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A commercial

system that

performs syntactic

and semantic

analysis during a TV

advertising break

could facilitate

innovative new

applications, such as

an intelligent set-top

box that enhances

the ability of viewers

to monitor and

manage

commercials from

TV streams.

A
lthough the costs of creating,

producing, and airing a TV com-

mercial are staggering, television

is one of the most cost-efficient

media. Television’s most outstanding attribute

is its ability to reach a vast number of

consumers at the same time. Its other advan-

tages are impact, credibility, selectivity, and

flexibility.1 But advertisers face a serious

problem. The recent development of digital

video recording and playback systems has

provided a means for the viewer to skip the

advertisements, either manually or by auto-

matic means. According to a Forrester Re-

search’s survey (see http://www.news.com/

2100-1024-5200073.html) a majority of na-

tional advertisers plan to cut spending on TV

commercials by 20 percent in the next five

years due to these ad-skipping devices.

Our proposed scheme addresses two

challenging tasks: commercial boundary de-

tection (ComBD) and commercial classifica-

tion (ComCL) in terms of advertised products

and services. The first involves video parsing;

the latter, semantic video indexing. In TV

streams, a commercial block consists of a

series of individual spots. We can view each

spot as a semantic scene. Commercial video

parsing detects such scene transitions within a

block.

Semantic commercial video indexing can

be likened to classified newspaper ads, where

consumers can easily find useful information.

Semantic commercial video indexing is de-

signed to provide consumers with useful

information through video content analysis

techniques.

Various video clip matching methods can

identify commercials (ComID) using any one

of several existing methods, but one important

issue is to identify different ad versions for a

product or service effectively. In our system,

we apply a visual concept—that is, an image

frame marked with product information

(FMPI)—which incorporates the commercial

production knowledge to represent an ad.

Research shows that most people don’t

mind TV advertising in general, although they

dislike certain types of commercials. With the

advance of digital TV set-top boxes—in terms

of powerful processors, large hard disks, and

Internet access—consumers need a TV com-

mercial management system that detects com-

mercial segments, determines individual com-

mercial boundaries, identifies and tracks new

commercials, and summarizes commercials by

removing repeated instances. Given a decent

interface, this system could change a TV

viewer’s passive relationship to advertising. A

user could apply positive actions (for example,

search, browse, summarize) to the commercial

video archive, which could indirectly improve

the reach of TV commercials.

Besides business issues, the industrial appli-

cability of digesting ads depends upon wheth-

er people are willing to browse video commer-

cials. This willingness is related to the varying

degrees of relevant and valuable information

conveyed to the user. Unlike infomercials, the

vast majority of brief spots—ranging in length

from a few seconds to one minute—brand a

product in the marketplace. We consider the

digested ads to be the video-based alert for

emerging products and services. When people

browse ads and dig up an ad’s offer of interest,

they might use a search engine to collect

additional information.

Commercial boundary detection

Commercial videos are characterized by

dramatic changes in lighting, chromatic com-

position, and other factors, including shot
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length, motion, sound, and, of course, creative

stories. These factors make existing scene

transition detection methods less effective for

individual ComBD, as shots lack uniformity.

Hence, our approach reduces the problem of

commercials’ boundary detection to that of a

binary classification of true versus false scene

changes at candidate positions consisting of

video shot change points. It’s reasonably

assumed that a TV commercial scene transi-

tion always comes with a shot change (that is,

cuts, fade-ins and fade-outs, and dissolves).

Solution and framework

Figure 1 illustrates the framework. Our

system extracts multimodal features within a

symmetric window at each candidate point.

While different or multiscale window sizes can

be applied to different feature types, we apply

supervised learning to fuse the multimodal

features. Two techniques—audio scene change

indicators (ASCI) and FMPIs—can help char-

acterize the computable video contents of

interest to signify an individual commercial’s

boundaries. Because it isn’t feasible to deci-

pher a commercial video’s temporal arrange-

ment through a predefined set of shot classes,

midlevel features condense high-dimensional,

low-level features by using adequate classifiers

to generate as many useful concepts as

possible supported by commercial video pro-

duction rules or knowledge.

While general commercial detection is a

preliminary stage in our approach, other

approaches have been proposed elsewhere.2-5

For example, one study reported a 92 percent

accuracy rate on a heterogeneous dataset.2 Our

implementation relies on the detection and

tracking of TV logos because TV logos often

don’t appear during commercials. We

achieved satisfactory results of F1 5 97.76 to

99.80 percent on opaque, semitransparent,

and animated TV logos from eight TV chan-

nels, including NBC, CNN, and MSNBC. Note,

F1 is an even combination of precision and

recall. It is defined as 2 ? precision ? recall/

(precision + recall). More details can be found

elsewhere.6 As our focus is on the boundaries

of individual spots within a commercial break,

the use of logo-based commercial detection

does not affect this scheme’s applicability.

