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Abstract

A stochastic functional–structural model simulating plant development and growth is presented. The number of organs
(internodes, leaves and fruits) produced by the model is not only a key intermediate variable for biomass production computation,
but also an indicator of model complexity. To obtain their mean and variance through simulation is time-consuming and the results
are approximate. In this paper, based on the idea of substructure decomposition, the theoretical mean and variance of the number
of organs in a plant structure from the model are computed recurrently by applying a compound law of generating functions. This
analytical method provides fast and precise results, which facilitates model analysis as well as model calibration and validation
with real plants. Furthermore, the mean and variance of the biomass production from the stochastic plant model are of special
interest linked to the prediction of yield. In this paper, through differential statistics, their approximate results are computed in an
analytical way for any plant age. A case study on sample trees from this functional–structural model shows the theoretical moments
of the number of organs and the biomass production, as well as the computation efficiency of the analytical method compared to
a Monte-Carlo simulation method. The advantages and the drawbacks of this stochastic model for agricultural applications are
discussed.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

As shown by Hallé et al. [18], the development of plants follows particular patterns that can be determined by the
combination of a small number of characters (e.g. type of branching, flowering, and axis differentiation). The number
of possible patterns observed, namely architectural models, is 23. Each of these patterns, named after a botanist,
covers a large majority of species. For example the Corner architectural model is designed for un-branched plants such
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Fig. 1. Architectural models illustrated with drawings by botanists [18]. (a) Corner model and (b) Rauh model.

as palm trees, and the Rauh architectural model displays features of rhythmic growth, such as pine trees, shown in
Fig. 1.

The term “model” has different meanings according to its context. In the area of computer sciences, plant architectural
models are described by Fisher [14] as algorithms of simulation that produce the forms and patterns of plants. Sometimes
they are also termed geometrical models (GM) or structural models (SM). These kinds of models appeared in the 1960s
with the development of modern computers, for example, by Cohen [5], Lindenmayer [29] and Honda [23]. Since then,
many computer simulation algorithms have been developed aiming at producing tree-like geometrical structures, more
or less faithful to botany: L-systems [33], fractals [37], particle systems [34], ramified matrix [38], reference axis
[1], and voxel space automata [15]. A critical review was made in 1992 by Fisher [14], discussing the ability of
existing computer models to test hypotheses or to predict mature tree forms. Although some of them can test scientific
hypotheses, e.g. Honda and Fisher [22], architectural models are mostly aimed at generating a realistic shape of trees
(e.g. Bloomenthal [3]), and are often used for entertainment, computer games or landscape design. To simulate the
dynamic branching pattern of real plants, however, integrating botanical knowledge into the models is more important
than generating static and/or artistic plant geometry.

The topological structure of real plants combines the genetically determined form (described by the 23 architectural
models) and the deviations due to environmental factors (noise). It can be described in terms of the dynamics of buds,
with the fate of buds depending on their relative position in space and time [4]. Studies on the stochastic behaviour of
buds in real plants began in the 1970’s on coffee trees by de Reffye [13]. Using parameters derived from observation,
realistic structures faithful to botany were simulated [10], where a bud can die, rest, or create a variable number of
metamers. Besides, Semi-Markov chains have been used as a statistical model to quantify the flowering sequences
[16], and the branching patterns for apple cultivars [6] and red oak trees [20]. It was shown that branches borne
by one growth unit are organized as a succession of homogeneous zones, according to a physiological gradient of
branches. This gradient has led Barthélémy et al. to define the physiological age of the meristem [2], by describing the
differentiation patterns of shoots and branches.

Pure geometrical models themselves are not sufficient to describe the underlying mechanisms of plant growth as
they do not take into account the plant functioning processes. In agricultural or forestry applications, there is another
type of model, namely process-based models (PBM), which considers biomass production through the photosynthetic
process and the global biomass partitioning among organs, e.g. Tomsim [21] or ROSGRO [9]. As commented in [30],
such models are limited by the absence of dynamic development of plant architecture, thus it is difficult to integrate
the effect of plant architecture on plant growth, for example leaf area. Between process-based models and architectural
models, functional–structural plant models (FSPM) emerged since the end of the 1990’s, such as LIGNUM [32],
GROGRA [28], AMAPHydro [11], and have received increasing attention in recent years [39]. They seek to combine
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both architectural development and the photosynthetic process. The high computation complexity and difficulties in
model calibration are problems inherent to such kinds of models, as shown by Sievänen et al. [36].

Not only for pure architectural studies, but also in the context of functional–structural models, the quantity, size and
weight of individual plant organs (internodes, leaves or fruits) are of special interest. In the case of stochastic FSPMs,
Monte-Carlo simulation can be applied to obtain statistical results. However, it can be very time consuming to simulate
a population of trees of complex structure. Moreover, the simulation software are usually so complex that a great
amount of bug-proofing is necessary before the results can be trusted. On the other hand, analytical results are both fast
and accurate in computation, but the main drawback is that they are usually difficult to obtain for stochastic models.

GreenLab is one of the few functional–structural models that can be calibrated with a mathematical approach [41,27].
Such calibration has been performed based on real data from agricultural or horticultural crops, for example cotton
[42], maize [17], as well as chrysanthemum [26].The architectural model of GreenLab inherits the main concepts
of AMAPSim [1]. It can simulate the 23 botanical architectural models [44]. The model is organized according
to physiological age, requiring only a limited number of parameters for simulating a complex structure. This model
provides a simple way for users to construct even the complex structures of trees. The framework of the GreenLab model
was built by coupling an architectural model with sink–source functions of individual organs [41]. The organogenesis,
photosynthesis and morphogenesis processes were formalized in [12] for a deterministic model (GL1), and in [8] for
stochastic (GL2) and feedback (GL3) cases, respectively.

