800 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 12, NO. 6, NOVEMBER 2008

A Novel Software Platform for Medical Image
Processing and Analyzing

Jie Tian, Senior Member, IEEE, Jian Xue, Yakang Dai, Jian Chen, and Jian Zheng

Abstract—The design of software platform for medical imaging
application has been increasingly prioritized as the sophisticated
application of medical imaging. With this demand, we have de-
signed and implemented a novel software platform in traditional
object-oriented fashion with some common design patterns. This
platform integrates the mainstream algorithms for medical image
processing and analyzing within a consistent framework, includ-
ing reconstruction, segmentation, registration, visualization, etc.,
and provides a powerful tool for both scientists and engineers. The
overall framework and certain key technologies are introduced in
detail. Presented experiment examples, numerous downloads, ex-
tensive uses, and practical applications commendably demonstrate
the validity and flexibility of the platform.

Index Terms—C++ ToolKit, medical imaging, software plat-
form, visualization.

I. INTRODUCTION

ODERN medical imaging devices, such as computed to-
mography (CT), MRI, and electronic endoscopy, provide
tremendous benefits for easy disease diagnoses. Corresponding
computer technologies play important roles in processing and
analyzing medical images, including computer graphics, pat-
tern recognition, virtual reality, etc. Three main research fields
on which medical image processing and analyzing focuses are
structural imaging, functional imaging, and molecular imaging.
Past two decades have witnessed many algorithms developed
in these fields by scientists and engineers, and recently, new
algorithms have been emerging continuously [1]-[3].
Consolidating existing algorithms to stimulate the develop-
ment of new technologies, many softwares have been designed.

Manuscript received October 29, 2007; revised January 25, 2008. First
published May 30, 2008; current version published November 5, 2008. This
work was supported in part by the Project for the National Key Basic Re-
search and Development Program (973) under Grant 2006CB705700, in part by
the Changjiang Scholars and Innovative Research Team University (PCSIRT)
under Grant IRT0645, in part by the Chinese Academy of Sciences (CAS) Hun-
dred Talents Program, CAS Scientific Research Equipment Develop Program
(YZ0642, YZ200766), 863 Program under Grant 2006AA04Z216, in part by
the Joint Research Fund for Overseas Chinese Young Scholars under Grant
30528027, in part by the National Natural Science Foundation of China un-
der Grant 30672690, Grant 30600151, Grant 30500131, Grant 60532050, and
in part by the Beijing Natural Science Fund under Grant 4051002 and Grant
4071003.

J. Tian is with the Medical Image Processing Group, Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China, and also with the Life
Science Center, Xidian University, Xian 710071, China (e-mail: tian @ieee.org).

J. Xue is with the College of Computing and Communication Engineering,
Graduate University of Chinese Academy of Sciences, Beijing 100039, China.

Y.-K. Dai, J. Chen, and J. Zheng are with the Medical Image Processing
Group, Institute of Automation, Chinese Academy of Sciences, Beijing 100190,
China.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITB.2008.926395

These softwares can be divided into two categories: algorithm
toolkit and application system. Visualization Toolkit (VTK,
www.vtk.org) [4]-[6] and Insight Segmentation and Registra-
tion Toolkit (ITK, www.itk.org) [7] are the most notable al-
gorithm toolkits that aim to provide an algorithm library for
scientific research and software development. 3DVIEWNIX [8]
is a typical example for an application system, whose purpose
is to provide wieldy assistance tools for more precise diagnosis.
Many other useful algorithm toolkits and application systems
are based on VTK and ITK, such as Medical Imaging Interaction
Toolkit [9] and VolView [10].

Although VTK and ITK are the most famous and popular
in medical image processing, there are several bottlenecks that
limit their applications. First, ITK does not provide the function
of visualization by itself, so we have to apply both ITK and VTK
to compose a medical imaging system. Nevertheless, VTK pos-
sesses the classical object-oriented design method whereas ITK
possesses generic programming; consequently, the frameworks
and coding styles of VTK and ITK are quite different. From a
normal user’s point of view, it is difficult to handle two sets of
large-scale toolkits with very different styles. Second, VTK is
not specially designed for medical data visualization; thus, it
seems too large and complicated for medical data visualization,
which may increase the learning difficulty and affect the running
efficiency. Furthermore, algorithm categories in VTK and ITK
are not sufficient enough; more specific algorithms for func-
tional imaging [11] and molecular imaging [12] are necessarily
required. Third, ITK utilizes many modern C++ language fea-
tures, especially the template, which takes full advantage of the
generic programming. It is indeed a very good design for senior
C++ developers, but not so good for average researchers be-
cause its framework and codes are difficult to understand even
for those who are familar with C++. Finally, VTK and ITK
do not provide the support to process out-of-core datasets that
appear more and more these days. Without an underlying pro-
cessing framework for out-of-core datasets, researchers have to
additionally design special data accessing operations. All these
factors restrict the application range of VTK and ITK in medical
imaging.

Following VTK and ITK, a particular workshop called Soft-
ware Development Issues for Medical Imaging Computing and
Computer Assisted Interventions (MICCAI) was carried out at
the MICCALI 2003 conference. Then, a Visualization Toolkits
Session was held at the International Society For Optical En-
gineering (SPIE) Medical Imaging in 2004. Recently, Medical
Image Analysis with ITK and Related Open-Source Software
Courses were held in SPIE Medical Imaging in 2006 and 2007.
Nowadays, research and development of platforms for medical

1089-7771/$25.00 © 2008 IEEE

TIAN et al.: NOVEL SOFTWARE PLATFORM FOR MEDICAL IMAGE PROCESSING AND ANALYZING 801

imaging is becoming a hot topic. However, there is no uniform
software platform for medical image processing and analyzing
till date, and better platform solutions need to be investigated
urgently.

In this paper, we propose a full platform solution for medical
image processing and analyzing, including the Medical Imaging
Toolkit (MITK) and the 3-Dimensional Medical Image Process-
ing and Analyzing System (3DMed). MITK is a toolkit being
developed with an algorithm library for research and software
development, while 3DMed is an application system with an
entire application framework. The main innovations and advan-
tages of this platform can be illustrated as follows.