Frames marked with product information

We present a visual concept FMPI to

determine those candidate regions containing

a commercial boundary.

Using an FMPI to locate the most probable

boundary candidates. We use FMPIs to

describe those images containing visual infor-

mation explicitly illustrating an advertised

product or service. These frames express visual

information in three ways: text, computer

graphics, and frames from live footage of real
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things and people. Figure 2 shows FMPI frame

examples. The textual section may consist of

brand name, store name, address, telephone

number, cost, and so on. Alongside the textual

section, a drawing or a photo of a product

might be placed with computer graphics. Live

footage of real things or people is usually

combined with graphics to avoid impersonal-

ity.

Production rules reveal the spatial relation-

ship between the presence of FMPIs and

individual commercials’ boundaries. For con-

venience, we define the video shot containing

at least one FMPI as an FMPI shot. Sometimes

we have trouble determining the precise offer

in a commercial, but an FMPI shot is a useful

prop. Some commercials might contain irreg-

ularly interposed FMPI shots, as branding can

be reinforced by endless repetition. Occasion-

ally, a commercial might show an FMPI shot at

the beginning. We therefore can consider an

FMPI shot to be an indicator that can help

determine a much smaller set of commercial

boundary candidates from large amounts of

video shot changes.

Constructing an FMPI recognizer. We rely

on the combination of texture, edge, and color

features to represent an FMPI. As the frame’s

layout is a significant factor in distinguishing

an FMPI, it’s beneficial to incorporate the

spatial information. One common approach

is to divide an image into subregions and

impose positional constraints on the image

comparison (a process called image partition-

ing). Dominant colors help construct an

approximation of color distributions. We can

easily identify these distributions from color

histograms. Because Gabor filters exhibit opti-

mal location properties in the spatial domain

as well as in the frequency domain, we use

them to capture rich texture in FMPIs.7 Edge is

a useful complement to texture when an FMPI

produces stand-alone edges as a contour of an

object, as texture relies on a collection of

similar edges. Combined features yield better

results than using a single feature.

Figure 3 illustrates our feature-extraction

procedure. We determine dominant colors by

selecting maximum bin values and edge

densities using Canny edge detection. We

apply both dominant colors to the subimages

and the whole image. For local texture fea-

tures, we apply Gabor filters (one with center

frequency and four with equidistant orienta-

tions) to each subimage. By combining local

features and global ones, our implementation

constructs 141 feature dimensions. More de-

tails can be found elsewhere.8

To train the FMPI recognizer, we use

supporting vector machines, which work well

for data with a large number of features and

contain fewer parameters. Our implementa-

tion resorts to the C-support vector classifica-

tion.9 To determine an FMPI shot, we can

apply FMPI recognition to keyframes only.

Audio scene change indicator

We model audio scene changes to facilitate

identifying commercial boundaries.

Using ASCI to characterize audio changes

occurring at commercial boundaries. Differ-

ent TV commercials often exhibit dissimilar

30

Figure 2. Image frames

marked with

product information.

IE
E
E

M
u

lt
iM

e
d

ia



audio characteristics. but a proper modeling of

audio scene changes (ASCs) can facilitate the

identification of commercial boundaries.

Given an audio segment (for example,

4 seconds) at a candidate boundary, ASCI

provide a probabilistic representation of ASCs.

As Figure 4 shows, we use a hidden Markov

model (HMM) to train two models for two

dynamic ASC and non-ASC patterns. Our

method classifies any unknown segments

using the model with the highest posterior

probability.

Like FMPI, ASCI is an indicator but cannot

secure true boundaries due to dynamic audio

characteristics inherent to commercial videos.

Our solution is to fuse multimodal features—

for example, ASCI + FMPI.

Using HMM to train recognizers. The

HMM we use to train ASC and non-ASC

recognizers is a Gaussian mixture (left to

right). We use a diagonal covariance matrix

to estimate the Gaussian mixture distribution.

Suppose we have two HMM models for

representing ASC and non-ASC, the forward-

backward algorithm generates two likelihood

values of an observation. We use the HTK

toolkit (see http://htk.eng.cam.ac.uk/) for this

process.

Currently, our ASCI considers 43 dimen-

sional audio features comprising

& Mel-frequency cepstral coefficients (MFCCs)

and their first and second derivates (36

features);
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Figure 4. Training

an audio scene

change indicator.

