(aSit)2, and a is an experiential value. Com-

pared with the Parzen window, the window size of every
sample’s smooth kernel is flexible, and it is determined by
the corresponding similarity. Given a rotation angle δit of a
local structure, the probability density function conditioned
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on δit is formally f(δ|δit) = exp(−(δ − δit)2/2σ2
it)/

√
2πσ2

it.
The more similar the local structures are, the more crucial the
corresponding rotation angle estimation is. When it is assumed
that the probabilistic certainty is in proportion to the sim-
ilarity, i.e., f(δ|δit)|δ=δit

= 1/
√

2πσ2
it = a · Sit, then σ2

it =
1/(2π(aSit)2). The larger the Sit is, the sharper the f(δ|δit) is.
In other words, the larger the similarity of two local structures
is, the more definite the fingerprint rotation angle equals to δit.
When two local structures are not matched, i.e., Sit = 0, the
corresponding angle δit cannot make any contribution to the
final estimation. In this case, f(δ|δit) = 1/360. In (13), it does
not need to sum the periodic responses from −∞ to +∞; the
sum from −3 to +3 can yield a satisfying approach.

To accurately calculate the transformation parameters,
a confidence interval [δmax − σδ, δmax + σδ] is defined,
where δmax satisfies f(δmax) = maxδ{f(δ)}, and σδ satis-
fies σ2

δ =
∑

it(Sit · (δit − δ)2)/
∑

it Sit, where δ =
∑

it(Sit ·
δit)/

∑
it Sit. The confidence interval can reduce the effect

of false matching of local binary structures because the false-
matching contribution to f(δ) mainly concentrates on the out-
side of the confidence interval. Moreover, as denoted in (14),
it is effective to use the barycenter of δ on the interval as the
optimal estimation δopt rather than δmax, which is sensitive to
noises, i.e.,

δopt =

δmax+σδ∫
δmax−σδ

δ · f(δ)dδ. (14)

IV. FINGERPRINT MATCHING

The task of fingerprint matching is to obtain the minimal
difference between input fingerprint I and template T by
an optimal alignment. In this paper, however, deformation in
fingerprints may bring false matching of local structures and
therefore affects the final result. Thus, the global fingerprint
matching is essential after the coarse local matching if the
transformation model is known. In this process, the variable
bounded box [9] is used to recheck all local matched structures
to reduce the influence of deformation in fingerprints. The
matching steps are listed as follows.

Step 1) For each comprehensive minutia pair Mi and Mt,
where Mi ∈ M I and Mt ∈ MT , calculate the con-
nected subgraph similarity Ŝit, formally

Ŝit =
∑

n∈RI(n)

∑
m∈RT (m)

Snm (15)

where RI(n) = {k|Ek ∈ EI , sk = n, or ek = n},
and RT (m) = {k|Ek ∈ ET , sk = m, or ek = m}.
Ŝit is the similarity between the starlike subgraph
centered at Mi in GI and the starlike subgraph
centered at Mt in GT .

Step 2) Set the iterative number c = 1.
Step 3) Find the c th maximum connected subgraph similar-

ity Ŝci ct and define the corresponding minutia pair
Mci and Mct as the reference minutia pair.

Step 4) Use the reference minutiae Mci and Mct as the
original points of the two graphs GI and GT , re-
spectively. All minutiae are aligned into their new
polar systems and rotated with the statistical pa-
rameter δopt.

Step 5) For each pair of matched local structures Ei and
Et, where Ei ∈ EI , Et ∈ ET , and Sit �= 0, if the
two minutiae of Ei are located within the variable
bounded boxes [9] centered at the two minutiae of
Et, respectively, then Ei and Et are true match;
otherwise, they are false match.

Step 6) Calculate the similarities of two fingerprints I and T
as follows:

S̃c = fGLM(nc;nth1, nth2)

·fGLM(mc;mth1,mth2) (16)

where nc and mc denote the number and the
similarity mean of true-matching local structures,
respectively; nth1, nth2, mth1, and mth2 are
four empirical values; and fGLM(x; th1, th2) is
borrowed from the nonlinear matching technique,
formally

fGLM(x; th1, th2) =


0, x < th2

x−th2
th1−th2 , th2 ≤ x < th1

1, th1 ≤ x.

(17)

Step 7) If c < C, go back to Step 3), where C is the maxi-
mum iterative number and C > 1.

Step 8) max1≤c<C{S̃c} is the optimal matching value of
fingerprints I and T ; the larger the value is, the
more similar the two fingerprints are. If the optimal
matching value is more than the threshold Sth, the
two fingerprints are considered from the same finger.

In our method, the thresholds, i.e., ε and Sth, are estimated
with the iterated conditional mode, which selects threshold by
maximum entropy criterion [16]. The other empirical values,
such as C, L, dl, and dh, are predetermined with many experi-
ments on a training set.

V. EXPERIMENTS

We evaluate our algorithm on the fingerprint databases pro-
vided by FVC in 2002 [17], which are appropriate for test-
ing online fingerprint systems. Our experiments analyzed the
character of adaptive Parzen window, checked the validity of
rotation parameter estimation, and evaluated the final matching
performance.

A. Character of the Probability Density Curve

In this section, an experiment is performed to analyze the
character of the probability density curve estimated by the adap-
tive Parzen window. The curve from the same fingerprint pair
has been compared with that from different fingerprint pairs.

Three probability density curves are estimated, as shown in
Fig. 2. The first curve is calculated with images A and B, which
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Fig. 2. Probability density curves of rotation parameter estimated by the adaptive Parzen window.

