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Abstract. Three dimension Computed Tomography (CT) reconstruction is computationally demanding. To accelerate the speed
of reconstruction, Application Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA) has been used,
but they are expensive, inflexible and not easy to upgrade. The modern Graphics Processing Unit (GPU) with its programmable
features improves this situation and becomes one of the powerful and flexible tools for 3D CT reconstruction. In this paper,
we implement Feldkamp-Davis-Kress (FDK) algorithm on commodity GPU using an acceleration scheme. In the scheme, two
techniques are developed and combined. One is cyclic render-to-texture (CRTT) which saves the copy time, and the other is the
combination of z-axis symmetry and multiple render targets (MRTs), which reduces the computational cost on the geometry
mapping between slices to be reconstructed and projection views. Our algorithm performs reconstruction of a 5123 volume
from 360 views of the size 512 × 512 about 5.2s on a single NVIDIA GeForce 8800GTX card.
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1. Introduction

Computed tomography (CT) has become one of the most prevalent tools in medical diagnosis and
industrial non-destructive testing. However, 3D CT image reconstruction is computationally demanding
at computational complexity of O(NM 3), where N and M are respectively the number of projection
views and volumetric pixels in one dimension. Due to high computational complexity, reconstruction
time has become one of the most important features of appraising a CT scanner. To accelerate the speed of
reconstruction, ASIC or FPGA has been used, but they are expensive, inflexible and not easy to upgrade.
With the emergence of programmable Graphics Processing Unit (GPU), some high-performance and
more flexible CT image reconstruction algorithms have been implemented on GPU.

Nowadays, the two major GPU manufacturers are NVIDIA and ATI (acquired by AMD). We briefly
introduce the NVIDIA GPU hardware [7] and the introduction of the counterpart made by ATI can been
found in [5] . The firstly named “GeForce” GPU hardware is the GeForce 256 released in 1999. Now the
GeForce 8 series have been released. In these NVIDIA GPUs, programmable vertex shaders and pixel
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Fig. 1. Comparison of classic GPU pipeline and the latest GPU pipeline in block diagrams: (a) Classic GPU pipeline; (b) Latest
GeForce 8800GTX GPU pipeline.

shaders were introduced by GeForce 3 series in 2001, allowing developers to exploit specialized program
to manipulate vertex and pixel data. Floating-point precision was supported by GeForce FX series, and
FP16 (partial precision, 16bit floating point) texture filtering and frame buffer blending in hardware were
introduced from GeForce 6 series, which means that we can only do nearest-interpolation operations
directly when using 32-bit floating-point data. Certainly we can implement bilinear-interpolation through
shader programs. Until GeForce 8 series, 32-bit per component floating-point texture filtering and
blending in hardware are supported. The main difference between GeForce 8 series and the previous
is the introduction of unified shader architecture. Classic GPU pipelines implement vertex shaders and
fragment shaders separately, while the GeForce 8 series GPU pipelines with unified shader architecture
do not discriminate the vertex shaders and fragment shaders, which makes full use of shaders avoiding
too vertex-shader intensive or too fragment-shader intensive [10]. Rendering process generally begins
with vertices with various attributes passed into GPU from CPU, then vertex shading, rasterization,
fragment shading and finally write pixels to framebuffer. The comparison of rendering process between
classic GPU and GeForce 8800GTX is illustrated in Fig. 1.

With its rapid development, GPU owns more powerful raw computational performance than CPU does.
Zeng [19] recently proposed an optimization scheme based on CPU, which needs 387.9ms reconstructing
a 512 × 512 cross from 360 projection views, while Xu’s reconstruction algorithm [16] based on GPU
just needs 17.4ms. With powerful computing performance and programmable characteristic, GPUs have
emerged as an attractive platform for accelerating both graphics and other algorithms [4,11]. From early
fixed-function pipelines to currently fully programmable, from outputting 8-bit-per-channel color values
to full IEEE single precision, GPUs become more and more powerful and flexible. Accompany with
the generation of GPUs, accelerated CT reconstruction algorithms based on contemporaneous GPUs
generate. From Cabral [1] first implemented the accelerated CT reconstruction on nonprogrammable
SGI workstation to Xu [16] developed AG-GPU mechanism on the latest commercial GeForce 8800GTX
GPU then to Yang [17] performed the backprojection using CUDA architecture, all of these prove that
GPU is very suitable for CT image reconstruction.