Figure 3. An example

of low-level visual

feature extraction for

training the frame

marked with a product

information recognizer.



& mean and variance of short-time energy log

measure (two features);

& mean and variance of short-time zero-

crossing rate (two features);

& short-time fundamental frequency, or

pitch, (one feature);

& mean of the spectrum flux (one feature);

and

& harmonic degree (one feature).

Readers are referred elsewhere for more

feature details.10 We segment an audio signal

into a series of successive 20 milliseconds

analysis frames by shifting the sliding window

of 20 ms with an interval of 10 ms. Our

approach computes features for each analysis

frame. Within each analysis frame we compute

short-time energy, zero-crossing rate, spec-

trum flux, and harmonic peaks once every 50

samples at an input sampling rate of 22,050

samples per second where the size of sliding

window is set to 100 samples. We calculate

means and variances of short-time energy and

zero-crossing rates for seven values from seven

overlapping frames, and calculate the mean of

spectrum flux for six values from seven

neighbor frames. The harmonic degree is the

ratio of the number of frames having harmon-

ic peaks to the frame number seven. We

directly compute pitch and MFCCs from each

frame.

Aligning the audio feature window. Refer-

ring to Figure 4, we must address the align-

ment problem for two reasons. First, TV

commercial boundaries have a maximum

offset of 60.25 to 61.0 seconds between an

ASC and its associated video scene change.

Second, due to video production, a mixed

soundtrack isn’t necessarily synchronized to a

video track. Thus, a symmetric window exactly

at shot transitions cannot extract the most

effective matching features from the nearby

ASC.

An alignment procedure seeks to locate the

most likely ASC point within the neighbor-

hood of a shot change. Let Wi and Wj be two

audio analysis windows, and their difference

denoted by d(Wi,Wj). By using the Kullback-

Leibler (K-L) distance metric, we can write the

difference as

d Wi,Wj

� �
~

ð

x

pi xð Þ{pj xð Þ
� �

lnpi xð Þ
�
pj xð Þdx

where pi(x) and pj(x) denote the probability

distribution functions estimated by the fea-

tures extracted from Wi and Wj. We first

consider ASC computing at one scale of an

analysis window (that is, all the audio analysis

windows are of a fixed size). Let Wi with i 5 1,

2,…, N be a series of analysis windows with an

overlap of INT ms. We then form the sequence

{Di}i 5 1, 2,…, N 2 1 as Di 5 d(Wi, Wi + 1). An ASC

from Wl to Wl + 1 is declared if Dl is the

maximum within a symmetric window of WS

ms. Window size is critical to good modeling

as different change peaks occur for different

window sizes. Since we don’t know a priori

what sound we are analyzing, we use multi-

scale computing. We first make use of multiple

window sizes {Winscale}scale 5 1,…, S to yield a

cluster of difference value series, denoted by

{Distancescale}scale 5 1,…, S 5 {Di,scale|i 5 1,…,

Nscale}scale 5 1,…, S. We then normalize each

series of Distancescale to [0, 1] through dividing

difference values Di,scale by the maximum of

each series Max(Distancescale). We then deter-

mine the most likely ASC point v by locating

the highest accumulated values.

We calculate the probability p(vl) of an ASC

point, where vl is the candidate window

position, as

p vlð Þ~
1

S

XS

scale~1

Distancescale lð Þ
Max

1ƒlƒM
Distancescale lð Þð Þ

0

@

1

A

v~arg Max
l

p vlð Þð Þ,l~1, . . . ,M

where M denotes the total number of candi-

date window positions and v denotes the

window corresponding to an ASC point.

Based on offset statistics, the shift of

adjusted change point is confined to the range

of [2500 ms, 500 ms]. That is, WS 5 1,000.

We extract and arrange audio features within

the adjusted 4-second feature windows and

employ 11 scales (that is, S 5 11) where the

window sizes Wini 5 1, …, 11 5 500 + 100 ? (i +
1)ms. At all scales, the overlap interval is set to

INT 5 100 ms. We use a single Gaussian

probability distribution function and apply a

20 ms sliding window with an interval of

10 ms.
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Silence and black frames

We can separate spots with a short break of

several black frames or moments of silence or

reduced audio in some TV channels.4 We

detect silence by examining the audio energy

level. We measure short-time energy functions

every 10 ms and smooth them using an eight-

frame finite impulse response filter. The

smoothing imposes a minimum length con-

straint on the silence. We apply a threshold

and categorize the segment that has energy

below the threshold as silence. We detect a

black frame by measuring the mean and the

variance of intensity values within a frame,

using a similar threshold method. A sequence

of consecutive black frames (eight, for exam-

ple) rises above the threshold and indicates the

presence of black frames to the system.