The aim of this paper is to present the theoretical computation of mean and variance of the number of organs,
and the biomass production resulting from the stochastic GreenLab model GL2. It is very important to have such fast
calculation of moments when estimating the bud probabilities and functional parameters from the measured data with
a non-linear least square method. Moments of the number of organs are obtained by applying compound rules from
probability generating functions (PGFs), combined with substructure decomposition [8]. PGFs can serve as analytical
tools to develop precise estimates for quantities of interest; they have been used intensively in algorithm analysis [35].
The method is presented here for the GreenLab model, but it is also applicable for other plant architectural models. The
moments of biomass production of a plant are computed at each cycle through induction, using differential statistics
[24]. The covariance matrix between the number of metamers and biomass production is computed.

The content of this paper is organized as follows: in Section 2, the botanically based architectural model and the
probabilities of bud functioning of GL2 are presented; Section 3 gives the recurrent formulae for computing mean and
variance of the number of organs from the architectural model. In Section 4 the theoretical work extends to approximate
analytical formulae of mean and variance of the biomass production computed with a simplified GreenLab equation
by using differential statistics. Section 5 shows an example of results from Sections 3 and 4, obtained on a Rauh
architectural tree model. Section 6 discusses the methods presented.

2. The stochastic plant architectural model

2.1. Related botanical concepts

The main botanical concepts underlying the present study have been described by Barthélémy et al. [2]. During a
growth cycle, a plant sets a growth unit (GU) rhythmically along an axis by its apical bud. The duration of a growth
cycle can vary from several days (for crops) to 1 year (for temperate trees). A growth unit is a succession of metamers,
each metamer is the basic botanical unit containing different types of individual organs: one internode, one or more
leaves, one or more axillary buds and possibly flowers. The succession of growth units forms an axis (or shoot). The
axillary buds are the starting states of new axes. The full set of organs issued from a bud is called a structure, or a
substructure when it is a part of another structure.

The different categories of shoots in trees can be distinguished by physiological age (PA), a dimensionless number.
Being 1 for the main stem, generally the PA of axillary branches (or axillary buds) is higher than that of the growth unit
that bears these branches. In some cases they can be identical or smaller, which corresponds to a botanical phenomenon
called reiteration. In the present paper we shall not consider the reiteration process. Generally, the highest physiological
age of plants is less than five. Although they are close, physiological age is not necessarily the same as branching order.
For example, a structure of PA 3 can appear as of branching order 3, but it can also appear as of branching order 2 grown
from the main stem. The apical bud of an axis can also mute into another higher physiological age. The succession of
GUs from apical buds of the same PA is called a bearing axis. The whole plant structure can thus be viewed as a stack of
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Fig. 2. Illustration of the GreenLab architectural model. Here Pm = 3. S
p
n represents a substructure of physiological age p and chronological age

n, S
p

0 (circle) being the bud of PA p. In (a), buds of PA 1, 2 and 3 can develop into growth units of 3, 2 and 1 metamers (S1
1 , S2

1 , S3
1 ) respectively,

which define the one-step transition of the branching process. The circles on the top of growth units are apical buds while the others are axillary
buds. When the plant (S1

n) grows from cycle 1 to 3, all buds develop into the corresponding growth units. In S1
3 it is shown that the plant structure

can be decomposed into axes and the substructures borne by the axes. In (b), the mutation of axes is shown: axes of PA 1, 2 and 3 grow 5, 3 and 1
cycles respectively before the terminal bud mutes into another PA. Axes of PA 3 have no more apical bud after the cycle.

substructures of different physiological ages. Organs, axes and substructures are characterised also by Chronological
Age (CA), which corresponds to the number of cycles that the part of plant has undergone since it was born. CA can
be converted to calendar time (days or years) as in functional plant models, when the thermal time (in degree-days) is
known for each cycle. The relationship between the number of cycles and the thermal time since the emergence of a
plant is often linear, as shown in [17] and [26].

2.2. The parameters of the architectural model

Let the maximum physiological age of the plant be Pm. The architectural model is designed according to the bud
activity, where buds can develop into the same kind of growth unit, each containing an apical bud and one or several
metamers that bear new axillary buds, see the first step in Fig. 2(a). It is in fact a multi-type branching process [19]
where the buds produce a new generation during a cycle according to their own PAs. Fig. 2 shows an example of
architectural model with three steps of transition from the seed to plant age 3. LetMI be a matrix defining the number
of metamers in growth units,Mp,k

I being the number of metamers that bear axillary buds of PA k in the growth unit
of PA p. MI is a triangle matrix since there is no reiteration and the PA of axillary buds is not less than that of the
metamer that it grows from. Let μp be the total number of metamers in a growth unit of PA p, μp = ∑Pm

k=pMp,k
I . Let

NB be a matrix defining the number of axillary buds per metamer,Np,k
B being the number of axillary buds of PA k in a

metamer of PA p. Similarly, NO is a matrix defining the number of organs per metamers, O = I, L, F for internodes,
leaves and fruits respectively. For the example of Fig. 2, a bud of PA 1 produces two metamers containing an axillary
bud of PA 2 and one metamer containing an axillary bud of PA 3. A bud of PA 2 produces two metamers containing
an axillary bud of PA 3. A bud of PA 3 produces one metamer. This metamer can bear only axillary buds of PA 3 as
Pm = 3, in the case of reiteration. But in this example no axillary bud is drawn for PA 3, so N3,3

B = 0. Finally the
values ofMI and NB are

MI =

⎡
⎢⎣

0 2 1

0 0 2

0 0 1

⎤
⎥⎦ , NB =

⎡
⎢⎣

0 1 1

0 0 1

0 0 0

⎤
⎥⎦
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The apical bud can change its physiological age at a certain cycle when the axis develops, as shown in Fig. 2(b). Let
MA be a vector defining the number of cycles before a bud mutes, JA be a vector defining the new PA of the apical
bud after mutation. For the example in Fig. 2, their values are:

MA = [
5 3 1

]
, JA = [

2 3 0
]

The valid values of JA must be between 1 and Pm. Here J3
A = 0 means that there is no more apical bud when the

development of the axis ends.
With the notion of physiological age, these four parameters,MA, JA,MI andNB, are sufficient to simulate plant

architectures ranging from the Corner model (e.g. palm tree) to complex structures such as the Rauh model (e.g. pine
tree). It is unnecessary to provide a large number of rewriting rules when simulating plants of high branching order,
instead, one only needs to modify the dimensions and values of the parameters. However, some extra parameters are
needed to simulate different flowering sequences, reiteration, and inflorescence structures. Here we present only the
basic part of the model.