1) This platform is investigated and developed specially for
medical image processing and analyses. We integrate
the mainstream algorithms in structural imaging, func-
tional imaging, and molecular imaging within a consistent
framework, which makes the platform focused and expert
for medical imaging.

2) This platform provides an underlying processing frame-
work for out-of-core datasets. All concrete algorithms,
including reconstruction, segmentation, registration, vi-
sualization, etc., can process out-of-core data through an
underlying interface offered by MITK.

3) We employ a data flow model to design computational
framework, abstract medical data to volume and mesh, and
import many design pattern methods to manage memory
automatically. All these features make the platform ele-
gant, easy to understand, and convenient to use.

4) In the platform, MITK is the fundamental algorithm layer
and 3DMed is the application layer. They can be combined
together to form an extensible medical image processing
and analyzing system. Moreover, MITK can also be used
solely as an integral algorithm toolkit. This kind of plat-
form structure offers a clear idea and an easy manner for
developing complex medical imaging software.

With these efforts, we try to solve the aforementioned prob-
lems of existing platforms and provide another excellent choice
for both scientists and engineers in the medical imaging field.

In this paper, the detail of medical imaging algorithms in
this novel platform is not discussed. We mainly focus on the
design and implementation of the platform’s framework, which
is the greatest contribution of our study. More technical details
of algorithms in the platform can be found from some of our
papers [13]-[15]. An overview of this platform is demonstrated
in Section II. The details for the design and implementation
of the toolkit as well as the application system are introduced
in Sections III and IV. Examples are provided in Section V.
Finally, in Section VI, we draw the conclusion with a future
perspective.

II. PLATFORM OVERVIEW

Our solution for the platform of medical image processing and
analyses is illustrated in Fig. 1. We integrate mainstream algo-
rithms of structural imaging, functional imaging, and molecular
imaging within a uniform computational framework to produce
a powerful algorithm toolkit on which an advanced application

| Application system |

| Algorithm research and development |

)

]

1

Algorithm |

|Computationa| framework| toolkit

4 1

--------------------------- R,
[1

Structural Functional Molecular
imaging imaging imaging
t - L} Algorithms

| Reconstruction | |Segmentation|

IVisuaIization| [Registrationl | Reblocking |

’Multivariate analysis”Adaptive finite element|

Fig. 1. Solution for the platform of medical image processing and analyses.

open

Y ayer | 3DMed |- Plugin SOK |
Layer
provide algorithms

Algorithm
s MI TK |

Fig. 2. Total framework of the platform.

system can be developed conveniently. The implemented soft-
ware platform consists of two layers, as shown in Fig. 2. The
algorithm layer, MITK, ! is the kernel that provides all the algo-
rithms and the basic visualization and interaction framework for
medical image processing. The application layer, which includes
3DMed and a plugin SDK, provides a flexible and extensible
application framework for the total platform.

III. MITK

We have developed a new algorithm toolkit, i.e., MITK, to
attempt the problems of VTK and ITK mentioned in Section I.
MTIK is not based on VTK and ITK, but is a novel consistent
toolkit that provides the function of reconstruction, segmenta-
tion, registration, visualization, etc. Some excellent features of
VTK and ITK are used for reference, while the whole frame-
work and underlying medical image processing algorithms of
MITK are designed, implemented, and optimized completely by
ourselves. Table I presents the comparison of MITK with VTK
and ITK. It is obvious that MITK enriches the available toolk-
its and provides another great option for the medical imaging
society.

A. Overall Design

1) Design Goals: MITK pursues clear high level design
goals throughout [16].
a) Consistent design style: Design patterns [17] are used in-
tensively to get a consistent, flexible, and reusable overall
framework.

'MITK is novel and completely different from the Medical Imaging Interac-
tion Toolkit (MITK) that was developed by German Cancer Research Center
based on VTK and ITK.

802

IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 12, NO. 6, NOVEMBER 2008

TABLE I
COMPARISON OF MITK WITH VTK AND ITK

Feature\ Platform VTK ITK

MITK

Specialism General visualization

medical image

Segmentation and registration of

Medical image processing and analyzing for structural
imaging functional imaging and molecular imaging

Framework No Out-of-Core support

No Out-of-Core support

With underlying processing framework
for Out-of-Core datasets

Main algorithms Visualization

Segmentation and registration

Reconstruction, segmentation, registration, visualization,
reblocking, multivariate analysis, adaptive finite element

C++ with object-oriented

Program style method

C++ with Generic Programming

C++ with object-oriented design method,
and design pattern method

—/

j(FiIter n J(Target)

Data

Process

JAN

| pata | _
/\ | Source || Filter || Target |
: D
m |Vo|umeToVqumeFiIter| | MeshToVolumeFilter |
b)

[VolumeToMeshFilter | | MeshToMeshFilter |

(
(©)

Fig. 3. Computational framework of MITK. (a) Pipeline of data and algo-
rithms. (b) Data model. (c) Algorithm model.

b) Focused goals: The specific domain of medical imaging is

targeted.

¢) Portability: It is written in the American National Stan-

dards Institute (ANSI) C++ and the system -dependent
codes are as separated and minimized as possible.

d) High performance: Hardware-accelerated algorithms are

used for medical image visualization.

2) Computational Framework: Similarly to VTK and ITK,
MITK employs the data flow model to design the computa-
tional framework. Particularly, MITK applies a more simplified
and traditional model to generate a small and consistent overall
framework.

As shown in Fig. 3(a), medical data are abstracted to a Data
class, while a medical processing algorithm is abstracted to a
Filter class that receives input data and generates output data. A
series of algorithms can be connected into a pipeline and form a
consistent computational framework. This is basically the same
as the visualization model implemented in VTK, except that
MITK does not provide the support of network topology, net-
work feedback, and network execution. During the pipeline,
every Filter executes immediately after it is member function
Run() is called. Each Data is also connected to the disk cache
and encapsulates the operations of data exchange between in-
ternal and external memory. It gives the capability of processing

out-of-core data to this computational framework, which is not
supported by most mainstream algorithm toolkits yet.

