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Abstract: The control of underactuated mechanical system is very complex for the loss of its 
control inputs. The model of underactuated mechanical systems in a potential field is built with 
Lagrangian method and its structural properties are analyzed in detail. A genetic algorithm (GA)-
based stable control approach is proposed for the class of underactuated mechanical systems. The 
Lyapunov stability theory and system properties are utilized to guarantee the system stability to 
its equilibrium. The real-valued GA is used to adjust the controller parameters to improve the 
system performance. This approach is applied to the underactuated double-pendulum-type 
overhead crane and the simulation results illustrate the complex system dynamics and the validity 
of the proposed control algorithm. 
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1. INTRODUCTION 
 
Underactuated mechanical systems (UMSs) are a 

class of mechanical systems that have fewer control 
inputs than generalized coordinate variables. UMS has 
the advantage over fully-actuated systems in energy 
saving, cost reducing, manufacturing and installing. 
The restriction of control inputs of UMS brings a 
challenging control problem. Moreover, a fully-
actuated system may become a UMS because of 
actuator failure and so the control algorithm for UMSs 
can be used as a kind of fault-tolerate control 
algorithm. 

Since the early 1990s, the dynamics and control of 
the UMSs have attracted much attention [1-6]. UMS 
is interesting because of its structural properties. For 
fully actuated mechanical systems, a broad range of 
powerful techniques are used to improve their 
performance (optimal, robust, adaptive and learning 
control techniques). These techniques are possible 

because fully actuated systems possess a number of 
strong properties that facilitate control design, such as 
feedback linearizability and matching conditions. For 
the UMSs, one or more of the above properties are 
lost and it is hard to find a unique useful theory to 
solve the control problem. Therefore, the previous 
related studies mainly focused on the UMS dynamics 
and control properties. The partial feedback 
linerization was put forward [1]. Three classes of 
control problems were analyzed [2]. Nonholonomic 
constraint and controllability were researched [3]. 
System dynamics, controllability and stabilizability 
results were derived [4]. However, from the literature 
[1-6], it can be seen there are few results that are 
applicable to design a controller for an entire class of 
UMSs. 

During the last decade, evolutionary computational 
techniques, such as GA, have been successfully 
applied to deal with some complex engineering 
problems, which are difficult to be solved by 
traditional methods [7]. Since the GA simultaneously 
evaluates many points in the parameter space, it is 
more likely to converge toward a global solution. 
Therefore, the GA has been widely introduced to deal 
with nonlinear control challenges [8,9] and the GA-
based global optimization technique has been 
integrated into other control methodology, such as 
neural network or fuzzy control [10]. In view of these 
previous research results, the destination of favorable 
control or optimization performance can be achieved 
owing to its powerful global searching capability. The 
ordinary form of GA is a binary encoding during 
operating procedures. However, for a real application, 
a real-valued encoding is usually preferable and easy 
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to be directly implemented in the computer 
programming. Moreover, binary coding of real 
number may suffer for the loss of precision and the 
longer chromosome strings. 

This paper has three objectives. The first is to build 
the model and to analyze some properties of a class of 
UMSs in a potential field. The second is to propose a 
GA-based stable control algorithm for the class of 
UMSs in a potential field based on the Lyapounov 
theory and the system’s properties. The third is to 
verify the validity of the system dynamics and the 
proposed control algorithm with an underactuated 
double-pendulum-type overhead crane (DPTOC) 
system. 

The remainder of this paper is organized as follows. 
In Section 2, the dynamics and properties of the 
UMSs in a potential field are analyzed such as its 
positive definite symmetric inertia matrix and its 
passivity. In Section 3, a stable control algorithm is 
proposed and the stability is analyzed with Lyapunov 
theory. In Section 4, the real-valued GA is designed to 
improve the system performance. In Section 5, the 
DPTOC system is used to simulate. The complex 
dynamics and the proposed algorithm are validated. 
Finally, in Section 6, conclusions are drawn. 