2.3. Bud functioning activities in GL2

In reality, even in a homogeneous environment, plants are topologically stochastic: the buds may die, rest or grow at
each growth cycle [10], according to observations on real plants. The following probabilities are thus introduced into
the GreenLab architectural model to simulate this stochastic development. For a specific plant in a given environment,
some probabilities may be one if the corresponding event always happens. Each kind of probability is a vector of length
Pm if it is constant over time. Otherwise it is a matrix of size Pm × N, N being the age of plant, as for coffee tree [13].
Without losing generality, the following presentation focuses on the case of constant probability and the theoretical
distribution under this hypothesis, which is based on botanical observations [16,20,2].

• Survival probabilities of buds. The apical bud of an axis may die because of its genetic behaviour or environmental
accident (for example, insect damage). Let PC be the probability that a bud survives at each cycle. In that case, the
number of cycles before the apical bud is dead follows a truncated geometrical law (MA,PC).

• Branching probabilities of buds. Particularly for an axillary bud, which is the initial state of an axis, the probability
that the bud can start or breakout is different (often lower) from the survival probability of subsequent apical buds
of this axis since it is influenced by more factors (insufficient assimilate supply, or poor light condition). A failure
of starting after bud creation leads to bud abortion. Let PB be the branching probabilities of buds. P1

B is then the
germination probability of the seed. This probability can explain the changing number of branches of the same kind
along an axis. Given the potential number of buds NB, the number of appeared branches then follows a binomial
law (NB,PB) if PB is the same for each potential bud.

• Growth probability of apical buds. Even when no bud death occurs, because of an insufficient biomass supply, a
living bud may stay dormant for one or several cycles but keep alive. Let PA be the probability that a living bud
grows in a cycle. When both PC and PB are equal to 1, the number of growth units in an axis follows a binomial
law (MA,PA).

• Appearance probability of metamers. The number of metamers inside a growth unit varies. LetPI be the probability
that each possible metamer appears. Thus, in a growth unit, the number of metamers follows a binomial law of
parameters (μ,PI ).

These probabilities can effect together and make the one-step transition as from S0 to S1 in Fig. 2 stochastic, as
well as the resulting substructures. Take the bud of PA=1, we show in Fig. 3 how the probabilities act on the one-step
transition of buds. One-step transition of buds of other physiological ages is similar. However, it is supposed that the
bud behaviour is independent for different physiological age.

3. Moments of the numbers of metamers

In FSPMs, the number of organs are important state variables for computing biomass production and its allocation
[41]. They are linked to the development stage of the plant, the vigor of the plant, the yield, etc. They are also the
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Fig. 3. One-step transition with bud probabilities, illustrated with the bud of PA 1 from Fig. 2. The black circle in the left means a dead bud. In
each growth cycle, a bud survives with probability PC (if it is the first cycle of an axis, the bud first starts with probability PB). A living bud either
stays in bud state, or develops into a growth unit with probability PA. The number of metamers in the growth unit varies. Each possible metamer
(the small white one) appears with probability PI . Here, given the maximum number of metamers in the growth unit μ = 3, finally two metamers
appear.

reference of model computation complexity. It is interesting to know them when rendering the 3D plant. Moments of
variables from a discrete stochastic model can be obtained through Monte-Carlo simulation by counting them from a
large number of random samples. This procedure may be quite expensive due to slow convergence, while analytical
results are immediate and precise. As the metamer is the basic botanical unit, we are interested here in the mean and
variance of the numbers of metamers. We suppose that there is no reiteration (that is to say that matrix NB is strictly
upper triangular).

Since several kinds of probabilities occur together in GreenLab, the plant development can be regarded as a compound
process (Appendix A). In this section, several simple and compound variables are presented, for counting the number
of metamers in a plant. The numbers of metamers are computed based on substructure factorization, as well as their
mean and variance.

3.1. Stochastic variables linked to the bud activities

3.1.1. Simple variables
The following random variables are linked to one of the bud probabilities. To distinguish them from the following

compound variables that are results of several probabilities, they are named simple variables. Some of them are indicator
variables taking value of either 1 or 0.

• x
p
i : if an apical bud of bearing axis of PA p is still alive at cycle i, x

p
i =1; otherwise x

p
i =0. The probability that the

apical bud still survives at cycle i is (Pp
C)

i
. So the mean and variance of x

p
i are

Mx
p

i
= (Pp

C)
i
, Vx

p

i
= (Pp

C)
i
[1 − (Pp

C)
i
] (1)

Furthermore, the covariance between x
p
i and x

p
j is given as follows:

Covx
p

i
,x

p

j
= (Pp

C)
j
[1 − (Pp

C)
i
], (j > i) (2)

As the apical bud mutes into another PA afterMp
A cycles, one has x

p
i = 0, i > M

p
A

• yp: if a living bud of PA p produces a growth unit during a cycle, yp = 1; otherwise yp = 0. The mean and variance
of yp are

Myp = Pp
A, Vyp = Pp

A(1 − Pp
A) (3)

• vp: the total number of metamers in a growth unit of PA p. It is a binomial variable, whose mean and moments are

Mvp = μpPp
I , Vvp = μpPp

I (1 − Pp
I ) (4)

• zp,k: the number of metamers that bear axillary buds of PA k in a growth unit of PA p. Similar to vp, the mean and
variance of zp,k are

Mzp,k =Mp,k
I Pp

I , Vzp,k =Mp,k
I Pp

I (1 − Pp
I ) (5)
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• wp,k: the number of buds that break out to grow from a metamer of PA p that bears Np,k
B buds of PA k. The mean

and variance of wp,k are

Mwp,k = Np,k
B Pk

B, Vwp,k = Np,k
B Pk

B(1 − Pk
B) (6)

It should be noticed that x
p
i and x

q
i (p �= q) are independent, i.e. Covx

p

i
,x

q

i
= 0. It is the same for the other variables

of different PA.