Feature fusion

Our approach fuses the features of FMPI,

ASCI, silence, and black frames—extracted

from a temporal window at a candidate

boundary—with a binary classifier as indicated

in Figure 1. Our implementation relies on an

SVM classifier to accomplish this fusion. To

evaluate the effectiveness of FMPI and ASCI,

we empirically conducted the fusion by com-

bining different features.

ASCI yields two probability values: p(ASC)

and p(non-ASC). Silence and black frames also

yield two values p(Silence) and p(Black Frames)

to indicate their presence within a 4-second

temporal window (with 2 seconds each for left

and right shots). For FMPI, 2 ? n neighbor

video shots at a candidate boundary (Left n

shots, right n shots) produce 2 ? n values

{pi(FMPI)}i 5 1,…, 2n to indicate the presence of

FMPI shots. The complete feature is 2 ? n + 4

dimensional, where we empirically use n 5 2.

The fusion procedure purely relies on SVMs

and doesn’t involve any feature selection,

weighting, or rules. The simplicity of this

system derives from concepts that abstract

commercial production knowledge, and we

are considering other linear classifiers and

linear fusion schemes as well.

ComCL by-products and services

Compared with news or sports, commercials

are essentially creative in terms of copyrighting

and production techniques. We cannot use

intermediate visual features or specialized con-

cept detectors to model intrinsic semantics of

commercials using audiovisual features, which

means we must resort to extrinsic knowledge to

narrow the semantic gap.

Solution and framework

Textual resources are becoming a useful

channel for event detection11,12 and high-level

retrieval.13,14 The textual sources can be an

acoustic speech recognition (ASR) or optical

character recognition (OCR) transcript,13

closed caption,12 and Web-casting text.11 The

use of textual information has two obvious

advantages: clear linkages with semantics, and

many available text-based external knowledge

databases—for example, WordNet (see http://

wordnet.princeton.edu/), dictionaries, encyclo-

pedia, and topic-wise document corpora like

Reuters-21578 (see http://www.daviddlewis.

com/resources/testcollections/reuters21578/).

Hence, we resort to textual resources for

addressing commercial classification with respect

to products or services. By using text, our

approach transforms the problem of semantic

video classification to that of automated text

categorization (see Figure 5, on the next page).15

We assume that ASR/OCR can deliver useful

textual hints about advertised products and

services. First, we parse the deficient transcripts

of ASR/OCR to extract keywords, by which search

is carried out to retrieve semantically informa-

tive articles from the Internet. The commercial

category information is enriched by the docu-

ment representation of retrieved articles. Second,

we use topic-wise documents from public corpo-

ra or from other external sources such as the

Internet. Finally, we train text categorizers to

determine the commercial category. Readers are

referred elsewhere for examples.8

Proposed approach

Our approach preprocesses the output tran-

scripts of ASR and OCR in TV commercial

TVComi with spell checking to generate cor-

rected transcript Si. It then extracts list Li of

nouns and noun phrases from Si with the

natural language processor. It selects keywords

Ki(kwi1,…, kwi,) applying the following steps:

1. Check Si against a predefined dictionary

of brand names;

2. If the brand name occurs in Si, select it as

the only keyword kwi and search it on

Wikipedia (see http://en.wikipedia.org/

wiki);

33

Ja
n

u
a
ry

–M
a
rch

2
0
0
8



3. Otherwise, heuristically select from Li the

n nouns and noun phrases with the

largest font size from OCR and the last

m from ASR as keywords to search using a

Web search engine.

We use Google as a search engine because

its superior performance assures the searched

articles’ relevancy. Among returned articles,

our approach selects the one with the highest

relevancy rating as di, which we denote as the

proxy article of TVComi. Exploiting di reduces

the problem of TV commercial video classifi-

cation to that of text categorization.15 That is,

we approximate a classifier function W:D 3 C

R {T, F} to assign a Boolean value to each pair

(di, ci) M D 3 C, where D is the domain of proxy

article di and C is predefined commercial

category set ci. A value T assigned to (di, ci)

indicates the proxy article di under ci, while a

value F assigned to (di, ci) means di not under

ci.

Function modules

The commercial classification framework is

composed of four major modules.

IR text preprocessing module. This module

functions as a vocabulary term normalization

process involving two steps: the Porter stem-

ming algorithm (PSA) and the stop word

removal algorithm (SWRA). The PSA removes

the common morphological and inflexional

endings from words in English so that differ-

ent word forms map to the same token. The

SWRA eliminates words of little or no seman-

tic significance—such as ‘‘the,’’ ‘‘you,’’ and

‘‘can.’’ Both testing and training documents

go through this module before any other

process.