In this paper, a 3D texture, instead of stacks of 2D textures that previously did, is used for storing the
reconstructed volume. So the OpenGL “GL EXT framebuffer object” extension should be supported
by hardware. The latest GeForce 8800 series GPU fully supports that. We implement FDK algorithm
using 3D texture, and develop two novel accelerating techniques. One is cyclic render-to-texture (CRTT)
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Fig. 2. Analogy between backprojection and projective texture mapping. Analogize the volume coordinate space (xv, yv, zv)
to the object space in computer graphics, and analogize the source-detector space (xe, ye, ze) to the eye space in computer
graphics; R: source-center distance; L: source-detector distance; wd, hd: detector width and height.

which saves the copy time, and the other is the combination of z-axis symmetry and multiple render
targets (MRTs), which reduces the computational cost on the geometry mapping between slices to
be reconstructed and projection views. The techniques can also be used in other case, such as the
misaligned-geometry cone-beam CT reconstruction [15].

The rest of this paper is organized as follows. Section 2 describes FDK algorithm in two steps
briefly. Section 3 describes the backprojection geometry in traditional computer graphics model, then
accelerating algorithms of CRTT, symmetry, MRTs, and some other skills are presented. In Section 4
experiments and results are presented and conclusions of this paper are made in Section 5.

2. FDK algorithm from planar detector data

Though non-planar acquisition orbits [21] and some exact reconstruction algorithms [20] have been
developed, the cone-beam scanning configuration with a circular orbit remains one of the most popular
configurations and has been widely employed for data acquisition [18], and the most widely used
reconstruction algorithm remains to be FDK [2] reconstruction algorithm in this circumstance. Let
pC (θ, a, b) denote cone-beam projection data from planar detector, where θ is projection angle and
(a, b) is the coordinate of a virtual detector plane at the rotation center as illustrated in Fig. 2, and let
f (xv, yv, zv) represent the spatial function to be reconstructed. The FDK algorithm has two stages:
weighted-filter in projection-space and weighted-backprojection in volume-space [13].

First step, weighted-filter:

p̃C (θ, a, b) =
(

R2

√
R2 + a2 + b2

pC (θ, a, b)
)
∗ gP (a) (1)

Where, R is the source-center distance, R2√
R2+a2+b2

is the production of two cosine factors of the fan-

and cone-angle, and gP (a) is a ramp-filter.
Second step, weighted-backprojection:

f (xv, yv, zv) =
∑

θ

R2

U(xv, yv, θ)
Interplation

(
p̃C (θ, a (xv, yv, θ) , b (xv, yv, zv , θ))

)
(2)
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Where

U (xv, yv, θ) = R + xv cos θ + yv sin θ (3)

a (xv, yv, θ) = R
xv sin θ − yv cos θ

R + xv cos θ + yv sin θ
(4)

b (xv, yv, zv , θ) = zv
R

R + xv cos θ + yv sin θ
(5)

In most cases, a (xv, yv, θ) and b (xv, yv, zv , θ) are not just integers, so the interpolation is to be
implemented.

3. Backprojection geometry and accelerated algorithms

The mapping between planar detector and a slice to be reconstructed is a projection transform [13],
which is commonly known as projective texture mapping [12] in computer graphics. Cabral [1] first
implemented the accelerated CT reconstruction using projective texture mapping, and the most of
following GPU accelerated algorithms were based on texture mapping because of the similarity between
backprojection and projective texture mapping. Xu [16] used the latest programmable GeForce 8800GTX
GPU and generated a good result. Based on these existing researches, we furthered two novel techniques
to improve the reconstruction speed.

3.1. Analogy between backprojection and projective texture mapping

As mentioned above, cone-beam backprojection is very similar to projective texture mapping. As
illustrated in Fig. 2, the volume space (xv, yv, zv) and the source-detector space (xe, ye, ze) are analogized
to the object space and eye space in computer graphics respectively. Just as computer graphics does,
projection transform can be divided into a model matrix M , a view matrix V, a perspective matrix P and
a translation and scaling matrix TS. Since texture index is usually in [0, 1], the matrix TS is necessary.
The matrix M corresponds to the rotation of a cone-beam CT. The matrix V reveals the distance between
x-ray source and rotation center and transforms the volume space to the source-detector space. The
matrix P is a perspective transform. We can obtain the mapping between the volume to be reconstructed
and projection data in homogeneous as in computer graphics does:


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(6)

Where, wd and hd are detector width and height respectively. R is the source-center distance and L is
the source-detector distance. The values of C and D are not concerned because they are not related to
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Fig. 3. Schematic diagram showing CT reconstruction algorithm using GPU. Vm: a slice to be reconstructed;
⇀
s tex,

⇀

t tex: the
mapping coordinates in detector space of Vm; w: the weight; projectData: a texture for storing projection data.

our work. Dividing all components by we to obtain the mapping coordinate (stex, ttex) in texture space
(normalized detector plane) of the voxel (xv, yv, zv):

stex (xv, yv, θ) =
xe

we
=

xv

(
cos θ

2 + L sin θ
wd

)
+ yv

(
sin θ

2 − L cos θ
wd

)
+ R

2

R + xv cos θ + yv sin θ
(7)

ttex (xv, yv, zv , θ) =
ye

we
=

xv
cos θ

2 + yv
sin θ

2 + zv
L
hd

+ R
2

R + xv cos θ + yv sin θ
(8)

The relationship between the Eqs (7), (8) and (4), (5) is that stex (xv, yv, θ)and ttex (xv, yv, zv , θ) are
the normalization of a (xv, yv, θ) and b (xv, yv, zv , θ) respectively. In the implementation, TS × P × V
is calculated once and stored in a matrix, multiplied by the rotation matix M at each projection.