3.1.2. Compound variables
The following variables are linked to more than one of the bud probabilities. Their mean and variance are computed

from those of simple variables according to the compound law in Eq. (A.4).

• γp: the number of metamers produced by a living bud of PA p. One has γp = ∑yp

z=0vp. According to Appendix A,
γp is a compound variable of yp and vp, noted as γp = yp ◦ vp. By applying Eq. (A.4), the mean and variance of
γp can be computed from those of yp and vp

Mγp = Myp · Mvp, Vγp = Myp · Vvp + Vyp · M2
vp

(7)

• qp,k: the number of axillary substructures of PA k in a growth unit of PA p. It is a compound variable: qp,k =∑yp

z=0
∑zp,k

m=0w
p,k = yp ◦ zp,k ◦ wp,k. Applying Eq. (A.4) twice, one gets

Mqp,k = Myp · Mzp,k · Mwp,k , Vqp,k = Myp [Mzp,k · Vwp,k + Vzp,k · M2
wp,k ] + Vyp · M2

zp,kM
2
wp,k (8)

• u
p
i : the number of metamers produced at ith cycle in a bearing axis of PA p. One has u

p
i = ∑x

p

i

yp=0γ
p = x

p
i ◦ γp.

Then the mean and variance of u
p
i are

Mu
p

i
= Mx

p

i
· Mγp, Vu

p

i
= Mx

p

i
· Vγp + Vx

p

i
· M2

γp
(9)

The covariance between u
p
i and u

p
j is

Covu
p

i
,u

p

j
= Covx

p

i
◦γp,x

p

j
◦γp = M2

γp
Covx

p

i
,x

p

j
(10)

3.2. Counting numbers of metamers based on substructure factorization

Now let s
p
n be the number of metamers that appear at CA n inside a substructure of PA p. They are vectors:

s1
n = [s1,1

n , s1,2
n , . . . , s1,Pm

n ], s2
n = [0, s2,2

n , . . . , s2,Pm
n ], . . ., sPm

n = [0, 0, . . . , sPm,Pm
n ]. sp,k

n is the number of metamers of

PA k in the substructure of PA p. When k < p, one has s
p,k
n = 0, from the definition of physiological age. spn are random

variables because of bud probabilities.
From Fig. 2 one can see that in the deterministic case, the parts of plant structure borne by a bud of the same PA

and CA are topologically the same. The substructures are organized by hierarchical level, that is, substructures contain
substructures of higher PA. A structure can be decomposed into a bearing axis, the axillary substructures along the axis,
and the terminal substructure borne by the apical bud after mutation. This gives the recurrent equation for counting the
number of metamers in the structures, as shown in the following equation:

s
p,m
i =

⎧⎪⎪⎨
⎪⎪⎩

u
p
i = x

p
i ◦ γp, p = m

i0∑
a=1

xp
a ◦

Pm∑
k=p+1

qp,k ◦ s
k,m
i−a + s

Jp

A
,m

i−i0
, p < m

(11)

i0 = min(i,Mp
A), qp,k is a compound variable as introduced in Section 3.1.2.
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The accumulated number of metamers inside a substructure of PA p and CA n, Sp
n , is the sum of those that appeared

at each cycle, as follows:

Sp,m
n =

n∑
i=1

s
p,m
i (12)

To clarify the formula expression, we suppose that n ≤MA, thus no mutation of axis may happen.

3.3. Moments of the numbers of metamers produced at each cycle s
p
n

• Case p = m

These metamers are from the bearing axis if there is no reiteration. The mean and variance of s
p,m
i in this case are

as in Eq. (13). The moments of x
p
i and γp are computed in Eqs. (1), (2) and (7)

Ms
p,m

i
= M

p
X(i)Mγp, Covs

p,m

i
,s

p,m

j
= V

p
X(i, j)M2

γp (13)

where

M
p
X =

[
Mx

p

1
Mx

p

2
· · · Mx

p
n

]
, V

p
X =

⎡
⎢⎢⎢⎢⎣

Covx
p

1 ,x
p

1
Covx

p

1 ,x
p

2
· · · Covx

p

1 ,x
p
n

Covx
p

2 ,x
p

1
Covx

p

2 ,x
p

2
· · · Covx

p

2 ,x
p
n

· · · · · · · · · · · ·
Covx

p
n ,x

p

1
Covx

p
n ,x

p

2
· · · Covx

p
n ,x

p
n

⎤
⎥⎥⎥⎥⎦

• Case p < m

These are metamers from the substructures. Let t
p,m
i−a = ∑Pm

k=p+1q
p,k ◦ s

k,m
i−a, which is the number of metamers

of PA m inside substructures of CA i − a attached to a growth unit of PA p that appeared at cycle a. Then one has
s
p,m
i = ∑i

a=1x
p
a ◦ t

p,m
i−a according to Eq. (11). The mean of t

p,m
i−a , as well as the covariance between t

p,m
i−a and t

p,m
j−b ,

are computed as follows:

Mt
p,m

i−a
=

Pm∑
k=p+1

Mqp,kM
s
k,m
i−a

, Covt
p,m

i−a
,t

p,m

j−b
=

Pm∑
k=p+1

[Mqp,k Cov
s
k,m
i−a

,s
k,m
j−b

+ Vqp,kM
s
k,m
i−a

M
s
k,m
j−b

] (14)

where Mqp,k and Vqp,k are computed in Eq. (8). Notice that Cov
s
k,m
i−a

,s
l,m
j−b

= 0, l �= k, as the bud behaviour of different

PA are independent. Using the bilinearity of covariance, the mean of s
p,m
i , as well as the covariance between s

p,m
i

and s
p,m
j (p < m), are computed as follows:

Ms
p,m

i
=

i∑
a=1

M
p
X(a)Mt

p,m

i−a
,

Covs
p,m

i
,s

p,m

j
=

i∑
a=1

j∑
b=1

[Mp
X(min(a, b))Covt

p,m

i−a
,t

p,m

j−b
+ V

p
X(a, b)Mt

p,m

i−a
Mt

p,m

j−b
] (15)