Commercial video module. This module

aims to expand the deficient and less-infor-

mative transcripts from ASR and OCR with

relevant proxy articles.

For each incoming TVComi, the module

first extracts the raw semantic information via

ASR and OCR. The accuracy of OCR depends

on the image character resolution. Large-size

text contains more significant information

than small. As shown in Figure 6, it’s easy for

OCR to recognize the large-size text ‘‘Free DSL

Modem, Free Activation,’’ which contains

more category related information than does

the small and difficult-to-recognize text ‘‘after

rebates with 12 months commitment.’’ Hence,

our approach selects the n nouns and noun

phrases with the largest font size from OCR as

keywords. Subsequently, we apply spell check-

ing and correction to the transcripts. Then, we

correct the misspelled vocabulary terms and

remove the terms not found in dictionaries.

We use an English-language dictionary and

encyclopedia for spell checking, as a dictio-

nary might not include nonvocabulary terms,

such as brand names. With the corrected

transcript Si, we get the proxy article di, from

which we generate the testing vector.
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Training data and word feature module.

This module generates the training dataset and

word feature space for text categorization. For

the training dataset, we construct topic-wise

document corpora from available public IR

corpora or related articles manually collected

from the Web. Currently, we use the categorized

Reuters-21578 and 20 Newsgroup (see http://

people.csail.mit.edu/jrennie/20Newsgroups/)

corpora. In this way, the training corpus can

possess large amounts of training documents

and cover wide topic areas. The topics of these

corpora might not exactly match the catego-

ries of TV commercials. Our solution is to

choose topics related to the commercial

category and combine them to construct the

training dataset for representing the category.

For example, the documents on the topics of

‘‘earn,’’ ‘‘money,’’ and ‘‘trade’’ in Reuters-

21578 are merged to form the training set for

the finance category.

Next, we employ a document frequency

technique to select word features on the

training dataset. The document frequency

DF(wi) measures the number of documents in

which a term wi occurs. If DF(wi) exceeds a

predetermined threshold, wi is selected as a

feature; otherwise, wi is removed from the

feature space. For each document, the number

of occurrences of term wi is taken as the feature

value tf(wi). Finally, we normalize each docu-

ment vector to eliminate the influence of

different document lengths.

Classifier module. The classifier module

performs text categorization of proxy articles

and determines the categories of respective TV

commercials. Sebastiani reviews various text-

categorization techniques and reports that

SVMs deliver consistently outstanding perfor-

mance.15 We use SVMs as the classifier in our

implementation. Joachims presented the

promising characteristics of SVMs to demon-

strate their suitability for text categorization:

They can handle high-dimensional input

spaces—for example, 10,000 dimensions—

and sparse document vectors.16

ComID

The boundaries of individual TV commer-

cials reduce ComID to video clip matching. To

address color distortion and different versions

from postediting effects, we use a group-of-

frames (GoF) compact signature to character-

ize dynamic spatiotemporal patterns. Our

signature consists of ordinal and color fea-

tures. Ordinal features contain spatial infor-

mation, which is inexpensive to acquire. Color

features involve color-range information by

accumulating color histograms. Although a

color histogram itself is vulnerable to color

distortion, our experiments have shown the

combination of ordinal and color features

improves ad identification.

To extract ordinal features, we reduce each

frame to 2 3 2 pixels. For each Y, Cb, or Cr

channel, we calculate the average pixel values

within each subimage; we then use the ordinal

measure process.17 Given a GoF, for each

channel c 5 Y, Cb, Cr, the ordinal pattern

distribution (OPD) histogram

Hopd
c

is formed as

Hopd
c ~ h1,h2, . . . ,hl, . . . ,hNð Þ

0ƒhiƒ1 and
X

i

hi~1

where hi is the normalized bin value indicating

the occurrences of an ordinal pattern i and

N 5 4! 5 24 is the OPD histogram dimension,

that is, the number of possible patterns. The

total dimension of ordinal features is thus 3 3

24 5 72.

The advantages of an OPD histogram repre-

sentation are twofold. First, it’s robust against

frame-size changes and color shifting. Second, its

contour can characterize a video clip in a global
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manner, while it’s insensitive to video frame-rate

changes and various local frame changes, unlike

keyframe-based representations.

For color features, we employ the cumula-

tive color distribution (CCD) histogram Hccd
c

defined as

Hccd
c ~

1

M

XbKzM{1

i~bK

Hi jð Þ j~1, . . . ,B

where Hi denotes the color histogram of an

individual frame i, M is the total number of

frames within a video segment, and B is the

color bin number. In our experiments, we use

B 5 24 (a uniform quantization). Hence, the

total dimension of color features is 3 3 24 5

72, by considering three color channels.