 
2. DYNAMICS AND PROPERTIES OF UMS 
 
According to the Lagrange mechanics, i.e., Euler-

Lagrange equation, the dynamics of the class of 
UMSs in a potential field can be built as 

( ) ( , ) ( ) ,M q q C q q q G q τ+ + =   (1) 

where T
1( ,  ,  )nq q q= is the generalized coordinate 

vector, T T
1( , ,  ,  0, , 0) ( ,  0)mτ τ τ τ= =  is the 

control vector. When m<n, a system is said to be 
underactuated. ( ) n nM q R ×∈ is the inertia matrix and 

( )ijm q  is its matrix element. ( , )C q q  is Centrifugal 
terms ( i j= ) and Coriolis terms ( i j≠ ), its matrix 
element is  

1( , ) .n i
i j k j kkc q q Γ (q)q==∑   (2) 

( )k
i j qΓ are called Christoffel symbols and defined as 

   ( ) ( )( )1( ) .
2

k j i jk k i
i j

i j k

m q m qm q
q

q q q

 ∂ ∂∂
Γ = + −  ∂ ∂ ∂ 

 (3) 

( )G q contains the gravity terms 

( ) ( ) .G q P q q= ∂ ∂    (4) 

The UMSs have the following structural properties: 
Property 1: M(q) is a positive definite symmetric 

matrix [11]. 
Property 2: ( , ) ( ) 2 ( , )N q q M q C q q= − is a skew 

symmetric matrix. 
Proof: Each element of the derivative of the inertia 

matrix is given by: 

 1

( )
( ) .n i j

i j kk
k

m q
m q q

q=

∂
=

∂∑  

Each element of ( , )N q q  can be calculated from 
(2) and (3): 

  

  
1

( , ) ( ) 2

( ) ( )
            .

i j i j i j

n k j i k
kk

i j

n q q m q c (q)

m q m q
q

q q=

= −

 ∂ ∂
= −  ∂ ∂ 
∑

 

Recalling Property 1, it is straightforward to deduce 
that: 

  
 1

  
1

 

( )( )
( , )

( ) ( )

( , ),

n j kk i
j i kk

j i

n k j i k
kk

i j

i j

m qm q
n q q q

q q

m q m q
q

q q

n q q

=

=

 ∂∂
= −  ∂ ∂ 

 ∂ ∂
= − −  ∂ ∂ 
= −

∑

∑  (5) 

i.e., ( ) 2 ( , )M q C q q−  is a skew symmetric matrix.  
Property 3: The UMSs are passive systems 
Proof: The total energy function of the UMSs can 

be written as 

1( , ) ( ) ( ),
2

TE q q q M q q P q= +   (6) 

where 1 ( )
2

Tq M q q  is the system kinetic energy, and 

( )P q  is the system potential energy. A reference 
point of the potential energy can be chosen to make 

( ) 0,P q ≥  and so ( , ) 0.E q q ≥  The differential of 
( , )E q q  can be computed using (1), (4) and 

Properties 1-2: 
1 ( )( , ) ( ) ( )
2

1 ( ( ) 2 ( , ))
2

,

T T T

T T

T

P qE q q q M q q q M q q q
q

q q M q C q q qτ

τ

∂= + +
∂

= + −

= Θ

 (7) 

where 1 2( ,  , , ) ,T
mq q q ZqΘ = =… [ 0],mZ I= 1( ,τ τ=  

2 , ...,  ) .T
m Zτ τ τ=  Therefore, 

  

  0
( ( ), ( )) ( (0), (0))

             ( (0), (0)),

t T dt E q t q t E q q

E q q

τΘ = −

≥ −
∫  
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i.e., 

| ( (0), (0)).
t

E q qτ Θ ≥ −    (8) 

Thus, UMSs are passive systems with respect to input 
τ  and output Θ [12].                         