Fig. 3. Probability density curves under different global rotation parameters.

are acquired from the same finger. The second is estimated
with images C and D, which come from two similar fingers.
The third is computed with images A and C, which come

from two dissimilar fingers. Among these three experiments,
the curve of the same fingerprints is very sharp because there
are many true-match local structure pairs, which contribute to
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TABLE I
ADAPTIVE PARZEN WINDOW VERSUS PARZEN WINDOW AND HISTOGRAM

the density around the true rotation angle. The curve of similar
fingerprints is more convex than that of dissimilar fingerprints
since several local structure pairs with the same rotation angle
are accidentally matched. The experiment shows that the more
similar the two fingerprints are, the sharper their probability
density curve is. It is meaningful for quick rejection of impostor
in practical recognition application. A simple way is to use
the curve’s peak value as the match value of two fingerprints,
and if the value is under a threshold, the two fingerprints are
considered from different fingers.

B. Performance of the Adaptive Parzen Window

Two experiments are conducted to evaluate the accuracy
of the rotation parameter estimation with the adaptive Parzen
window because the parameter plays a very important role in
the fingerprint alignment and final matching.

In the first experiment, a fingerprint is selected randomly
from FVC2002 database as the template T . Then, the finger-
print image is transformed with the angles 5◦, 10◦, and 15◦,
respectively, as the input fingerprint I . Finally, the rotation
parameter δk between T and I is estimated with the adaptive
Parzen window, as illuminated in Fig. 3.

In the experiment, the adaptive Parzen window method is
compared with the original method and the histogram method.
As shown in Table I, the average error of our algorithm is below
half of the Parzen window, and it is about one-third of the
histogram estimation.

In the second experiment, a randomly selected fingerprint
is rotated from 14◦ to −14◦, and in total, 29 estimations are
conducted, as illuminated in Table II and Fig. 4. The mean and
standard deviation of the absolute errors are 0.420 and 0.242,
respectively.

C. Matching Results on FVC2002

To evaluate the overall matching performance of our method,
a series of experiments are conducted over the four fingerprint
databases of FVC2002. To judge whether the binary compre-
hensive minutia structure is helpful, the method without the
binary structure [9], i.e., Alg_1, is compared with the proposed
method, named Alg_2. The receiving operating curves (ROCs)
[18] illustrate the overall performance, as shown in Fig. 5.

Among the four data sets, the fingerprint quality of DB2_a is
the best, whereas that of DB3_a is the worst [17]. As indicated
by the ROCs, the proposed method outperforms the algorithm
that does not involve the binary comprehensive minutia struc-
tures on FVC2002 databases. The equal error rates (EERs) of
our method are 1.6%, 0.9%, 3.4%, and 1.8% in DB1_a, DB2_a,

TABLE II
ESTIMATED PARAMETER δk VERSUS REAL PARAMETER K

Fig. 4. Trend of the precision of estimated rotation angles.

DB3_a, and DB4_a, respectively, and the results are better
than the best academic participants, i.e., PA24 and PA21, in
FVC2002 [17]. With Pentium-III 933-MHz central processing
unit, the average matching times are 0.37, 0.55, 0.27, and
0.29 s in the four databases, respectively, which are much faster
than the best industry participants, i.e., PA15 and PA27, in
FVC2002 [17]. The better performance is contributed by two
aspects: 1) minutia are replaced by binary minutia structure,
and the structure has many effective features to represent a
fingerprint; 2) the rotation parameter is accurately measured
with the adaptive Parzen Window, and it makes satisfactory
fingerprint alignment.

Additional experiment is conducted to compare the perfor-
mance of binary minutia structure and ternary minutia structure
in DB1_a and DB4_a of FVC2002. As illuminated in Table III,
the EER of Chen’s algorithm [19] with ternary minutia struc-
ture is about two-thirds of the proposed method, but in terms
of the resource consumption, the proposed method is very
competitive. By employing the binary minutia structure, our
method makes a proper tradeoff between the performance and
computational expense. This is important for applications that
have limited computational resources.

VI. CONCLUSION AND FUTURE WORK

This paper introduces a robust fingerprint matching method
based on the comprehensive features of fingerprint, and it
employs two novel technologies: 1) the binary comprehen-
sive minutia structure with the transformation-variant and
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Fig. 5. ROCs of the matching experimental results over the four fingerprint databases of FVC2002.

TABLE III
BINARY STRUCTURE VERSUS TERNARY STRUCTURE. MMC

DENOTES MAXIMUM MEMORY CONSUMPTION, AND

ATS STANDS FOR AVERAGE TEMPLATE SIZE

transformation-invariant features is implemented to provide
a comprehensive representation of fingerprint. Meanwhile, it
results in a graph representation of fingerprint. 2) The adaptive
Parzen window is proposed to measure the transformation para-
meter. Compared with the traditional one, the adaptive Parzen
window admits the periodic property, and it is more accurate
by exploring the similarity information of local structure pairs.
Moreover, it is more robust and needs fewer samples than the
simple histogram estimation. By the way, the probability den-
sity curve, which is estimated by the adaptive Parzen window,
shows the potential ability for fast impostor rejection.

Our method is based on the assumption that input fingerprint
and the template are captured from the same sensor. In the case
of different modal fingerprints [20], transformation invariants
and variants of local structures will become invalid. Therefore,
we will investigate the technique that employs a multiscale
search strategy to address the issue. In addition, global pattern
and features, as well as a hybrid matching technique, will be in-
vestigated to minimize false matching, which occasionally oc-
curs with large deformation and very poor quality fingerprints.
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