The meanings of Data, Source, Filter, and Target in Fig. 3(a)
are explained in detail as follows.

a) Data: Data abstracts the attributes and methods of med-
ical image data. We can generate the concrete data class
derived from Data for different types of medical image
data, and the implementation details for out-of-core data
accesses are well encapsulated in these subclasses; there-
fore, each medical processing algorithm only needs to call
the unified application programming interfaces (APIs) de-
fined in their superclass to access the medical data and
does not need to know what kind of dataset (in-core or
out-of-core) it is processing.

Source: Source is a type of algorithm. Representing the
source of one algorithm pipeline, it only produces output
data. The purpose of Source is to generate the initial Data
to start the execution of the whole pipeline. The examples
include reading data from disk and generating data by
using certain algorithms.

Filter: Filter is a type of algorithm. Representing the data
processing algorithm, it has both input and output data.
Most algorithms in medical image processing and analyses
can be expressed as a Filter.

Target: Target is another type of algorithm that represents
the end of one algorithm pipeline. It only receives input
data. The purpose of Target is to put the final Data to
appropriate location and finish the execution of the whole
pipeline. The examples include writing the final result to
disk files or displaying the final result on the screen.

Considering the characteristic of data processed by the al-
gorithms, we specify the data model of MITK, as shown in
Fig. 3(b). Volume and Mesh are two concrete subclasses of
Data and represent two different kinds of data, respectively.

Volume is a concrete data class to demonstrate the medical
image data obtained by imaging devices. It provides an abstract
for the multidimensional (1, 2, 3), multimodal (CT, MRI), and
regular dataset. The internal data and attributes are exposed to
the algorithm object through the interface of Volume. Volume
is one of the kernel classes in MITK.

Mesh is a concrete data class to represent geometrical data. It
provides an abstract for 1-D lines, 2-D vector graphics, and 3-D
triangular meshes. Mesh does not directly correspond to medical
image data, but is an intermediate result generated by certain
algorithms. For the efficiency of Mesh processing algorithms, a

b)

)

d)

TIAN et al.: NOVEL SOFTWARE PLATFORM FOR MEDICAL IMAGE PROCESSING AND ANALYZING 803

View m_Models
rO[+AddModel(in aModel : Model) Model
i [tRemoveModel(in aModel : Model) ode >
. [+OnDraw ()O --------- : +Render()
t---1 m_Models
->AddModel i |SurfaceModel||VolumeModel
(aModel) i [+Render() +Render()
For all models in | :
m_Models :

aModel->Render()

Fig. 4. Rendering framework of MITK.

half-edge is used in MITK as an internal data structure of Mesh.
The internal data and attributes are exposed to the algorithm
object through the interfaces of Mesh. Mesh is also one of the
kernel classes in MITK.

Source and Target are two algorithm abstracts with
special purpose, while Filter is the main data pro-
cessing algorithm abstract. According to input and
output datasets, we demonstrate the algorithm model
in Fig. 3(c). VolumeToVolumeFilter, VolumeToMeshFilter,
MeshToMeshFilter, and MeshToVolumeFilter are four abstract
subclasses of Filter and represent four different kinds of algo-
rithms, respectively.

VolumeToVolumeFilter is an abstract algorithm class whose
input and output data are both Volumes. These algorithms
include image processing, segmentation, and registration;
VolumeToMeshFilter is an abstract algorithm class which char-
acterizes that input data are Volume and output data are Mesh.
These algorithms include surface reconstruction and image seg-
mentation; MeshToMeshFilter is an abstract algorithm class
which demonstrates that input and output data are both Meshs.
These algorithms include mesh simplification, mesh fairing,
mesh subdivision algorithms, etc.; MeshToVolumeFilter is an
abstract algorithm class which represents that input data are
Mesh and output data are Volume. These algorithms include
distance-field-based visualization and implicit surface algo-
rithms. Each of these abstract filters specifies the interfaces that
the subclasses must implement.

3) Visualization Framework: The general visualization
framework is shown in Fig. 4, in which View displays the result
images or 3-D graphics onto screen. View maintains an array of
Models and provides the interfaces for adding a Model into the
array and removing a Model from the array. In the member func-
tion OnDraw(), which is called when the View is updated, each
model in the array is visited and its virtual function Render()
is called to display itself to the screen. The concrete classes
of Model should implement the virtual function Render() to
display its contents.

B. Implementation of Key Technologies

The design of the platform involves different technologies,
and the implementation of some key technologies are introduced
in the following sections.

JAN

DataObject

Volume

AN JAN

[1cvolume |[cocvolume | [HEMesh |

TriangleMesh

| HETriangleMesh l | OoCTriangleMesh H ICTriangleMesh

| HEICTriangleMesh H HEOoCTriangleMesh I

Fig. 5. Inheritance hierarchy of the data classes.
‘T *m_BufBlks :
OoCTriangleMesh OoCStorage
-m_VertStor : OoCStorage<Vertex> k| +GetBlockForRead()
-m_FaceStor : OoCStorage<Face> +GetBlockForWrite()
+AddVertex() +GetBlockForReadWrite()
+AddFace() +Re§dBlock()
+GetVertex() +WriteBlock()
+GetFace() +GetElementIndex()
+GetElement()
+SetElement()
+AddElement()
Fig. 6. Out-of-core storage.

1) Out-of-Core Support: In order to gain transparent access
to the medical datasets, we design a set of uniform interfaces in
the data classes (Volume and Mesh) and separate the different
implementations into their subclasses for accessing the in-core
and out-of-core datasets, respectively. The inheritance hierarchy
of the data classes in MITK is shown in Fig. 5. The classes with
the prefix “OoC” are designed for containing the out-of-core
datasets.

Furthermore, as shown in Fig. 6 (taking OoCTriangleMesh
for example), a template class OoCStorage is designed to en-
capsulate the common functions for the underlying management
of the out-of-core raw data, including the buffer management,
data transfer between internal and external memory, etc., So as
to get a more flexible framework.

2) Volume Rendering Framework: Volume rendering algo-
rithm is one of the most important algorithms in scientific vi-
sualization [18], [19]. It is difficult to implement an efficient
and flexible algorithm framework because of its complexity and
flexibility. Our volume rendering framework is improved from
VTK, and is enhanced by integrating the transfer function gener-
ation algorithm with multidimensional transfer function support
into the framework.