 
3. STABLE CONTROL FOR UMS 

 
It is supposed that the control objective is to control 

the system to ,dq  one of the equilibrium states, 
where dΘ  is the control objective of the actuated 
part. The following Lyapunov function is defined: 

1 1( , ) ( ( , ) ( ))
2

1              ( ) ( ),
2

j T
E d D

T
d P d

V q q k E q q P q K
j

K

= − + Θ Θ

+ Θ − Θ Θ − Θ
 (9) 

where Ek  is a positive constant, ( )dP q  is the 
potential energy at desired position, j is a constant. In 
order to make ( , ) 0,V q q ≥  j should be 1 when the 
desired position is the minimal potential energy point 
among all the accessible states, and j should be 2 
when the desired position is not the minimal potential 
energy point. Both DK  and PK  are positive definite 
diagonal matrix. 

When j=1, the differential of Lyapunov function 
( , )V q q  can be calculated: 

 

( , ) ( , )

( ) ( )

           ( ( )).

T
E D

T
d P d

T
E D P d

V q q k E q q K

K

k K Kτ

= + Θ Θ

+ Θ − Θ Θ − Θ

= Θ + Θ + Θ − Θ

 (10) 

In order to ensure the system stability, we take: 

 ( , ) ,TV q q K= −Θ Θ    (11) 

where K is a positive definite diagonal matrix. Then 
following equation holds: 

 ( ) .E D P dk K K Kτ + Θ + Θ − Θ = − Θ   (12) 

From Zτ τ=  and [    0],mZ I=  TZτ τ=  holds. 
Considering ZqΘ =  is a column vector and from (1), 
the following equation can be obtained  

1

1

( )( ( , ) ( ))

    = ( )( ( , ) ( )).T

Zq ZM q C q q q G q

ZM q Z C q q q G q

τ

τ

−

−

Θ = = − −

− −
 

Substituting the above equation into (12), the control 
law can be obtained: 

1 1( ( ) ) ( ( )T
E m D P dk I K ZM q Z Kτ − −= − + Θ − Θ  

1( )( ( , ) ( )) ).DK ZM q C q q q G q K−− + + Θ   (13) 

Theorem 1: For UMSs described by (1), when the 
equilibrium point dq  is the minimal potential energy 
point in the system accessible space, controller (13) 
can make the closed loop system converge to the 

equilibrium point qd or stable trajectory 1 ( )
2

Tq M q q  

( ) ,P q C+ =  where, C is a positive constant. 
Proof: From (9) and (11), ( , ) 0V q q ≥  holds. 

There are two cases: 
When dq q=  and 0q =  hold at the same time, 
( , ) 0V q q =  holds. From (13), 0τ =  holds. Therefore, 

the system is stabilized to the desired position. 
When dq q≠  or 0,q ≠  ( , )V q q  is a positive 

definite function. From (11), ( , ) 0V q q ≤  holds. 
Therefore, 2 ,L L∞Θ∈ ∩ ( , )E q q  and Θ  are bounded. 
From (6), ,q q  and ( )M q  are bounded. ( )M q  is a 
positive definite symmetric matrix indicating that 

1( )M q−  is bounded. From (1), q  is bounded, and 

then ( , ) 2 TV q q K= − Θ Θ  is bounded, which indicates 
( , )V q q  is a uniformly continuous function. 

According to Barbalat’s lemma, lim ( , ) 0,
t

V q q
→∞

=  i.e., 

lim 0.
t→∞

Θ =  It can be seen that lim ( , )
t

V q q
→∞

 and 

lim ( )d
t→∞

Θ − Θ  are constant. From (7) and (13), 

lim ( , )
t

E q q
→∞

 and lim
t

τ
→∞

 are constant. If lim 0
t

τ
→∞

≠  

holds, then Θ  will change with ,t → ∞  which is 
inconsistent with lim ( )d

t→∞
Θ − Θ  is constant. Thus 

lim 0
t

τ
→∞

=  must be true. From (12), lim d
t→∞

Θ = Θ  

holds. The stability analysis can be divided into two 
cases [13] :   

When lim ( , )
t

E q q
→∞

= ( ),dP q  (6) can be written as 

1 ( ) ( ( ) ( )) 0
2

T
dq M q q P q P q+ − =  with ,t → ∞  and 

both the two terms in the left of the above equation 
are greater than or equal to zero. Therefore, the 
system kinetic energy is equal to zero, and potential 
energy is equal to the potential energy of desired 
position, i.e., dq q=  and 0.q =  That is to say the 
system is stabilized to the desired position. 