3.2. Cyclic render-to-texture

Data are often stored in textures in GPU memory when GPU programming. In the early reconstruction
algorithms, volume data were stored in stacks of 2D textures maybe because 3D texture was not efficiently
supported then. By numerical and careful experiments, we find 3D texture can work well, so here the
volume data are stored in a 3D texture. Weighted-filtering is performed on CPU using FFTW [3],
and the backprojection and accumulation are performed on GPU. The reconstruction process can be
schematically illustrated as Fig. 3: For each projection angle, load the filtered projection view to a
texture and update each slice by this projection view. Deal with the next projection view until all the
angle projection views are processed.

Unfortunately, due to the architecture of GPU, the same memory locations cannot be read and written
concurrently. For example, if you want to get a 2D array sum of A + B, a new 2D texture must be
allocated for saving the result. Neither A nor B can be reused for saving the results, because the memory
block bound to framebuffer is write-only. However, as shown in Fig. 3, 2D array addition is very common
in CT reconstruction. Therefore, with the access limitation of GPU, the sum of a slice and its mapping
projection data must be written in a new memory block, then copy back to the slice as illustrated in Fig. 4.
We develop a method referred to as cyclic render-to-texture (CRTT) to avoid the data copy process. The
volume to be reconstructed is stored in a 3D texture (CRTT can also be used in stacks of 2D textures, but
it may not be as efficient as 3D texture. In the 3D texture, the slice attached to framebuffer is write-only,
while the other slices can be read at the same time). Given volume slice number M , M + 1 slices in
the 3D texture are allocated, where M slices for storing the volume data, the remaining one we call it
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Fig. 4. Usually CT reconstruction using GPU includes a process of data copy.
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Fig. 5. Cyclic render-to-texture (CRTT). (a): Schematic diagram for one projection view; (b): Schematic diagram for next
projection view.

free frame which attached to framebuffer is write-only. The M + 1 slices form a circle with first slice
then second slice . . .M slice and free frame being clockwise as illustrated in Fig. 5. The process is as
follows:

(a) The operational results of the first slice and the projection view are written to the free frame, which
makes the first slice become a free frame ready to store the results of next operation. Then the
operational results of second slice and the projection view are written to the first slice and the
second slice becomes a free frame. Cycle like this until all volume slices have been processed as
illustrated in Fig. 5(a). The variable head is a flag indicating the first slice. After all the slices are
updated by the currently projection view, the variable head retreats one frame anticlockwise.
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Fig. 6. Combination of Z-axis symmetry and MRTs, the zv slice and −zv slice can be reconstructed simultaneously.

(b) Recycle (a) for the next projection view as illustrated in Fig. 5(b), until all projection views are
processed.

3.3. Z-axis symmetry and MRTs

From Eq. (8) we obtain that:

ttex(xv, yv, zv , θ) = 1 − ttex(xv, yv,−zv , θ) (9)

And as shown by Eq. (7), stex is irrelevant with zv. These indicate that the mappings of volume zv

slice and −zv slice are symmetric in t-axis of the texture. So either mapping of the zv slice or −zv

slice is calculated, the other will be obtained, which saves some time computing the geometry mapping
between slices to be reconstructed and projection views. Meanwhile, GPUs support Multiple Render
Targets (MRTs), namely fragment shaders can have multiple fragment outputs. With the combination of
symmetry and MRTs, zv slice and −zv slice as two targets can be rendered simultaneously as illustrated
in Fig. 6.

These can be used together with CRTT by dividing the volume into two parts, and each part has a free
frame, so the total slice number of each part is M/2 + 1. Each part forms a circle like Section 3.2. Two
symmetric slices (like 1 and M slices, 2 and M − 1 slices) of the circles can be rendered simultaneously
as illustrated in Fig. 7.

And note that: from Eq. (6) we obtain we = R + xv cos θ + yv sin θ, which exactly equates to
U (x, y, θ), so the weight U can be gotten from w-buffer (we) [16], and it is unnecessary to compute
again or store in a texture for looking up.