VolumeModel is a concrete subclass of the Model and it is
the main component of volume rendering framework. A Volume
is visualized by the volume rendering algorithm in the imple-
mentation of the Render function. The Volume’s two subclasses,
OoCVolume and ICVolume, encapsulate the access functions for
the out-of-core and in-core datasets, respectively. Since there are
many kinds of volume rendering algorithms, and many param-
eters are adjustable, the VolumeModel plays a very important
role in the whole volume rendering framework. Its structure is
shown in Fig. 7.

804

IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 12, NO. 6, NOVEMBER 2008

Model ‘m_ModeIs View m_Mani Manipulator
+Render() +AddModel() +OnMouseDown()
+RemoveModel() +OnMouseMove()
+0OnDraw () +OnMouseUp()
I 1 #_pick()
VolumeModel | M_Property
VolumeProperty |M_Generator
*Render() - TransferFunctionGenerator
+SetData() +SetTransferFunction() =
m_Data +SetRenderer() +GetTransferFunction() +Generate()
+SetProperty() +SetShade() +GetOutput() : TransferFunction
+GetShade()
Volume
+GetWidth() m_Renderer =
: VolumeRenderer TransferFunction
+GetHeight() m_Output
+GetSliceNum() +Render() +GetData() —

+GetSliceData()
+GetSubVolume()

Y

A

I 1

I I

RayCasting

TexureMapping3D

TransferFunction1D ||| TransferFunction3D

—n

+Render() +Render()

+GetData() +GetData()

OoCVolume ICVolume

+GetSliceData() | |+GetSliceData() OoCTexureMapping3D

TransferFunction2D

OoCRayCasting

+GetSubVolume() | [+GetSubVolume() +Render()

- Render() +GetData()

Fig. 7. Volume rendering framework of MITK.

VolumeModel has three class members, i.e., Volume,
VolumeProperty, and VolumeRenderer. Volume provides the
access of medical image data. VolumeProperty provides the pa-
rameters required by volume rendering algorithms, especially
the opacity transfer functions. VolumeRenderer provides the
actual rendering algorithms. In fact, in the implementation of
Render function of VolumeModel, the rendering is delegated to
the Render function of VolumeRenderer.

VolumeRenderer is an abstract class whose concrete sub-
classes implement different volume rendering algorithms
by overriding the virtual function Render() defined in the
VolumeRenderer. Currently we have implemented the classi-
cal ray casting algorithm (RayCasting) [20], splatting algo-
rithm (Splatting) [21], shear warp algorithm (ShearWarp) [22],
and the modern Gnutella processing unit (GPU) and texture-
mapping-based algorithms (TextureMapping3D) [23], [24]. We
have also developed some new out-of-core algorithms for the
volume rendering of very large datasets (e.g., OoCRayCasting
[15], OoCTexureMapping3D, etc.). New algorithms can be
added easily by deriving new classes from VolumeRenderer
and overriding the Render virtual function.

In addition to the parameters of shading, the VolumeProperty
mainly offers a flexible framework to provide VolumeRenderer
the parameters of an opacity transfer function. To ap-
proach this, VolumeProperty has a class member of
TransferFunctionGenerator, which is an abstract class for
generating different transfer functions. The output of
TransferFunctionGenerator is an object of TransferFunction
that includes TransferFunction1D, TransferFunction2D, and
TransferFunction3D as three concrete subclasses to support
the multidimensional transfer function [25]. For this purpose,
VolumeRenderer must be aware of the dimension of transfer
function and deal with it specifically.

3) 3-D Interaction: The entire interaction framework of our
platform is based on 3-D widgets [26]-[29]. In our platform,

WidgetModels represent the 3-D widgets and act as the kernel
elements in the interaction framework. According to some is-
sues in designing 3-D widgets advanced in the works of Snibbe
et al. [30], the design and implementation of WidgetModels
should conform to the following rules [13].

a) A WidgetModel’s appearance should intuitively reflect the
behavior of this WidgetModel without losing its precision.
For example, the line widget should take no balls but cones
as its control points, so as to precisely locate the ends of
the line.

Keep the responses of WidgetModels the same as the
user expects so as to control the widgets conveniently. For
example, keep the control point of the widget following
the cursor of the mouse when it is being used.

Design the WidgetModel in a set of uniform interfaces and
reduce the coupling with other modules so as to simplify
the maintenance and extension of the whole framework.

In addition to the WidgetModel itself, some other classes are
necessary for the framework to accomplish the whole interacting
process.

First of all, the DataModels are the objects controlled
by widgets. There are some correlative connections be-
tween the WidgetModel and the DataModel. Generally, a
WidgetModel is always connected to one DataModel (indicated
by m_SourceModel, a member variable of the WidgetModel)
as it should be. However, a DataModel can be connected
to a group of WidgetModels, and they are maintained by
m_WidgetModels, an array member of DataModel. These con-
nections do not always exist. For example, a WidgetModel may
be connected to no DataModel.

Second, a Manipulator is needed to drive the WidgetModel
to control the DataModel. Therefore, the Manipulator must
have the ability to select the WidgetModel currently pointed
by the mouse from the View and transfer the control to the
WidgetModel. Meanwhile, the WidgetModel should provide a

b)

)

TIAN et al.: NOVEL SOFTWARE PLATFORM FOR MEDICAL IMAGE PROCESSING AND ANALYZING 805

m_Observers | opserver
|-

'
+Update()

m_Models i m_Mani
Model — View _
+0nDraw ()
+Rend
+S:1[;C:(r)0 +0OnMouseDown()
+OnMouseMove()
I—ZL| +0OnMouseUp()
DataModel WidgetModel -
+Render() +Render() Manipulator
A +Select() +0OnMouseDown()
+Pick() +0nMouseMove()
+Release() +OqMouseUp()
+0OnMouseDown() #_pick()
+OnMouseMove()
+OnMouseUp()
m_PickedWidgets.owner
m_WidgetModels

m_SourceModel

Fig. 8. 3-D interaction framework of MITK.

Select() interface to the Manipulator for selection, and some cor-
responding interfaces such as OnMouseDown(), OnMouseUp(),
and OnMouseMove() to receive and perform the transferred con-
trols. Besides that, the WidgetModel must also provide Pick()
interface and Release() interface to the Manipulator in order to
update the WidgetModel’s status.

