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and convenient as weather reports. In the US, the Federal 
Highway Administration (FHWA) has envisioned a real-
time traffic estimation and prediction system (TrEPS) as 
an ITS support platform that resides at traffic management 
centers (TMCs) for dynamic route assignment (DRA) and 
other transportation operations.

To enable ITS deployment for urban traffic control and 
management in China, in 1999 the Chinese Academy of 
Sciences outlined a research agenda to develop related in-
telligent systems and technology.1 A central component of 
this agenda was a TrEPS called DynaCAS (dynamic traf-
fic assignment based on complex adaptive systems). Here, 
we briefly introduce DynaCAS and its open source coun-
terpart DynaChina, emphasizing how they differ from 
other TrEPS projects.

Background
A deployable, real-time TrEPS is essential for many ITS 
subsystem applications, especially advanced traffic man-
agement systems (ATMSs), advanced traveler information 
systems (ATISs), advanced public transportation systems 
(APTSs), commercial vehicle operations (CVOs), and 
emergency management systems (EMSs).

A TrEPS provides traffic information to ITS subsystems 
to generate proactive, network-wide, coordinated guidance 
and control strategies. It also produces travel information 
for pretrip planning and route guidance to travelers for en 
route diversion. Its broad functional capabilities include2

estimating and predicting short-term demands for traffic 
control and management;
estimating and predicting traffic states;
providing travel mode, departure time, route, and 
other information and advisories to travelers through 
ATISs to meet traffic management and control objec-
tives; and
interacting with other ITS subsystems or, in the interim, 
interfacing with ATISs and other ATMS support sys-
tems at TMCs.

In 1994, the FHWA initiated Dynamic Traffic As-
signment (DTA), a long-term, multiphase research proj-
ect to develop a deployable, real-time TrEPS. In 1995, 
the administration awarded two contracts to the Massa-
chusetts Institute of Technology (MIT) and the Univer-
sity of Texas at Austin. Phase I DTA development was 
completed in October 1998, and two prototype TrEPSs 
were delivered for evaluation: DynaMIT,3 developed at 
MIT, and DynaSMART,4 developed at the University of 
Texas.

However, TrEPSs have seen limited application and 
success. Our goal is to learn from the DTA project and 
develop a deployable, real-time TrEPS that effectively 
supports ITS applications in China’s urban transportation 
systems.
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An Overview of DynaCAS
Figure 1 presents the DynaCAS frame-
work. We pay special attention to rule-
based computational modeling of social 
and behavioral aspects of people, vehicles, 
roads, and environments involved in trans-
portation activities. We accomplish this 
through artificial-society methods and 

through emulations using the TransWorld 
modeling program. DynaCAS has five ma-
jor building blocks: data support, experi-
ment design, traffic simulation, decision 
generation, and performance evaluation.

DynaCAS represents transportation 
networks at four abstraction levels. In ad-
dition to the microscopic, mesoscopic, and 

macroscopic levels, we’ve introduced a 
logic representation to integrate social and 
economic, ecological and resource, con-
struction infrastructure, logistical, and legal 
and regulatory factors. At the logic level, 
transportation modeling extensively em-
ploys qualitative information in linguistic 
forms. To achieve quantitative analysis, we 
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Figure 1. The DynaCAS framework. DynaCAS uses AI and complex-systems methods to provide additional flexibility and 
efficiency in traffic condition estimation and decision evaluation.
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Figure 2. A model for individual behaviors in DynaCAS. This model links an individual’s internal states with external information 
and events to generate traffic behaviors.

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on June 22, 2009 at 08:19 from IEEE Xplore.  Restrictions apply.



November/December 2008 www.computer.org/intelligent 21

use methods in computing with words and 
linguistic dynamic systems. We also use 
data-mining techniques to discover useful 
patterns from simulation results and com-
putational experiments on all levels.

DynaCAS’s main functionality includes

estimation and prediction of traffic 
conditions,
evaluation and optimization of traffic 
control and management decisions, and
generation of route guidance for travelers 
and other information for traffic opera-
tors and service providers.

In addition to conventional TrEPS features, 
DynaCAS has these special features:

fast estimation and prediction of traffic 
states using neural networks;
design of traffic control algorithms 
through approximate dynamic program-
ming (ADP);
generation of traffic guidance and man-
agement information using the state clas-
sification method;
microscopic modeling of individual trav-
elers, vehicles, and roads;
mesoscopic modeling of group behaviors 
and social events;
macroscopic modeling of interactions 
among transportation and socioeco-
nomic infrastructures; and
computational experiments for road con-
struction, special events, rare demands, 
severe weather, traffic incidents, and 
emergency management.