When lim ( , ) ( ),d
t

E q q C P q
→∞

= ≠ the system 

converges to a stable trajectory 1 ( ) ( )
2

Tq M q q P q+  

,C=  where ,dΘ = Θ  C is a greater than ( )dP q  
and can be calculated with the above equation, (1) and 

0.τ =                                       
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When j=2, the following control law can be 
obtained 

 

( )
( )

11

1

( ( , ) ( )) ( )

( ) ( )( ( , ) ( )) .

T
E d D

P d D

k E q q P q K ZM q Z

K K ZM q C q q q G q K

τ

θ θ

−−

−

= − − +

⋅ − − + + Θ
 
The system stability can be proved in the same way as 
Theorem 1. 

 
4. PARAMETERS ADJUSTING BY 

REAL-VALUED GA 
 
The main drawback of the proposed stable 

approach is that the parameters of the controller have 
to be predefined and system performance is sensitive 
to those parameters. That is to say, the values of ,Ek  

,DK PK  and K  in (13) have to be determined 
firstly and carefully. However, it is very difficult to 
determine the parameters because these parameters 
haven’t obvious physics meaning and there are 
complex couplings among them. Moreover, the 
relation between these parameters and system 
performance cannot be directly gained. Therefore, it is 
difficult to set them by the experiences or trial and 
error, especially in the long-distance transporting. 
Here a real-valued GA is used to optimize the 
parameters in the stable controller (13). 

 
4.1. Genetic algorithm 

The GA is based on an analogy to the genetic code 
in our own DNA Structure, where its coded 
chromosome is composed of many genes [7]. The GA 
approach involves a population of individuals 
represented by strings of characters pr digits. Each 
string is, however, coded with a search point in the 
hyper search-space. From the evolutionary theory, 
only the most suited individuals in the population are 
likely to survive and generate off-spring that passes 
their genetic material to the next generation. Therefore, 
the most promising individuals are manipulated by 
GA in its search for improve performances or 
solutions. In GA, three basic operators, namely, 
reproduction, crossover and mutation, form the core 
of the genetic computation. In the application of GA 
to an optimizing problem, there are two considerations 
to be made. First, the choice of fitness function to be 
used for the measure of performance in the 
optimization process, and second, the choice of 
coding to be used to code the design parameters into 
the chromosome. 

 
4.2. Design of real-valued GA 
4.2.1 Encoding 

In order to avoid the onerous computation of 
encoding and decoding in binary GA, the real-valued 

GA is adopted. A chromosome represents a set of 
parameters: 

Ω =[ Ek  DK T×  PK T×  K T× ], 

where T[1   1 1] .mT R= ∈  
 

4.2.2 Fitness function 
The fitness function is the key to use the GA. A 

simple fitness function that reflects small steady-state 
errors, short rise-time, low oscillations and overshoots 
with a good stability is given 

 
1 20

1 ,

1 ( ) ,

F J

J penalty e dtµ µ τ
∞

=

= +∫（＋ ）
 (14) 

where de q q= −  is tracking errors of coordinate 

variables, 1
nRµ ∈ and 2

mRµ ∈ are positive 
coefficients matrix, which respectively represent the 
importance degree of generalized coordinate variables 
and control inputs in the fitness function. The penalty 
is a penalty coefficient when some overshoots arise. 

 
4.2.3 Real-valued GA operations 

Select and Reproduction Operation: The operator 
selects good chromosomes on the basis of their fitness 
values and produces a temporary population, namely, 
the mating pool. Here the most common method, 
Roulette Wheel Selection [7] is used. 