Third, an open Observer module should be available to
show the physical parameters obtained from a DataModel
by the WidgetModel in appropriate ways. Observer is a
highly abstract class and contains only a pure virtual function:
Update(). Each class derived from Object is able to add multi-
ple Observers (except for the Observer itself), and so does the
WidgetModel. Every time when the status changes, Update()
will be called to inform associated Observers to update the
shown data. The actual way to display the data is implemented
in Update() of the concrete Observer class. Therefore, the whole
interaction platform is independent of the user interface (UI)
system.

Finally, View constructs a stage for the DataModel and
WidgetModel to display. At the same time, View contacts the
operating system, captures the messages emitted by mouse and
keyboard, and calls the corresponding interface of Manipulator
according to different messages so as to start up the whole in-
teraction process.

The earlier modules and their cooperation make up the en-
tire 3-D human—computer interaction framework, as shown
in Fig. 8.

In Fig. 8, we can clearly illustrate the whole interaction pro-
cess as follows.

1) View displays each Model in the 3-D scene, captures
mouse and keyboard messages, and drives Manipulator
upon different messages.

2) At an appropriate occasion [e.g., OnMouseDown() is
called], the Manipulator performs the select operation.
If certain WidgetModels are chosen, the Manipulator

m_Imp
View |~ p»| Implementor
+Show () +Show ()
+Update() +Update()

A

[|
Win32implementor | | X\Windowlmplementor

+Show () +Show ()
+Update() +Update()

Fig. 9. Implementation of cross-platform.

transfers the control to them; otherwise, it does the
routines.

3) The selected WidgetModel performs as defined before,

and the final results are reflected in View and Observers.

The whole process of interaction is the continuous repetition
of 1), 2), and 3).

4) Cross-Platform: All the codes are written in ANSI C++-,
thus ensuring portability. Furthermore, for some operating-
system-specific codes, such as windows management, event
processing, and virtual memory management, we must write
one set of codes for every operating system. In order to get an
elegant solution to encapsulate these system-specific codes, we
use Bridge as the design pattern.

In our platform, View is the only class that depends on the
GUL. It provides a screen window to display the images or 3-D
graphics, which is definitely based on the specific operating
system. The system-specific codes should be separated, and
adding the support of a new operating system should not affect
the client codes. To achieve this purpose, the structure of View
is designed as in Fig. 9.

View maintains a pointer of Implementor and delegates all
the system-specific codes to the Implementor. Implementor
is an abstract class and its concrete subclasses, such as
Win32Implementor and XWindowlmplementor, override the
virtual functions defined in Implementor to implement the
system-specific parts by calling the API functions of a specific
operating system. In this structure, clients only contact View,
and they do not know the existence of the Implementor. When
adding support for a new operating system, we only need to de-
rive a subclass from the Implementor and do not need to change
the client codes.

5) Memory Management: In the design of MITK, we must
carry out an efficient memory management scheme as an infras-
tructure to maintain the stability and robustness of the toolkit.
For the data object, both Volume and Mesh support the loading
and the access of out-of-core dataset by using the operating-
system-provided memory-mapped file and manage the virtual
memory directly. Another level of memory management is to
ensure that memory leakage does not occur during run-time.
We employed two design patterns, smart pointer and reference
counting, to guarantee that the memory of an MITK object is
deleted when it is no longer necessary for any other MITK ob-
ject. In addition, we also implement a simple garbage collection
mechanism to ensure that all the MITK objects are deconstructed
at the end of one application.

806 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 12, NO. 6, NOVEMBER 2008

IV. 3DMED
A. Overall Design

1) Design Goals: There are high-level design goals of
3DMed [31].

a) Supports cross-platform: It is based on cross-platform li-

braries and coded with ANSI C++-.

b) Powerful extensibilities: It provides a flexible plugin
framework. Users can develop their own plugins according
to the specifications defined by 3DMed.

c) Easy to obtain: It is released as freeware and can be down-
loaded from the Internet freely.

2) Main Functions: The basic functions of 3DMed include
data input/output (I/O), 2-D manipulation, medical image seg-
mentation and registration, 3-D visualization and measurement,
virtual cutting, etc. The 2-D manipulation, virtual cutting, and
3-D measurement are implemented in kernel and relatively set-
tled. The kernel also involves the basic visualization functions
including surface rendering and volume rendering. Other func-
tions are dynamically loaded through plugins. Each function is
briefly introduced as follows.

a) Medical data I/0: Adopt plugin mechanism to support
various image data types, i.e., BMP, JPEG, TIFF, DICOM,
etc. The input or output function of each data type is in
absolute plugins and can be loaded at any time.

b) 2-D manipulation: Including image browsing, animation
playing, window width/height adjusting, geometric trans-
forming, pseudocolor displaying, 2-D measuring, mark-
ing, etc.

¢) Medical image segmentation: Use plugin mechanism to
provide various segmentation algorithms. Users can add
new algorithms by their own plugins.

d) Medical image registration: Use plugin mechanism and
provide a modularized framework to assemble new regis-
tration algorithms.

e) Surface rendering: Use an enhanced marching cubes al-
gorithm (based on segmentation) to get iso-surfaces and
render them by OpenGL with hardware acceleration. The
functions are implemented in MITK.

f) Volume rendering: Use the volume rendering algorithm
based on ray casting implemented in MITK and provide a
set of wieldy interfaces to adjust transfer functions.

g) Virtual cutting: Support virtual cutting in both surface ren-
dering and volume rendering with arbitrary planes, which
enable users to have a clear view of the tissue and organs.

h) 3-D measurement. Based on 3-D interaction framework
implemented in MITK and provide an intuitive and direct
manipulation of 3-D objects.

B. Implementation of the Plugin Framework

3DMed is a large and complicated system that involves med-
ical image segmentation, registration, visualization, etc. Each
part itself is a sophisticated system with different algorithms
and various adjustable parameters. Therefore, 3DMed employs
a plugin mechanism to reduce the coupling among its different
modules and provides users an open, extensible framework.

3DMed Kernel

use APls to call
functions of
plugins

load and manage
plugins in
run-time

define the interface
specifications

Plugins <

Plugin SDK

Fig. 10. Plugin framework of the application system.