From Simulations to 
Computational Experiments
Simulations have provided a foundation for 
the development and deployment of Dyna-
SMART, DynaMIT, and other TrEPSs. 
Computational experiments are a natural 
extension of computer simulations.5 In ap-
plying computational experiments in Dyna-
CAS, we use computers as alternatives to 
actual traffic systems, and TransWorld be-
comes a “living” traffic laboratory in which 
we systematically conduct simulations as 
“experiments.” This is justified owing to 
the complexity of transportation problems 
and the corresponding subjectivity in their 
social and behavioral dimensions. This 
conceptual change toward simulations lets 
us use various methods and procedures 
developed in experiment design and social 
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experiments for transportation studies, es-
pecially in dealing with problems with no 
analytic formulations.

In DynaCAS, we use computational ex-
periments mainly to consider social and hu-
man factors and to perform these functions:

Problem identification. We identify the 
problems or factors most critical to and 
influential on the specified transportation 
objective, especially when public opinion 
is involved. We can also conduct process 
and parameter identification for optimal 
and adaptive traffic decisions.
Procedure design. We select the optimal 
procedure to combine different traffic so-
lutions to solve complex traffic problems 
involving multiple stakeholders with con-
flicting interests.

Performance evaluation. We evaluate 
the effectiveness of different traffic de-
cisions and the significance of various 
factors in a mixed social, economic, and 
engineering context.

To support those functions, we use both 
individual and group behavioral modeling 
to design computational experiments. Fig-
ure 2 shows a generic individual behavioral 
model, and Figure 3 presents the general 
process of computational experiments in 
DynaCAS. Specifically, through computa-
tional experiments, we want to determine

which input factors most affect the 
outputs,

•

•

•

•

how to place those inputs to produce 
outputs as close to the desired ranges as 
possible,
how to place those inputs to make the 
variation in outputs as narrow as pos-
sible, and
how to place those inputs to minimize 
the effect of uncontrollable factors.

These experiments must follow the three 
principles of experiment design: replica-
tion, randomization, and blocking.

For our computational experiments, 
we’re also developing observation and 
explanation methods based on emergence 
theory. At this stage, we’re considering 
only statistics, data-mining, pattern rec-
ognition, and other computational- 
intelligence algorithms for general situ-
ations. We plan to develop advanced 
procedures and algorithms for particu-
lar cases using application-specific AI 
techniques.

Approximate  
Dynamic Programming
In DynaCAS, planning is a short-term ap-
plication, temporarily changing infrastruc-
tures, operational conditions, and so on. 
Travelers respond to the changes and in 
turn cause variations of traffic conditions. 
Scheduling periodically occurs to remove 
one or more lanes or set up an advance-
warning area for a work zone. Hard control 
is signal control or ramp metering; soft 
control regulates traffic flow indirectly by 
a variable-message system, traffic news 
reports, a congestion information board, 
and so on, which travelers can ignore with-
out breaking laws. Dynamic programming 
(DP) has been widely used for decision 
making in planning, scheduling, and soft 
and hard control.

In real-time traffic state estimation and 
route guidance, current solutions, espe-
cially those for DRA, fall into four groups: 
mathematical programming, variational 
inequality, optimal control, and simulation 
based. The first three are analytical and 
based on DP and other mathematical solu-
tions such as dynamic user-optimal or dy-
namic system-optimal traffic assignment.

However, the inherently poor behavior of 
TrEPSs often causes problems with DRA 
algorithms’ convergence and uniqueness, 
preventing their wide application. Further-
more, DP has limited application owing to 
its high computational and storage demands 
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Figure 3. The general process of 
computational experiments. A 
computational experimental process 
aims to identify the controllable 
affecting factors and place them for 
desired purposes.
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for complex problems—the “curse of 
dimensionality.”

Recently, researchers have proposed 
ADP to artfully circumvent such difficul-
ties by using a critic network for estimating 
the performance function and its deriva-
tives through dynamic programming and 
an action network to generate optimal ac-
tions.6 Critic networks often use artificial 
neural networks for fast, effective approxi-
mation. In many cases, ADP combines 
backpropagation, reinforcement learning, 
and DP. DynaCAS has extensively applied 
ADP for traffic planning, scheduling, soft 
and hard control, and real-time state esti-
mation and route guidance.