Given query clip Q and candidate clip S

from commercial databases, the similarity is

experimentally defined as the reciprocal of

linear combination of the average distance of

OPD and the minimum distance of cumulative

color distribution among three channels:

Dopd HQ,HS

� �
~

1

3

X

c~Y,Cb,Cr

D Hopd
c Qð Þ, Hopd

c Sð Þ
� �

Dccd HQ,HS

� �
~ Min

c~Y,Cb,Cr
D Hccd

c Qð Þ, Hccd
c Sð Þ

� �� �

Similariy HQ,HS

� �
~

1

w|Dopdz 1{wð Þ|Dccd

where Euclidean distance D(?, ?) is used, w

denotes the weight. In experiments, we use

w 5 0.5.

Another useful clue for ComID is FMPI. As

discussed previously, FMPI shots highlight the

commercial’s offer. To promote a product or

service, advertisers might use different story-

telling videos to generate different ad versions

where our proposed GoF signature at the clip

level cannot fulfill ComID. Extensive experi-

mental observations—for example, Cannes Li-

ons Live ad corpus (see http://www.canneslions.

com/winners_site/film/)—have indicated FMPI

shots are often kept uniform among different ad

versions to communicate persistent messages.

Hence, we might constrain the GoF signature

computation to those FMPI shots within a

commercial. We would apply the same similar-

ity measure.

ComBD experiments

We present the empirical results of detect-

ing commercial boundaries.

TV commercial video database

We have built a TV commercial video

database of 499 individual commercials cover-

ing 390 distinct commercials—as some com-

mercials contained more than one instance

These commercials cover three content con-

cepts: ideas (for example, vehicle safety),

products (for example, vehicles and food

items), and services (for example, banking

and insurance). We collected these commer-

cial clips from the Text Retrieval Conference

(TREC) video-retrieval evaluation 2005 corpus.

FMPI classification results

Our FMPI recognizer has achieved a prom-

ising accuracy up to F1 5 89.6 percent (recall/

precision 5 88.25/91.00 percent) over 4,632

images comprising 1,046 FMPI frames and

2,987 non-FMPI frames. We determine this

accuracy by averaging the results of 10 random

half-and-half training and testing partitions.

We use LIBSVM (see http://www.csie.ntu.

edu.tw/,cjlin/libsvm/) to accomplish C-sup-

port vector classification learning. We also use

radial basis function exp(2c||xi2xj||
2), c.0 and

we must tune four parameters: c, penalty C,

class weight wi, and tolerance e. We weight wi

for SVMs to deal with unbalanced data, which

sets the cost C of class i to wi 3 C. e sets the

tolerance of termination criterion. We set class

weights as wi 5 5 for the FMPI class and w0 5 1

for the non-FMPI class. We set e to 0.0001 and

tune c between 0.1 and 10 and C to between

0.1 and 1. We set an optimal pair of (c, C) 5

(0.6, 0.7).

As Figure 7 shows, a set of recall precision

curves are yielded by using different visual

features and different parameter pairs (c, C).

Compared with color features, texture features

play a more important role. Combining color

and texture features significantly improves the

performance, which is further enhanced by

fusing color, texture, and edge (which is a

useful complement of texture).

ASCI classification results

We compare performance between a K-L-

and HMM-based methods and between before

and after alignment. Table 1 lists the results.

The dataset comprises 2,394 non-ASC samples

and 1,932 ASC samples. We applied a half-and-

half training and testing partition and use the

HMM structure of eight hidden states and 12

mixture components. Using an alignment
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process increases the F1 of ASC and the overall

accuracy by 3.9 to 4.6 percent. Against a K-L

distance metric, HMM can improve the F1 of

ASC and the overall accuracy by 2.9 to 4.2

percent. The alignment plays an important

role. In addition, the overall accuracy of ASC

and non-ASC is important as those two

probabilities jointly contribute to a boundary

classifier. We achieved a promising overall

accuracy of 87.9 percent with HMM along

with an alignment process.

ComBD classification results

Our experimental dataset produces 498 true

boundaries and 2,050 false ones. For unbal-

anced data, we set class weights as w1 5 5 for a

true boundary class and w0 5 1 for a false

boundary class.

Figure 8 (next page) illustrates the simula-

tion results of ComBD. We achieved a prom-

ising accuracy of F1 5 89.22 percent (recall/

precision 5 91.00 percent/87.50 percent) via

half-and-half training and testing with FMPI

and ASCI only. This performance provides a

basis for a reliable ComBD system as FMPI and

ASCI are independent of postediting effects.