Plugin is a dynamic link library written with certain specifi-
cations and can be dynamically loaded by a 3DMed kernel. To
implement the plugin mechanism, three necessary parts must
cooperate together, as shown in Fig. 10. 3DMed kernel is the
core of the system with the responsibility of loading, manag-
ing, and calling each plugin. Plugin SDK provides the interface
specifications for writing plugins. With these obligatory inter-
faces, the Plugins that is the actual plugin for practical functions
can be identified and loaded by the kernel.

1) Implementation of the Plugin SDK: Plugin SDK plays an
important role in the whole framework. It not only provides
the call interfaces of plugins for the system kernel, but also de-
fines the interface specifications for the developers to write their
own plugins. To achieve these purposes, 3DMed must expose
its internal data to the outer user through certain interfaces. Two
kinds of data type, medVolume and medMesh, which repre-
sent the volume data and mesh data, respectively, expose the
actual data and attributes to the plugin developers by some Get
functions.

Furthermore, all the plugins of 3DMed are divided into five
categories in plugin SDK: I/O plugins, filter plugins, registra-
tion plugins, segmentation plugins, and visualization plugins,
as shown in Fig. 11. They are all rooted in the same base class,
medPlugin, and the actual functions are implemented in the
overrided virtual function Show(). I/O plugins provide input
and output functions for reading and writing data in different
formats. For the input plugin, it uses a GerOutput function to
return the loaded data to the kernel in the form of medVolume or
medMesh. For the output plugin, it uses a SetInput function to
get data from kernel and write them out. Filter plugins provide
filter algorithms for medical data. They get data from kernel
through SetInput function, process the data in Show() function,
and return the results to the kernel through GerOutput function.
According to different data types, there are two kinds of fil-
ter plugins: medVolumeFilterPlugin and medMeshFilterPlugin.
Most image processing algorithms and digital geometry algo-
rithms can be assembled into 3DMed via these two kinds of
plugins. The rest segmentation plugins, registration plugins, and
visualization plugins directly correspond to various segmenta-
tion, registration, and visualization algorithms, respectively.

2) Implementation of the Plugins: A plugin is a dynamic
link library that is functionally associated to a certain algo-
rithm. The precondition of implementing a practical plugin is
to confirm the correct category. For example, a plugin for read-
ing a series of bitmap (BMP) image files should be derived
from medVolumelmportPlugin with the reading function im-
plemented in the virtual function Show().

TIAN et al.: NOVEL SOFTWARE PLATFORM FOR MEDICAL IMAGE PROCESSING AND ANALYZING

medPlugin
+Show () : bool

A

medVolumelmportPlugin

medSegmentationPlugin

medVolumeFilterPlugin

+Show() : bool
+GetOutput() : medVolume

medVolume ExportPlugin

L{+Show() : bool

+Setlnput(in : medVolume)
+GetOutput() : medVolume

| [+Show () : bool
+Setlnput(in : medVolume)
+GetOutput() : medVolume

+Show () : bool
+Setlnput(in : medVolume)

medRegistrationPlugin

medMeshimportPlugin

+Show () : bool
+GetOutput() : medMesh

+Show () : bool

+Setlnput(in : medVolume)

+SetSecondInput(in : medVolume)
+GetOutput() : medVolume

medMeshFilterPlugin

| [+Show () : bool
+SetInput(in : medMesh)
+GetOutput() : medMesh

Filter Plugins

medMeshExportPlugin

medVisualizationPlugin

+Show() : bool
+Setlnput(in : medMesh)

“|+Show() : bool

+Setlnput(in : medVolume)

1/ O Plugins

Fig. 11. Class diagram of plugin SDK.

In addition, each plugin must provide a C function
MakePlugin for the kernel to create its instance dynami-
cally. For the plugin of reading BMP files mentioned be-
fore, its MakePlugin function is declared and implemented as
follows:

medVolumeImportPlugin* MakePlugin ()
{ return new medBMPImportPlugin; }

3) Implementation of the Kernel: The task of 3DMed kernel
is to load various plugins dynamically at run-time, create cor-
responding menu items, call the function of the plugin when its
menu item is activated, and clean up the loaded plugins when
the system exits.

To dynamically load plugins, each plugin must provide nec-
essary information for the kernel to identify and create a cor-
responding menu item. In 3DMed, each plugin must provide
following C functions for the kernel:

const charx GetTypeName () ;
const charx GetClassname();
const charx GetMenuDescription();

Among these functions, GetTypeName() gives the type of the
plugin; GetClassname() gives theclass name of this plugin; and
GetMenuDescription() gives the caption of the corresponding
menu item. In order to simplify the process of developing plu-
gins, plugin SDK provides a macro to generate these functions
including MakePlugin() automatically.

After loading the plugins, 3DMed kernel uses the design
pattern called abstract factory to manage them in a flexible and
graceful manner. As shown in Fig. 12, medFactory is a template
class and the template parameter T can be one of the nine plugin
categories. Inside medFactory, a map is used to manage plugins,
and the name of the plugin is used as the reference key. Add
function registers a new plugin to the factory; Create function

medFactory

+Add(in pluginName : string, in plugin : T*)
+Create(in pluginName : string) : T*
+Clear()

Fig. 12. Plugins factory in 3DMed kernel.

gets the plugin’s actual pointer from its name; and Clear function
destroys all the registered plugins.