3.4. Moments of the accumulated number of metamers S
p
n

The number of accumulated metamers of all cycles, S
p,k
n , shows the complexity of the resulting plant structure. Its

mean and variance can be computed from those of s
p,k
n . The explicit recurrent form of the results is shown in Eqs. (16)

and (17)



Author's personal copy

M.Z. Kang et al. / Mathematics and Computers in Simulation 78 (2008) 57–75 65

• Case p = m

MS
p,m
n

= Pp
C[1 − (Pp

C)
n
]

1 − Pp
C

Pp
AμpPp

I ,

VS
p,m
n

= Pp
C[1 − (Pp

C)
n
]

1 − Pp
C

[Pp
AμpPp

I (1 − Pp
I ) + Pp

A(1 − Pp
A)(μpPp

I )
2
]

+ P
p
C[1 − (2n + 1)(1 − Pp

C)(Pp
C)

n − (Pp
C)

2n+1
]

(1 − Pp
C)

2 (Pp
AμpPp

I )
2

(16)

• Case p < m

MS
p,m
n

=
n∑

i=1

Mx
p

i

Pm∑
k=p+1

Mqp,kM
S

k,m
n−i

,

VS
p,m
n

=
n∑

i=1

⎧⎪⎨
⎪⎩

Mx
p

i

Pm∑
k=p+1

[Mqp,kV
S

k,m
n−i

+ Vqp,kM
2
S

k,m
n−i

] + Vx
p

i

⎡
⎣

Pm∑
k=p+1

Mqp,kM
S

k,m
n−i

⎤
⎦

2
⎫⎪⎬
⎪⎭

+ 2
n∑

i=1

n∑
j=i+1

Covx
p

i
,x

p

j

⎡
⎣

Pm∑
k=p+1

Mqp,kM
S

k,m
n−i

⎤
⎦

⎡
⎣

Pm∑
r=p+1

Mqp,rMS
r,m
n−j

⎤
⎦ (17)

Mx
p

i
and Vx

p

i
are computed in Eq. (1). Both Eqs. (16) and (17) can be expressed in a matrix form of Eq. (A.4). Take

the case p = m as an example. Let M
p
G = [Mγp . . . Mγp ], V

p
G = [Vγp · Vγp ] (see Eq. (7) for Mγp and Vγp ). Then

Eq. (16) can be written as follows:

MS
p,p
n

= M
p
G · M

p′
X , VS

p,p
n

= V
p
G · M

p′
X + M

p
G · V

p
X · M

p′
G (18)

When all probabilities are equal to 1, which is the case of the deterministic growth, the variances become zeros,
and one obtains the same results as in the deterministic case [40], as shown in the following equation:

Sp,m
n =

⎧⎪⎪⎨
⎪⎪⎩

n · μp, p = m

n∑
i=1

Pm∑
k=p+1

Mp,k
I Np,k

B S
k,m
n−i, p < m

(19)

3.5. Moments of the number of organs O
p
n

Let O
p
n be the number of organs that appear at CA n inside a substructure of PA p. O is I for internode, L for leaf,

and F for flower or fruit. Similar to s
p
n , Op

n are vectors. As there is one and only one internode per metamer, the number
of internodes is the same as the number of metamers, i.e., I

p
n = s

p
n . In GreenLab, the number of leaves per metamer,

NL, are constant values. This is botanically meaningful as the number of leaves per metamer is very stable in real
plants, for example, one for cotton plant and two for coffee tree. The procedure for obtaining the mean and variance
of the number of leaves in plant structures, L

p
n , is the same as for s

p
n except that the variable vp in Eq. (7) is to be

replaced with v
p
L, v

p
L = ∑Pm

k=p+1z
p,k ·Np,k

L , the mean and variance of zp,k being computed in Eq. (5). Then the mean

and variance of v
p
Lare

Mv
p

L
=

Pm∑
k=p+1

Mzp,kNp,k
L , Vv

p

L
=

Pm∑
k=p+1

Vzp,k (Np,k
L )

2
(20)

The number of fruits per metamer, however, is not a constant due to flower bud abortion. Given a certain number
of flower buds per metamer NF , suppose the probability that a flower bud gives eventually a fruit is PF . Then the
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number of fruits in a metamer that bears axillary buds of PA k in a growth unit of PA p, n
p,k
F , follows a binomial law

(Np,k
F ,Pp

F ), whose mean and variance are

M
n

p,k

F

= Np,k
F Pp

F , V
n

p,k

F

= Np,k
F Pp

F (1 − Pp
F ) (21)

To obtain the mean and variance of the number of fruits F
p
n , the variable vp in Eq. (7) is to be replaced with v

p
F , the

total number of fruits inside a growth unit of PA p. Obviously v
p
F = ∑Pm

k=p+1z
p,k ◦ n

p,k
F . According to Eq. (A.4), the

mean and variance of v
p
F are

Mv
p

F
=

Pm∑
k=p+1

Mzp,kM
n

p,k

F

, Mv
p

F
=

Pm∑
k=p+1

(Mzp,kV
n

p,k

F

+ Vzp,kM
2
n

p,k

F

) (22)

The mean and variance of the number of fruits in plant structure can be computed following the same equations as
for s

p
n .