We obtain a further F1 improvement from

89.22 percent to 93.70 percent by fusing FMPI,

ASCI, silence, and black frames; whereas using

black frames only yields a poor result of F1 5

81.0 percent (recall/precision 5 87.00/75.80

percent). The inferior result of ASCI + silence +
black frames clearly shows the improvement

by introducing FMPI.

Performance can vary with different

streams. However, we employed a heteroge-

neous dataset for a fair evaluation. The use of

only black frames (as suggested elsewhere4)

would produce an even worse result—less than

81.0 percent—if they weren’t used as a delim-

iting flag, easily omitted by TV stations, to

separate spots.

ComCL experiments

We present the empirical results of classify-

ing commercials.

Commercial data observations and parameters

From the commercial video database, we

extracted 191 distinct English ones. The 191

TV commercials are distributed in eight cate-

gories based on their advertised products or

services. Our experiments involve four catego-

ries: automobile, healthcare, IT, and finance.

Although they don’t exclusively cover all

commercials, they include 141, 74 percent of

total commercials. This is a large enough

number to show the effectiveness of our

approach.

It’s straightforward to determine appropri-

ate topics in the available corpus to match the

automobile, healthcare, and finance categories

and form the training documents. We did not

include the food category because we couldn’t

find suitable topics in Reuters-21578 and 20
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Figure 7. The

recognition yield

results for a frame

marked with product

information.

Recognition using

different features

and parameters.

Table 1. Experimental result on an audio scene change (ASC) recognizer.

Method Alignment Precision (%) Recall (%) F1 (%)

Accuracy of ASC and

non-ASC (%)

Kullback-Leibler No 72.8 76.6 74.6 79.8

Kullback-Leibler Yes 76.7 81.8 79.2 84.0

Hidden Markov model No 76.1 80.5 78.2 83.6

Hidden Markov model Yes 79.5 84.9 82.1 87.9
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Newsgroup. Thus we chose IT as the fourth

category. An alternative is to collect relevant

documents manually, a process we’ll include

in our future work.

For each category, we collected 1,000

training documents from Reuters-21578 and

20 Newsgroup. Altogether the training docu-

ments amount to 4,000. At the feature selec-

tion phase, we set the document frequency

threshold to two. We examined 9,107 word

features to determine their integrity and

qualification as training data. With a three-

fold cross-validation we reached an accuracy

of up to 96.9 percent, using a radial basis

function kernel and SVMs parameters C and c

of 8,000 and 0.0005.

The statistics show that, on average, ASR

and OCR can provide 2.8 and 2.3 potential

keywords for each automobile commercial, 4.5

and 2 for finance, 6.4 and 2.5 for healthcare,

and 5.7 and 2.3 for IT, respectively. We

empirically set both keyword selection param-

eters n and m to two. The recognition of brand

names plays an important role as brand names

are the best keyword candidates. ASR can

recognize brand names in 8 percent and OCR

can recognize brand names in 56 percent of

total commercials.

Results evaluation

Figure 9 displays the F1 values of classifica-

tions by three sources. For most categories,

proxy articles deliver slightly lower accuracies

than manually recorded speech transcripts.

The accuracy differences imply that the errors

in keyword selection and proxy article acqui-

sition do occur, but do not necessarily provoke

serious degradation on the final performance.

Compared with ASR transcripts, proxy articles

have improved the performance drastically;

the overall classification accuracy is increased

from 43.3 percent to 80.9 percent. With

manually recorded speech transcripts, the

overall classification accuracy reaches up to

85.8 percent. With the exception of IT, all

other categories achieve satisfactory results.

The reason for lower accuracy in the IT

category lies in the mismatch of topic defini-

tion between the training documents and the

testing commercials. In the training data, the

IT category mainly covers computer hardware

and software. However, in the testing data, it

includes other IT products, such as printers

and photocopy machines. In addition, ASR

transcripts are applied to text categorization.

In general, accurate brand names help

deliver correct classification. As the classifica-

tion accuracy is 80.9 percent, we can roughly

infer that the classification of some 16.9

percent (80.9 2 56 2 8 5 16.9 percent) of

total commercials still can benefit from Goo-

gle and text categorization when the brand

names are not extracted.

ComID experiments

To evaluate our signature’s robustness, we

have tried to identify 84 commercial clips in a

10.5-hour video collection. Given their exact

boundaries, we have achieved 100 percent

accuracy for matching among commercials.