The pseudocodes in Algorithm 1 give the flow of loading and
managing various plugins at run-time:

Algorithm 1: Loading and managing various plugins at run-time.
foreach file in plugin directory do
if the plugin functions are found in this file then
typeNameStr «— GetTypeName () ;
classNameStr «— GetClassName ();
menuDescriptionStr <+ GetMenuDescription();
Decide pluginType according to typeNameStr;
pluginType newPlugin «— MakePlugin ();
medFactory(pluginType)::Add (classNameStr,
newPlugin) ;
Make dynamic menu item with the title
menuDescriptionStr;
Set the message handler of the menu item to
newPlugin::Show () ;
end
end

V. EXPERIMENT EXAMPLES

Fig. 13 shows the GUIs of 3DMed. Figs. 14— 18 demonstrate
some experiment examples using our platform, including seg-
mentation, surface rendering, volume rendering, and 2-D/3-D

808

#® [Non—Commercial] — NeanSquareRegistration

Reflng

HovIng

ControlBox

IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 12, NO. 6, NOVEMBER 2008

()]

|
(©
Fig. 13. GUIs of 3DMed. (a) Main GUI. (b) Segmentation GUI. (c) Registration GUI.
(@) (b) ©
Fig. 14. Application examples of segmentation. (a) Original image. (b) Segment the focal lesion using Region Grow Segmentation Algorithm. (c) Result of

segmentation. (d) Surface reconstruction result of focal lesion.

interaction with 3-D widgets. Fig. 19 illustrates some results
of the out-of-core volume rendering algorithms developed by
us based on MITK, and the test data are the Chinese visible
human CT dataset. It contains 1714 slices, and each slice has
a resolution of 512 x 512 pixels with 16 bits, which totally
occupies 857 MB storage space and can hardly be handled
by in-core methods. All the tests are run on a Windows-PC

with an Intel Pentium 4 2.8 GHz processor and 1 GB physical
memory.’

2The original data of Figs. 15 and 16 are from http://www. psychol-
ogy.nottingham.ac.uk/staff/cr1/ct.zip; the original data of Fig. 13(c) are
from http://www.isi.uu.nl/Research/Databases/DRIVE; the original data of
Figs. 13(a) and (b), 14, 17, and 18 are from Beijing Shougang Hospital; the
original data of Fig. 19 are from the Southern Medical University of China.

TIAN et al.: NOVEL SOFTWARE PLATFORM FOR MEDICAL IMAGE PROCESSING AND ANALYZING 809

(a) (b) (©)

Fig. 15. Application examples of surface rendering and volume rendering. (a) Surface rendering. (b) Multiple surface rendering. (c) Volume rendering.

(a) (b) (c)

Fig. 16. Application examples of mesh simplification. (a) Original mesh (406 894 vertices and 813 996 triangles). (b) Simplified to 49 896 vertices and 100 000
triangles. (c) Simplified to 4896 vertices and 10 000 triangles.

(a) (b) (c) (d

Fig. 17. Application examples of 2-D widgets. (a) Original image. (b) Locate the position and measure the size of focal lesion. (c) Measure the area of focal
lesion. (d) Display focal lesion with pseudo color.

810 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 12, NO. 6, NOVEMBER 2008

'

. v
.)

(a) (b) ()

Fig. 18. Application examples of 3-D widgets. (a) 3-D model. (b) Measure the size using LineWidgetModel3D. (c) Measure the section plane using
LineWidgetModel3D and ClippingPlaneWidgetModel.

(b)

(©)

Fig. 19. Some results of the texture-based out-of-core volume rendering algorithms in MITK 2.0. The test data are the Chinese visible human CT dataset (512
x 512 x 1714 x 16 bit, 857 MB). (a) Shading off rendering time: 5.50 s, memory buffer for data: 7.06 MB. (b) Shading on rendering time: 66.2 s, memory buffer
for data: 9.41 MB. (c) Shading on rendering time: 14.6 s, memory buffer for data: 9.41 MB.

TIAN et al.: NOVEL SOFTWARE PLATFORM FOR MEDICAL IMAGE PROCESSING AND ANALYZING 811

VI. CONCLUSION AND FUTURE PERSPECTIVE

This paper introduces a novel software platform that is inves-
tigated and developed specially for medical image processing
and analyses. The design goals, overall framework, and imple-
mentation of a few key technologies are discussed in detail. This
platform is designed and implemented independently, not based
on other toolkits such as VTK and ITK. It integrates the main-
stream algorithms in medical imaging that includes structural
imaging, functional imaging, and molecular imaging within a
consistent framework. Furthermore, comparing with existing
popular medical imaging platforms, this platform provides an
underlying processing framework for out-of-core datasets. Us-
ing this platform, researchers need not additionally design spe-
cial data accessing operations. During the platform, MITK is
indeed a powerful algorithm toolkit. Besides, it can also be com-
bined with 3DMed to produce an extensible application system
for medical image processing and analyzing. Such a seamless
platform structure provides an effective method for developing
robust medical imaging software.

Currently, we have released MITK 2.0 version (with out-
of-core support) at http://www.mitk.net, which can be down-
loaded free of charge. MITK and 3DMed have exceeded
9000 downloads till now. Users consist of researchers, clin-
icians, engineers, students, etc., who are distributed world-
wide. The real-time download statistics can be found from
http://www.mitk.net/downstat.php. Large amount and scope of
uses fully testify the validity of our proposed platform. Be-
sides being used for teaching and scientific research, MITK and
3DMed are also employed for clinical applications and engi-
neering projects, such as assistance diagnosis of retinal disease,
freehand 3-D ultrasound imaging [14], surgery programming
and navigation for ultrasound guided tumor melting, process-
ing, and analyzing for lossless defect detection in industrial CT,
etc. These practical applications commendably demonstrate the
flexibility of this new platform.

In the future, we will continue to improve the performance and
efficiency of the platform; meanwhile, more practical algorithms
need to be added such as interactive segmentation and faster
visualization, and this will make our platform a valuable tool
for the medical imaging society.

REFERENCES

[1]1 A.Souza,J. K. Udupa, and P. K. Saha, “Volume rendering in the presence
of partial volume effects,” IEEE Trans. Med. Imag., vol. 24, no. 2, pp. 223—
235, Feb. 2005.

[2] A. Madabhushi and J. K. Udupa, “Interplay between intensity standard-
ization and inhomogeneity correction in MR image processing,” [EEE
Trans. Med. Imag., vol. 24, no. 5, pp. 561-576, May 2005.

[3] Y. Zhan and D. Shen, “Deformable segmentation of 3-D ultrasound
prostate images using statistical texture matching method,” IEEE Trans.
Med. Imag., vol. 25, no. 3, pp. 256-272, Mar. 2006.

[4] W. Schroeder, K. Martin, and B. L. Schroeder, The Visualization Toolkit:
An Object Oriented Approach to 3D Graphics, 3rd ed. New York: Kitware,
Inc., 2003.