3.6. Distribution of number of metamers in a bearing axis

In Eq. (16) the moments of the number of metamers are computed without knowing its probability distribution
function. For a bearing axis of PA p and CA n, however, the distribution of number of metamers is given in Eq. (23).
Here the index p is omitted as it is the same for each parameter

P(Sp,p
n = k) =

n−1∑
x=0

(1 − PC)(PC)x
x∑

i=0

Ci
xPi

A(1 − PA)x−iCk
i·μPk

I (1 − PI )i·μ−k

+Pn
C

n∑
i=0

Ci
nPi

A(1 − PA)n−iCk
i·μPk

I (1 − PI )i·μ−k, k ∈ [0, n · μ] (23)

4. Plant biomass production

4.1. Biomass production in the GreenLab model GL2

In the GreenLab model, based on physiological assumptions [41], the biomass production of a single plant from
photosynthesis at plant age n, Qn, is expressed as a recurrent function of the number of organs and production in the
previous cycles, as shown in the following equation:

Qn = En

ta∑
i=1

NL
n−i+1

i∑
j=1

pL(j)Qn−(i−j)−1/Dn−(i−j)

α + β

i∑
j=1

pL(j)Qn−(i−j)−1/Dn−(i−j)

(24)

Q0 is the seed biomass. En is the environmental factor providing a growth potential, NL
n−i+1 is the number of leaves of

CA i at plant age n. It is assumed here that leaves of different physiological ages have the same functioning parameters,
thus NL

i = ∑Pm
k=1L

1,k
i . pL(j) is the sink strength of a leaf of CA j, and ta is the leaf functioning duration. α = r1e,

β = r2, where e is the leaf thickness, r1 and r2 are two resistance terms linked to the blade and petiole of the leaves.
The formulation of photosynthetic production for plants from a population is described in [17]. Dn is the demand of
the plant at age n, being the sum of sink strengths of all expanding organs, as in Eq. (25). In case of stochastic growth
(NO being random), both the plant biomass production and demand are random variables

Dn =
∑
O

n∑
i=1

pO
i · NO

n−i+1 (25)
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The accumulated plant biomass, Wn = ∑n
i=1Qi, is of special interest for agricultural or forestry applica-

tions.
For deciduous plants, leaf functioning time is one cycle (ta=1), and organs have immediate expansion. To illustrate

biomass production in a simplified situation, let us suppose organs (only leaves and internodes here) have the same sink
strength (pL = pI = 0.5), and each metamer bears one leaf, then the demand of the plant is Dn = pLNL

n + pIN
I
n = NL

n .
If we assume the climate condition is constant, i.e., En ≡ 1, then Eq. (24) can be simplified to the following equation:

Qn = NL
n Qn−1

α′NL
n + βQn−1

= f (NL
n , Qn−1) (26)

where the biomass production at cycle n depends only on the number of new leaves in the current cycle and the biomass
production of the previous cycle.

4.2. Computing moments of biomass production (Qn)

The method of differential statistics described by Johnson and Kotz [24] is used to obtain the approximate and
analytical mean and variance of biomass production. A brief introduction to differential statistics is given in Appendix
B.

As Qn = f (NL
n , Qn−1), according to Eq. (B.1), mean and variance of Qn can be computed if those of NL

n and
Qn−1, and Cov(NL

n , Qn−1) are known. The first and second order derivatives of function f are computed using symbolic
computation software. NL

n is a random variable resulting from bud functioning, whose mean, variance and covariance
between different cycles, ML

i , VL
i , CovL

i,j (1 ≤ i, j ≤ n), are computed with the formulae given in Section 3. Being
a function of NL

n , Qn depends on NL
n . However, NL

n does not depend on Qn, as in GL2, there is no feedback from
biomass production on plant development. Notice that Cov(NL

i , Qj) �= Cov(NL
j , Qi) as N and Q are two stochastic

vectors.
The mean and variance of Qi, Cov(Qi, Qj), Cov(NL

i , Qj) and Cov(NL
j , Qi) are computed by induction as follows:

(1) Cov(NL
i , Q0) = 0, i.e., the number of leaves at cycle i and seed biomass are independent. Suppose

Cov(NL
i , Qj−1)(1 ≤ j < i) is known, Cov(NL

i , Qj) is computed according to Appendix C.
(2) Cov(NL

0 , Qi) = 0 as NL
0 = 0. Suppose Cov(NL

j−1, Qi)(1 ≤ j < i) is known, Cov(NL
j , Qi) is computed according

to Appendix C.
(3) MQ0 = 0 and VQ0 = 0 as Q0 is a known variable. Suppose MQi−1 and VQi−1 are known. Cov(NL

i , Qi−1), MNi

and VNi are already computed. Then MQi and VQi are computed according to Eq. (26) and Eq. (B.1).
(4) We have Cov(Q0, Qi) = 0. Suppose Cov(Qj−1, Qi)(1 ≤ j < i) is known. Cov(Qj, Qi) is computed according to

Appendix C.

As mean and covariance of Qi(1 ≤ i ≤ n) are all computed, mean and variance of Wn are easily computed. For
agricultural applications, these results are important to evaluate the expected yield of a field. The production depends
on the probabilities, which in turn can be strongly influenced by the environment. Thus one can analyze the effect of
external conditions (pests, fertilizer, planting density, etc.) on the production variation once the model is well calibrated.
Above we have shown the computation procedure for the simple case where the organ functioning time is only one
cycle, which is the case of Eq. (26). For crops, where often ta > 1, like in Eq. (24), the principle is the same. For
example, if ta = 2, we have Qn = f (NL

n , NL
n−1, Qn−1, Qn−2), and a similar formula like Eq. (B.1) can be used to

obtain its mean and variance.

5. Case study

All computations in this section were done by the GreenScilab software (http://www.greenscilab.org). It was devel-
oped by the authors in the open source software for scientific computation Scilab. The GreenScilab toolbox can be used
not only for simulating and visualizing plants, but also for estimating model parameters from measurements made on
real plants.
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Fig. 4. Deterministic (complete) tree growth at plant age (a) 10, (b) 15 and (c) 20, where all probabilities are 1s.

5.1. Model parameters

Here we study an example of a stochastic plant simulated with the GreenLab model, to show the usage and advantage
brought by the analytical results. We study the Rauh architectural tree model with the following parameters (Pm = 4).
This architectural model is chosen as its structure is complex enough to be representative (for example the Gingko
Biloba tree)

MA = [
20 10 5 3

]
, JA = [

2 3 4 0
]
, MI =

⎡
⎢⎢⎢⎣

0 2 3 4

0 0 2 3

0 0 1 2

0 0 0 2

⎤
⎥⎥⎥⎦ ,

NB =

⎡
⎢⎢⎢⎣

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎦

Let all organs (internodes and leaves here) be of the same functioning time (ta=1) and the same sink strength
(pL = pI = 0.5), r1 = 17, r2 = 0.4, e = 0.05 (thus α = 0.85, β = 0.4), E = 1, Q0 = 10. If all bud probabilities are
1s, together with some given geometrical parameters (not shown), the simulated plant structures at different ages are
as shown in Fig. 4.