ADP-based approaches have many 
promising benefits, such as DP’s optimality 
and feedback and neural networks’ real-
time performance. Another advantage is 
that these methods can handle systems with 
time-delay elements, an intrinsic property 
of traffic dynamics. Especially for traffic 
systems, supervised learning might not be 
a valid option because it utilizes instanta-
neous errors between the desired output 
and the actual output. However, ADPs are 

effective under such conditions because 
they let the neural network learn according 
to the present error state’s cost-to-go func-
tion. This capability makes ADPs prefer-
able for solving many traffic planning and 
control problems.7

Figure 4 shows a schematic for using 
ADP in traffic control. The action network 
can be any traffic controller, executing on 
freeway ramps or surface street intersec-
tions. The inputs to the action network are 
the system states x(t), such as queue or 
travel time.

The action network outputs a control 
variable u(t). The inputs to the critic net-
work are x(t) and u(t). We use the critic 
network’s output to estimate the discounted 
cost-to-go, J(t). During the training pro-
cess, we try to decrease the critic network’s 
training errors to zero so that the critic 
network will accurately evaluate the action 
network’s optimal traffic control perfor-
mance. To achieve better convergence of 
the neural networks, we must carefully 
select  (0<  < 1), a discount factor for in-
finite-horizon problems, and r(t), a reward 
or reinforcement signal for u(t).

In some cases, the computational time 
required for ADP could be problematic, es-
pecially when we’re using neural networks 
with many weight requirements for contin-
ual online adaptation. In addition, frequent 
online training could lead to instability. In 
those cases, we adopt the offline training 
mechanism to guarantee the convergence 
of the critic and the action networks.

For real-time implementation, we can 
deploy our ADP-based approach accord-
ing to the local-simple and remote-complex 
design principle for networked systems.8 
For example, we conduct offline training at 
remote TMCs with actual traffic data. Once 
we’ve trained the complex neural-network-
based traffic decisions, we convert them 
into simple, implementable formats and 
then download them to local sites in fields 
with fixed-weight parameters. This cycle 
can repeat hourly or daily until the param-
eters are tuned appropriately. Using this 
mechanism, we can avoid instability and 
guarantee real-time performance, reliabil-
ity, and robustness in applications.

DynaChina
Along with DynCAS, the Chinese Acad-
emy of Sciences proposed DynaChina 
to organize and support transportation 
researchers in a joint effort for Chinese 
TrEPS development.1 This is necessary be-
cause the development and deployment of 
TrEPSs is a long-term, multiphase project 
requiring wide and active participation by 
traffic researchers and practitioners. Dyna-
China aims to provide an open testbed to 
evaluate and verify DRA and other related 
traffic methods and algorithms. It also aims 
to establish a public platform to archive re-
lated R&D results and applications in a re-
usable, computationally executable fashion. 
A preliminary set of open architectures, 
standards, and application programming 
interfaces has been proposed for the con-
struction of Web-based DynaChina.

With the recent, rapid development of 
Web computing, the Semantic Web, and 
Web science, DynaChina has become much 
more feasible and implementable. Obvi-
ously, similar open platforms can be estab-
lished for other regional traffic systems and 
in different fields. Recognizing this pos-
sibility, a group of ITS researchers at the 
2008 International IEEE Intelligent Trans-
portation Systems Conference established a 
protocol for creating a searchable, comput-
able ontology of transportation methods 
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Figure 4. Approximate dynamic programming (ADP) for real-time and off-line traffic 
control. APD provides a unified approach for the design and implementation of 
traffic decisions in planning, scheduling, state estimation, route guidance, and soft 
and hard control.
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and algorithms. By the time you read this, 
researchers at the First Chinese Workshop 
on Artificial Transportation Systems will 
have investigated this topic further.

DynaCAS and DynaChina represent 
a major effort by Chinese ITS research-
ers to develop effective TrEPSs and apply 
DRA and related approaches to urban traf-
fic network management. Besides methods 
and algorithms developed by transportation 
researchers, DynCAS extensively utilizes 
concepts and algorithms in AI and complex 
systems, especially computational experi-
ments, rule-based fuzzy logic, neural net-
works, computing with words, linguistic 
dynamic systems, and ADP. Both theo-
retical studies and field tests have demon-
strated that in many cases, those AI-based 
techniques are more flexible and effective 
than conventional analytic methods and 
are particularly useful for ill-formulated or 
heuristics-based traffic problems. Eventu-
ally, DynaCAS will likely incorporate ad-
ditional AI and computational-intelligence 
methods, including data mining and ma-
chine learning.
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