Crossover Operation: The P chromosomes in the 
mating pool are randomly divided into P/2 pairs, 
which serve as parents and will be crossed. Suppose 

1Ω  and 2Ω  are parents of a given pair and c is a 
number randomly generated in [0, 1]. If ,cc p≤  then 
the following crossover operation for 1Ω  and 2Ω  
are performed 

1 1 1 2

2 2 2 1

( ),
( ),

r
r

Ω ← Ω + Ω − Ω
Ω ← Ω + Ω − Ω

 

where cp  is the probability of crossover operation, 
r  is a random vector deciding the crossover grade of 
these two parents, whose elements is in [0, 1]. If 

cc p>  no crossover operation is performed. 
Mutation Operation: The mutation operator 

follows the crossover and provides a possible 
mutation on some chromosomes. Supposing the 
probability of mutation operation is pm, only mp P×  
chromosomes in current population will be randomly 
selected to mutate. The formula of mutation operation 
for selected Ω  is give by 

,sΩ ← Ω + Ψ  

where s is a positive constant and Ψ is a random 
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vector, whose elements are in [-1, 1]. If the output 
goes beyond the scope, s will be replaced by the 
random number between 0 and s.  

 
4.2.4 Steps of real-valued GA 

The real-valued GA that we implemented can be 
described algorithmically as follows: 

Step 1: Generate an initial population with P 
chromosomes randomly. 

Step 2: While (generation number <= maximum 
value) do. 

Step 3: Evaluate each chromosome using equation 
(14) according to the system simulation results. 

Step 4: Select and reproduction operation. 
Step 5: Crossover operation. 
Step 6: Mutation operation. 
From the system analysis and controller design, it 

can be seen the proposed control algorithm is 
designed for an entire class of complex underactuated 
system in a potential field but not for an underactuated 
system, such as the whirling pendulum [9], the cranes 
[14-17] and a two-freedom underactuated system [6]. 
The real-valued GA is implemented to overcome 
some drawbacks of the stable controller, i.e., the 
difficulty in parameters setting as [6]. However, the 
evolution process is time consuming in real-time 
application and the online GA-based control scheme 
is not considered because the stability cannot be 
guaranteed directly. 

 
5. SIMULATION STUDIES 

 
When the mass of crane hook can’t be ignored, the 

overhead crane performs as a double pendulum 
system [14], and the system is a typical UMS with one 
control input and three generalized coordinate 
variables. 

 
5.1. Dynamics and properties of DPTOC 

Fig. 1 shows the model of DPTOC system: m is 
trolley mass, m1 is hook mass, m2 is load mass, x is 
trolley position, 1θ  is hook swing angle, 2θ  is load 
swing angle, l1 is cable length for hook, l2 is cable 
length for load, F is trolley drive force. The friction 
and cable mass are ignored.  

The system dynamics can be described by (1), 
where 

1 2

1 2 1 1 2 2 2

11 12 13

21 22 23

31 32 33

11 1 2 12 1 2 1 1

[ ,0,0], [ , , ] ,

( ) [0   ( ) sin    sin ] ,
           

( )           ,
           

, ( ) cos ,

T

T

F q x

G q m m gl m gl
M M M

M q M  M M
M M M

M m m m M m m l

τ θ θ

θ θ

θ

= =

= +

 
 =  
  

= + + = +

 

13 2 2 2 21 1 2 1 1
2

22 1 2 1 23 2 1 2 1 2

31 2 2 2 32 2 1 2 1 2
2

33 2 2

1 2 1 1 1 2 2 2 2

2

 cos , ( ) cos ,

( ) , cos( ),
cos  , cos( ),

,

0  ( ) sin    sin

( , ) 0              0                     

M m l M m m l

M m m l M m l l
M m l M m l l

M m l

m m l m l

C q q m

θ θ

θ θ
θ θ θ

θ θ θ θ

= = +

= + = −
= = −

=

− + −

= 1 2 1 1 2

2 1 2 1 1 2

sin( ) .