In this work, some other skills are also used to accelerate the speed of CT reconstruction. For one
time reconstruction the source-center distance R, and the discrete factor 2π/N(N is the projection view
number) are usually constants, all of these constants are computed when filtering on CPU which avoids
traversing volume again after backprojection.

4. Experiments and results

Our experiments are performed on a 2.66 GHz dual-core Intel PC with 2GB RAM hosting a NVIDIA
GeForce 8800GTX card. The projections are calculated from 3D Shepp-Logan phantom analytically. In
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Fig. 7. CRTT combines with MRTs, two symmetric slices can be rendered simultaneously.
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Fig. 8. Results reconstructed from GPU and CPU, and the windowed density ranges are both [1.0 1.04], and the FOVs are all
[−1 1] in x, y, z axis. (a) A slice reconstructed on CPU. (b) The same slice reconstructed on GPU. (c) Profiles parallel to y-axis
at x = 256 pixel, the red one is from GPU, the blue one is from CPU. The results reconstructed from CPU and CPU are almost
identical.

the following experiments, we use bilinear interpolation in the projections, and reconstruct 512 cubed
volume from 360 views, the size of each projection is 512 × 512, the type of all the data is 32-bit floating
point.

Figure 8 shows the results reconstructed from 3D Shepp-Logan phantom. Figure 8(a) and (b) show
the slices (z = 323 pixel) reconstructed from CPU and GPU respectively. Figure 8(c) shows profiles
along an axis parallel to the y-axis at x = 256 pixel, red color profile is from GPU, and the blue one is
from CPU. The results reconstructed from GPU and CPU are almost identical.

In Table 1, we just make reconstruction performance comparison on GPU, and the speedup of recon-
struction on GPU to CPU can be up to dozens of times. Table 1 shows the reconstruction times and
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Table 1
Reconstruction performance comparison on GPU
with applying techniques gradually

Technique Time Projections/s Speed
Just GPU 8.2s 43.9 1
T3.2 5.6s 64.2 1.46
T3.2–3.3 5.2s 69.2 1.58

Table 2
Performance comparison of various CT reconstruction systems. All values
have been scaled to 360 projections and 5123 pixels, and scaled to a single
processing unit-one CPU, one FPGA, one GPU, one Cell BE, and to 3.0GHz
of GPU and Cell based algorithm [8]

Hardware Time Projections/s
Wiesent et al. [14] CPU 6.9 min 0.87
Exxim Computing Corp [6] GPU(8800GTX) 30 s 12
Li et al. [9] FPGA 40.2 s 9
Kachelrieß et al. [8] Cell BE (direct) 19.1 s 18.8

Cell BE (hybrid) 9.6 s 37.5
Xu and Mueller [16] GPU(8800GTX) 8.9 s 40.4
This paper GPU(8800GTX) 5.2 s 69.2

speedup on GPU with applying techniques gradually. T3.2 means the technique presented in Section
3.2, and T3.2–3.3 means combining all the techniques and skills presented in Section 3.2 and 3.3. The
technique of symmetry and MRTs presented in Section 3.3 does not speed up remarkably due to the
limitation of texture fill-rate, while the same method can be used in other hardware platform for acceler-
ation. As shown in Table 1 the technique in Section 3.2 can speed up 1.46 times, together the speedup is
1.58 times, and the computation time is 5.2 s for reconstructing a 5123 volume from 360 projections.

Table 2 shows CT reconstruction performance from different groups. All values have been scaled to
360 projections and 5123 voxels.

5. Conclusions

With its powerful computing performance and programmable characteristic, modern GPU attracts
more and more researchers and developers using it for generous purpose computing (GPGPU). It has
many benefits than ASIC or FPGA in CT reconstruction, such as more cost-effective, flexible and easy
to update. Since many operations in CT reconstruction are very similar to traditional computer graphics,
GPU especially succeeds in 3D CT reconstruction. In this paper with the techniques of CRTT, the
combination of symmetry and MRTs and other skills, the accelerating CT reconstruction generated an
excellent result. Reconstructing a 5123 volume from 360 views of the size of 512 × 512 just needs 5.2 s,
and the results reconstructed from CPU and GPU are almost identical. Some of accelerating techniques
such as CRTT can also be used in non-circular orbit CT reconstruction or other similar applications
that need copy textures. The size of a 5123 volume in float type is 512 MB less than the on-board
memory 768 MB of the NVIDIA GeForce 8800GTX card, therefore a 5123 volume in float type can be
reconstructed in one time. When reconstruct a volume more than 768 MB, the volume can be divided
into some blocks and each block size is less than the on-board memory, If only one GeFore 8800GTX
card is used, these blocks must be computed in turn. To reconstruct a whole volume in real time (as soon
as complete scanning, reconstruction is just completed), larger on-board memory card or more PCs each
hosting a card can be used.
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