Moreover, we conduct the sliding-window-

based matching plus the active search tech-

nique over video streams.18 As shown in

Figure 10a, our signature obtains comparable

results with features having a 3 3 720 5 2,160

dimension.17 Our feature is 6 3 24 5 144

dimensional, 15 times smaller than that of
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Hampapur, Hyun, and Bolle.17 As shown in

Figure 10b, compared with using ordinal or

color features only, using combined features

delivers better results.

Conclusion

Ad agencies generate original ideas to

represent products and services. This creative

design or production could challenge our

scheme’s generalization of TV environments.

But reducing ad boundary detection to binary

classification, transforming video classifica-

tion into text categorization, and using exter-

nal knowledge to expand sparse textual se-

mantics from ASR and OCR makes sense, in

general. In addition, FMPI represents a utility

widely used in ad production and the com-

putable FMPI concept is useful in syntactic and

semantic ad analysis, while ASCI provides a

generic approach to address the alignment

between shot transitions and potential audio

scene changes nearby.

A few open issues remain. We need to

explore the impact of production formats (for

example, demonstration, product alone,

spokesperson, and so on) on ComBD and the

role of visual coherence of shots in ComBD. In

the future, we will carry out ad classification

on an extensive dataset and more categories.

We will seek out a systematic approach to

accurate keyword selection in ComCL. Finally,

we’ll introduce a collection of computable,

visual concepts on scenes and objects that can

classify an ad’s lack of textual semantics. MM
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Related Work
In the context of video indexing and retrieval, TV

commercial videos have been widely investigated.1–6 To

distinguish our work, we review related work in TV

commercial video analysis and discuss the weaknesses

of previous approaches in addressing commercial bound-

ary detection (ComBD) and commercial classification

(ComCL).

Most previous work on TV commercial video analysis

focuses on automatically locating a commercial within a

video stream to develop commercial skip applications.1–4

These approaches exploit audiovisual features including

blank frames, scene breaks, action,3 and so on, to

characterize commercial video segments. Subsequently,

some approaches employ heuristic rules3 or machine

learning algorithms1,4 to generate a commercial discrimina-

tor. Shots or image sequences are a commonly used level of

granularity,1,4 because some useful features—for example,

scene change rate1 or shot frequency4—are based on shots

directly, and some statistically meaningful features—for

example, blank frame rate and audio class histogram,1

average and variance of edge change ratio, frame differ-

ence,4 and so on—have to undergo the accumulation over a

temporal window. Generally speaking, such features-based

commercial detectors only allow roughly locating commer-

cial breaks. To determine boundaries precisely, say one

single shot, some recent work has introduced heuristic rules4

and generative models1 to implicitly or explicitly incorporate

more constraints from commercial duration and temporal

transition characteristics. Moreover, grouping semantically

related shots (for example, program shots versus commercial

shots) has been proposed as a postprocessing to refine the

boundaries.3,4 Despite successes in prototyping and perfor-

mance tuning of a commercial detector, little existing work

addresses structural and semantic analysis within a com-

mercial segment.

We know of no previous work that exploits a commercial’s

promotional content. Colombo, Bimbo, and Pala’s semiotic

categorization of commercials is the work most focused on

semantic content analysis of commercial videos.6 They use

heuristic rules in the commercial production to associate a

set of perceptual features with four major commercial types,

namely practical, playful, utopic, and critical. This work is

different from our proposed approach to commercial

classification. Regardless of the video story’s meaning,6 their

systems are designed to extract high-level semantics

associated with the cinematic elements and narrative forms

synthesized using them7 by emphasizing production knowl-

edge. We can view this as a problem of computational

media aesthetics.7 In contrast, our work seeks to understand

the advertising messages communicated to viewers.

ComBD is a significant stage for ComCL and commercial

identification. Previous work suggested the use of blank or

monochrome frames and quiet frames to segment each spot

with a commercial break.3 These methods assumed that two

consecutive commercials are separated by a short break of

several monochrome frames or audio depression occurrenc-

es. Derived from postediting effects, TV stations can easily

omit these. Even if monochrome frames are used consis-

tently, other editing effects (for example, fade-in and fade-

out) and black/white frames occurring within an individual

commercial would decrease the ability to discriminate

between commercials. Determining audio segments of

silence is technically sound. Yet silence is not a consistent

and reliable indicator either. Although sound does help a TV

viewer realize the transition from one commercial to the

other, hidden Markov model-based approaches working on

low-level audio features—even those coupled with visual

features—cannot suffice for precisely partitioning different

spots.8 This is due to the complex audio content and the

diverse temporal changes within a commercial itself. A

desirable approach would seek intermediate multimodal

features inherent in commercial video content. Those

effects-related features should be dealt with as a comple-

ment but not as the central strategy.
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