0 sin( )         0

l l

 m l l

θ θ θ
θ θ θ

 
 

− 
 − −  

 
In addition to Properties 1-3, the DPTOC system has 
two different nature frequencies that is calculated 
through the linearization of (1) around 1 0θ =  and 

2 0 :θ =  

 ( ) 0,M q q Kq+ =    (15) 

where ( )M q  is the linearization matrix of ( ),M q  

1 2 1

2 2

0             0                  0
0     ( )          0 .
0              0               

 
K  m m gl

m gl

 
 = + 
  

 

The nature frequencies can be obtained with 
nonzero eigenvalue of matrix 1( )M q K−− [18]: 

 ( )1,2 ,
2
gω α β= ±    (16) 

where 

1 2

1 1 2
2 2

1 2 1 2

1 1 2 1 1 2

1 1 ,

1 1 14 .

m m
m l l

m m m m
m l l m l l

α

β

 +
= + 

 

     + +
= + −     
     

 

 
5.2. Dynamics simulation for DPTOC 

In DPTOC system, the parameters that always 
change in different transport tasks are the hook mass 
m1, the payload mass m2, the cable length l1 and the 
cable length l2. The effects of these parameters’ 

 
 

1θ

2θ

x

m F

1m

2m

1l

2l

 
Fig. 1. DPTOC system scheme. 
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change and different initial condition are considered. 
In the simulations, the basic parameters, m=5Kg, 
m1=2Kg, m2=5Kg, l1=2m, l2=1m, are supposed to 
simulated an actual system. These system parameters 
can be proportionally set according to an actual 
DPTOC. Because the swing angles are ordinary less 
than a constant and the angle velocity is zero as the 
maximal swing angle arrives, and here 0.2radian 
(11.465degree) is supposed as the maximal swing 
angle, the basic initial state, 1 11.465 ,θ = 1 0 / s,θ =  

2 11.465 ,θ = 2 0 / s,θ = 0m,x = 0m / s,x = is 
adopted. The phase plane under the basic parameters 
and basic initial state are shown in Fig. 2(a). Only one 
parameter or one initial state is changed in the 

following simulations. When parameter 2θ  of initial 

state is changed to 11.465 ,−  the phase plane is 
shown in Fig. 2(b). When system parameter m1 is 
changed to 10Kg, the phase plane is shown in Fig. 
2(c). When system parameter 2m  is changed to 
25Kg, the phase plane is shown in Fig. 2(d). When 
system parameter l1 is changed to 10m, the phase 
plane is shown in Fig. 2(e). When system parameter l2 
is changed to 5m, the phase plane is shown in Fig. 2(f). 
From the simulations of system dynamics, it can be 
seen: the system dynamics is more complex than the 
single-pendulum-type overhead crane. The system 
dynamics is greatly affected by system parameters’ 
change. The heavier the payload becomes, the more 

 

1θ 2θ

1θ
2θ

 
 (a)                                           (b) 

 

1θ

2θ

1θ
2θ

 
 (c)                                           (d) 

1θ 2θ
1θ

2θ

 
 (e)                                           (f) 

Fig. 2. System dynamics of the DPTOC for different initial condition or system parameters. 
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the system dynamics is similar to single-pendulum-
type overhead crane. Moreover, the system dynamics 
is greatly affected by the system initial conditions 
because of system’s nonlinearity. 

 
5.3. Stable control simulation 

In the process of control simulations and 
optimization, the initial position x = 0m of the basic 
initial state is changed to 30m,x = −  the other initial 
state and system parameters of each simulation are 
same as the above system dynamics simulations. The 
corresponding controller parameters are: Im= [1], T  = 
[1], Z = [1 0 0; 0 1 0], and in order to simplify the 
controller, only the position term in (9) is considered, 
namely make KD = 0. The controller (13) becomes 

( ) / .P EK K kτ = − Θ + Θ  Since the system only have 
one actuated coordinate variable x, make kp= Kp/kE and 
k= K/kE , the controller can be rewritten as  

 .pk x kxτ = − −     (17) 

Thus the chromosome consists of two real numbers 
[kp k].  