Now let the values for probabilities for each PA be different from 1, which is the main interest of this paper. The
values are given here arbitrarily

PC = [
.99 .97 .98 1

]
, PA = [

.94 .91 .92 1
]
, PI = [

.86 .9 .83 1
]
,

PB = [
1 .9 .85 1

]
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Fig. 5. Samples of stochastic plant structures at plant age 20.

Three plant structures at plant age 20 were simulated with the stochastic substructure algorithm [25], as shown
in Fig. 5. The resulting plant structures are then stochastic and less dense, as some buds did not grow, and
some buds produced less metamers. But they present statistical similarity as they result from the same distribu-
tion.

5.2. Distribution of the number of metamers in an axis

It is interesting to see how the compound distribution of the number of metamers results from PC,PA and PI . Both
the theoretical and simulated results are given, shown in Fig. 6. It can be seen that the distribution is irregular because
PC are not 1s. Otherwise the distribution can be well approximated by a normal law.

Fig. 6. Probability distribution function of the number of metamers in the bearing axis of PA 1 at age 10. Parameters are from Section 5.1. Solid
line: the theoretical distribution, from Eq. (23). Histogram: results of a Monte-Carlo simulation of 250 samples.
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Fig. 7. Mean and standard deviation of number of metamers of each PA and their sum during plant growth, with parameters from Section 5.1.

5.3. Computation of the theoretical moments of number of metamers

The moments of the accumulated number of metamers at a given plant age show the complexity of the structure.
They are computed with the formulae in Section 3.4. In the case when all probabilities are set to 1s, as in Fig. 4, at
plant age 20, the number of metamers of PA 1–4 are 180, 1450, 7875, 33,102, respectively (without pruning of dead
organs). In the case of stochastic development, the mean of the total number of metamers at plant age 20 is only 35.5%
of that of the complete structure because of bud activity (Fig. 7).

While the mean of the total number of metamers is the sum of that of each PA, this is not the case for the variance,
as the numbers of metamers of different PA are not necessarily independent variables. It can be seen that both mean
and standard deviation increase when this virtual plant develops. It means the individual plants show more absolute
variation when they become older.

5.4. Computation efficiency

It is obvious that to compute the moments with a formula is much more efficient compared to getting statistical
results from simulated samples. A direct comparison is that the mean and variance of a variable from the binomial
distribution (N, b) are immediate to compute using formula M = N · b, V = N · b · (1 − b), while to get them through
Monte-Carlo simulation is time consuming: each sample concerns N Bernouilli trials, and a big enough sample size T
is needed to obtain desirable results.

Nevertheless, to provide a figure concerning the efficiency of the analytical method in this paper, the computation
time was compared to simulation results. To simulate a branching plant structure, either the prefixed order algorithm
[10] can be taken, where each metamer in each sample plant is generated one by one, or the stochastic substructure
algorithm [25], where a library of stochastic substructure samples is built from Pm to PA 1, each sample being simulated
by generating an axis and picking substructures from the library randomly, until PA 1 (the plant itself). While with
prefixed order algorithm the time to simulate a plant is proportional to the number of metamers in plant, with the
stochastic substructure algorithm, time to build a plant is proportional to Pm × n2 × T , T being the sample size of
substructures [8]. For a plant of complex structure, the stochastic substructure algorithm can decrease dramatically the
simulation time compared to the prefixed order algorithm [25] as it does not depend on the number of metamers to
create. It is specially interesting to simulate numerous plant samples as the library can be reused once it has been built. In
GreenScilab software, the stochastic substructure algorithm is used. For Fig. 5, the sample sizes are T = [ 3 4 4 4 ].
Such small sample sizes are enough for visual output. Higher sample sizes are required for satisfactory statistical results,
meanwhile the simulation gets more time-consuming. Table 1 shows the computation time of theoretical results and
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Table 1
Computation time in GreenScilab for theoretical and simulated results (sample size x) respectively, as well as the corresponding mean and variance

Time (s) Mean Variance

Theoretical 0.45 15120.1 14181092.6
Simulated (x =100) 44.25 16475.1 19391034.4
Simulated (x =500) 223.05 15409.2 17278379.5
Simulated (x =1000) 450.41 15158.5 12620310.0

the simulated results with the stochastic substructure algorithm at plant age 20. Computation time of the theoretical
results is equivalent to the time of computing a deterministic plant, which is proportional to Pm × n2. For simulation,
the sample size is set to T = [ x x x 1 ]. For PA 4 only one sample is needed as all the probabilities for PA 4 are
1. A higher sample size x is more time-consuming, but the results are closer to the theoretical values. It is obvious
from Table 1 that the computation time for the theoretical results is much lower than those of the simulated results.
The latter increase linearly with the sample size x.

Fig. 8. Effects of different kinds of probabilities on (a) mean and (b) standard deviation of the numbers of metamers at plant age 20, with parameters
from Section 5.1.
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Fig. 9. Evolution of the moments of the biomass production at each cycle during plant growth, with parameters from Section 5.1.

5.5. Analysis of effects of the bud probabilities

Direct computation of means and variances facilitates the parametric analysis of the model. We can compare the
effects of different probabilities on the number of metamers. We have set here the same values for each type of
probability. When the value of one kind of probability varies from 0 to 1, the others are set to 1 to distinguish clearly
the effect of that probability. Results are shown in Fig. 8. It is obvious that the survival probability of buds PC has a
dramatic influence on mean and variance as it can interrupt the growth.

5.6. Efficient computation of biomass production

The analytical mean and variance of biomass production were computed using the method in Section 4.2, as shown
in Fig. 9. As for the number of metamers, the inductive computation of the moment of biomass production is much
quicker than the computation by Monte-Carlo simulation. The total biomass production (the plant weight) is the sum
of the biomass productions at all cycles. Thus, its moments can be computed using the covariance between the biomass
production at all cycles, as explained in Section 4.2.

6. Conclusion and discussion

Generally, stochastic models are more relevant than deterministic ones as they allow a representation of variability
among plants, even though deterministic models are useful in showing clearly the effects of changes on plant devel-
opment [14]. In this work, the theoretical results provide a fast and accurate way to predict the model outputs, and
to analyze a stochastic growth model, as shown in Section 5. For example, in Fig. 8, it is shown how the survival
probability of buds influences strongly the number of metamers without resorting to simulation. These results also
provide a strong support for simulation software by allowing to check their validity, as the software that simulate
the functional–structural plant models are becoming more and more complex [41]. When calibrating this probabilistic
model for a real plant, these theoretical results are very useful in obtaining the values of probabilities with the maximum
likelihood estimation method. For example, such an application has been used for modeling the root system of wheat
seedlings [43].

The probabilistic model can be partially modified according to the object of interest. From observations on coffee
trees, de Reffye [13] showed that the probabilities are not stable during development. In that case, the computing
procedure presented in Section 3 keeps that the same except that some moments will be time-dependent. For example,
if the branching probabilities of budsPB varies along an bearing axis, only a simple variable wp,k and then a compound
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variable qp,k are relevant, and the Mqp,k and Mqp,k in the general formula Eq. (14) are to be replaced by M
q
p,k

i

and

M
q
p,k

i

. Likewise, if the distribution law of the number of metamers in a growth unit is not a binomial one as presented

in this article, but a negative binomial instead, as observed by Costes et al. [7], only part of the computation will
be changed. More generally, it was shown in [4] that with increasing branching orders, and/or age of the shoot, the
frequency function changes to Poisson and finally to geometrical laws. In such cases, the mean and variance of the
compound variables in Eqs. (13) and (15) need to be updated, but the frame of the computation remains the same.

In this paper, we also present an analytical way to compute the moments of biomass production for the stochastic
GreenLab model GL2. It can be seen that the biomass production depends on the plant architecture. However, this
method is an approximate one in nature as shown in Appendix B because of the truncation of Taylor series. Moreover,
the error is accumulated when computing the results from plant age 1 to n. Further work is under way to obtain
the theoretical probability distribution function of biomass production. Differing from the number of metamers, the
biomass production is a continuous variable. On the other hand, in computing biomass production of crops, new
biomass formulae based on Beer’s law can be used, as in [17] and [26]. It is a negative exponential form, different from
the one in Eq. (24). This should be taken into account when predicting production for agricultural fields.

In the stochastic model presented here, the resulting plant architectures are not influenced by biomass production.
In reality, it is generally expected that the plant architecture is the result of both genes and environmental effects. The
physiological influence on branching is underlined in [4]. Thus the stochastic bud behaviour must be highly related
to biomass production, which is in turn dependant on the environment and the plant architecture. In a recent thesis
on the GreenLab model by Mathieu [31], the mathematical formulae that describe the interactions between plant
organogenesis and photosynthesis were presented, and it was shown how the bud activity of trees is highly related
to the light conditions in a deterministic way. A new perspective is to implement these latest results in the stochastic
model and make the probabilities depend on dynamic sink–source relationships (GL4). It will then be very promising
to help in prediction of the growth and development of plant populations when reacting to the environment.
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Appendix A. The compound process

Given a random variable X that takes only non-negative integer values, the probability generating function (PGF)
of X is defined as

gX(u) =
∑
k≥0

P(X = k)uk (A.1)

P(X = k) is the probability that the variable X takes the value k.
The probability generating function provides a way to get the mean and variance without the tedious calculations

involving discrete sums. According to the definition of moments, it is easy to prove that the mean and variance of X
can be computed by differentiating the PGF in the following equation:

MX = g′(1), VX = g′′(1) + g′(1) − g′(1)2 (A.2)

More interesting, the generating function satisfies a compound law. Suppose a stochastic variable Z = X1 + X2 +
· · · + XY , where Xj(1 ≤ j ≤ Y ) are independent and identically distributed variables, Y is an integer random variable.
Then the generating function of variable Z is

gZ(u) = gY (gX(u)) = gY ◦ gX(u) (A.3)
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Note Z = Y ◦ X. Through Eq. (A.2), one derives the mean and variance of Z, MZ and VZ, from those of X and Y
directly

MZ = MX · MY, VZ = MY · VX + VY · M2
X (A.4)

More details can be found in [35].

Appendix B. The differential statistics [24]

Let X, Y , Z be stochastic variables such that Z = f (X, Y ). If the first two moments of variables X and Y, MX, MY ,
VX, VY , and their covariance CovX,Y are known, the moments of Z can be approximated as follows:

MZ ≈ f (MX, MY ) + 1

2
[f

′′
X(MX, MY )VX + f

′′
Y (MX, MY )VY ] + 2f

′′
X,Y (MX, MY )CovX,Y ,

VZ ≈ f ′
X(MX, MY )2VX + f ′

Y (MX, MY )2VY + 2f ′
X(MX, MY )f ′

Y (MX, MY )CovX,Y (B.1)

Similarly, for a function Z = g(X1, X2, X3), the mean of the stochastic variable Z can be approximated as

MZ ≈ g(MX1 , MX2 , MX3 ) + 1

2

3∑
i=1

3∑
j=1

g
′′
X(MX1 , MX2 , MX3 )CovXi,Xj (B.2)

Appendix C. Computing Cov(Xj, Qi) based on differential statistics

Xj represents either NL
j or Qj . According to the definition of covariance

Cov(Xj, Qi) = MXj ·Qi − MXjMQi (C.1)

To obtain MXj ·Qi , define the function as in the following equation:

Xj · Qi = Xj · E
NiQi−1

αNi + βQi−1
= g(Xj, Ni, Qi−1) (C.2)

Then according to Eq. (B.2), MXj ·Qi can be computed if mean, variance and covariance between any two variables
of Xj, Ni, Qi−1 are known.
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