In the fitness function (14) of GA, the coefficients 
represent the importance degrees of generalized 
coordinate variables and control inputs. In an actual 
transport, the anti-sway control is more important than 
the position control and the control of 2θ  is more 
difficult. In order to set these coefficients, the 
following states are considered: the transport is a 
long-distance transport; since the unit of both 1θ  and 

2θ  is radian in computer programs, they should be 
transformed to degree through their coefficients to 
calculate the fitness function. Here, the coefficient 1µ  
is set to [0.1 50 60]. In an actual transport, a large 
position overshoot maybe makes the payload collide 
with other equipments. Moreover, it is more 
dangerous because the swing angle and the position 
overshoot have the same direction around the desired 
position. Therefore, when the system is in the state 
where the overshoot of x  arises, the coefficient 
penalty is added to decrease the fitness function of the 

corresponding chromosome. The longer the system 
stays in the overshoot state, the faster the chromosome 
vanishes in the evolution process. Here, penalty = 0.5 
is adopted, and a small energy saving coefficient 

2 0.01µ =  is set. 
The convergence of fitness function is normally 

linked to the search space, the size of the population 
and the probabilities of crossover and mutation 
operations. Therefore, before introducing genetic 
operations, the search space is first set according to 
some rated values of the mechanical system, such as 
rated transport velocity and rated driving force. Here, 

(0,  20)pk ∈  and (0,  60)k ∈  are adopted. Moreover, 
the population number and the probabilities is 
respectively set to P = 30, pc= 0.9 and pm= 0.1.  

Using real-valued GA, the evolution of the best 
solution is illustrated in Fig. 3 for controlling DPTOC. 
After the evolution process, the best parameters of 
stable controller respectively are: kp = 5.7033, k = 
16.3616. From the convergence of fitness function 
and controller parameters, the system performance is 
improved through the real-valued GA. 

After the controller (17) with the best parameters is 
added to the DPTOC system, where the desired 
position is chosen as the reference point of the 
potential energy, the time responses of the DPTOC are 
shown in Fig. 4. It is clear the proposed control law 
can transport the payload to the desired position while 
damping swing angle, and has some robustness to the 
parameters changes. The control performance is 
improved with a larger load mass and is degraded 
with a larger cable length l1, where the system may be 
stabilized to a stable trajectory. Because the penalty 
term in (14) is included, there aren’t the overshoots of 
trolley position around the desired position from the 
simulation results as Fig. 4(a), 4(b), 4(c), 4(e), and 
4(f). Only when the payload mass m2 becomes large 
enough, the overshoot arises as Fig. 4(d). 

From the simulations, the dynamics of DPTOC is 
very complex and a stable controller is implemented 
with the proposed method. Comparing with other 
control methods [14-16], the controller has the 
following advantages: In addition to the ensured 
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Fig. 3. Fitness function and gene for the best solution as a function of the number of generations. 
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stability, it is very simple and easy to implement 
because only one actuated coordinate variable, trolley 
position is needed to be measured. However, the 
control performance is not so good as sliding mode 
fuzzy control method [15]. 

 
6. CONCLUSIONS 

 
Control of UMSs is currently an active field of 

research due to their broad applications while the 
restriction of control inputs of UMSs brings forward a 
challenging control problem. The dynamic model of 
the UMS in a potential field is built with Lagrangian 
method and their several structural properties such as 

the positive definite symmetric inertia matrix and the 
passivity are analyzed. A real- valued GA-based stable 
control method is proposed for a class of UMSs. With 
the choice of the controller parameters, the method 
can greatly reduce the number of system states that 
need measured. The underactuated DPTOC system is 
used to verify the validity of the proposed control 
algorithm. Simulation results illustrate the complex 
dynamics of the DPTOC and the effectiveness of 
proposed control algorithm. 
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