[51 W.J. Schroeder, L. S. Avila, and W. Hoffman, “Visualizing with VTK: A
tutorial,” IEEE Trans. Comput. Graph. Appl., vol. 20, no. 5, pp. 20-27,
Sep.—Oct. 2000.

[6] W. J. Schroeder, K. M. Martin, and W. E. Lorensen, “The design and
implementation of an object-oriented toolkit for 3-D graphics and visual-
ization,” in Proc. IEEE Vis. Conf., Nov. 1996, pp. 93-100.

[7]1 L. Ibanez, W. Schroeder, L. Ng, and J. Cates, The ITK Software Guide:
The Insight Segmentation and Registration Toolkit, (version 1.4). New
York: Kitware, Inc., 2003.

[8] J. Udupa, R. Goncalves, K. Iyer, S. Narendula, D. Odhner, S. Samarasek-
era, and S. Sharma, “3DVIEWNIX: An open, transportable software sys-
tem for the visualization and analysis of multidimensional, multimodality,
multiparemetric images,” Proc. SPIE, vol. 1897, pp. 47-58, 1993.

[9] 1. Wolf, M. Vetter, I. Wegner, T. Bottger, M. Nolden, M. Schobinger,
M. Hastenteufel, T. Kunert, and H. Meinzer, “The medical imaging inter-
action toolkit,” Med. Image Anal., vol. 9, pp. 594-604, 2005.

[10] Volview. Kitware. (1999). [Online]. Available: http://www.kitware.com/
products/volview.html

[11] J. Tian, L. Yang, and J. Hu, “Recent advantages in the data analysis
method of functional magnetic resonance imaging and its applications in
neuroimaging,” Prog. Nat. Sci., vol. 16, no. 8, pp. 785-795, 2006.

[12] Y.Lv,J. Tian, W. Cong, G. Wang, J. Luo, W. Yang, and H. Li, “A multilevel
adaptive finite element algorithm for bioluminescence tomography,” Opt.
Exp., vol. 14, no. 18, pp. 8211-8223, 2006.

[13] J. Xue, J. Tian, and M. Zhao, “Three-dimensional human computer inter-
action based on 3d widgets for medical data visualization,” in Proc. SPIE
Med. Imag. 2005, vol. 5744, pp. 697-706.

[14] Y.Dai,J. Tian,J. Xue, and J. Liu, “A qualitative and quantitative interaction
technique for freehand 3-D ultrasound imaging,” in Proc. EMBS’06. New
York: IEEE Engineering in Medicine and Biology Society, 2006, pp.2750—
2753.

[15] J. Xue, J. Tian, J. Chen, and Y. Dai, “An efficient out-of-core volume ray
casting method for the visualization of large medical data sets,” in Proc.
SPIE Symp. Med. Imag, 2007, San Diego, CA, pp. 650920-1-650920-8.

[16] M. Zhao, J. Tian, X. Zhu, J. Xue, Z. Cheng, and H. Zhao, “The design and
implementation of a C+4+ toolkit for integrated medical image processing
and analyzing,” in Proc. SPIE Med. Imag., 2004, vol. 5367, pp. 39—47.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns, Ele-
ments of Reusable Object-Oriented Software. ~ Upper Saddle River, NJ:
Pearson Education, 1994.

[18] C. R. J. Charles and D. Hansen, The Visualization Handbook.
York: Elsevier Academic Press, 2004.

[19] K.-L. Ma, E. B. Lum, and S. Muraki, “Recent advances in hardware-
accelerated volume rendering,” Comput. Graph., vol. 27, pp. 725-734,
2003.

[20] M. Levoy, “Display of surfaces from volume data,” IEEE Trans. Comput.
Graph. Appl., vol. 8, no. 3, pp. 29-37, May 1988.

[21] L. Westover, “Footprint evaluation for volume rendering,” in Proc. ACM
SIGGRAPH’90. New York: ACM Press, pp. 367-376.

[22] P. Lacroute and M. Levoy, “Fast volume rendering using a shear-warp
factorization of the viewing transformation,” in Proc. SSIGGRAPH 94.
New York: ACM, pp. 451-458.

[23] C. Rezk-Salama, K. Engel, M. Bauer, G. Greiner, and T. Ertl, “Interac-
tive volume rendering on standard PC graphics hardware using multi-
textures and multi-stage rasterization,” in Proc. ACM SIGGRAPH/ EU-
ROGRAPHICS Workshop Graph. Hardware. New York: ACM, 2000,
pp. 109-118.

[24] K. Engel, M. Kraus, and T. Ertl, “High-quality pre-integrated volume ren-
dering using hardware-accelerated pixel shading,” in Proc. ACM SIG-
GRAPH/ EUROGRAPHICS Workshop Graph. Hardware. ~New York:
ACM, 2001, pp. 9-16.

[25] J. Kniss, G. Kindlmann, and C. Hansen, “Multidimensional transfer func-
tions for interactive volume rendering,” IEEE Trans. Vis. Comput. Graph.,
vol. 8, no. 3, pp. 270-285, Jul.—Sep. 2002.

[26] B.D. Conner, S. S. Snibbe, K. P. Herndon, D. C. Robbins, R. C. Zeleznik,
and A. van Dam, “Three-dimensional widgets,” in Proc. Interact. 3D
Graph. Symp., 1992, pp. 183-188.

[27] M. P. Stevens, R. C. Zeleznik, and J. F. Hughes, “An architecture for an
extensible 3d interface toolkit,” in Proc. UIST’94. New York: ACM,
pp. 59-67.

[28] D. A. Bowman, E. Kruijff, J. J. LaViola, and L. P. Jr., “An introduction to
3-d user interface design,” Presence, vol. 10, no. 1, pp. 96-108, 2001.

[29] R.W.Lindeman,J. L. Sibert, and J. N. Templeman, “The effect of 3-D wid-
get representation and simulated surface constraints on interaction in vir-
tual environments,” in Proc. Virtual Real. Ann. Int. Symp. Piscataway,
NIJ: IEEE Press, 2001, pp. 141-148.

[30] S. S. Snibbe, K. P. Herndon, D. C. Robbins, B. D. Conner, and
A. van Dam, “Using deformations to explore 3-D widget design,” in Proc.
SIGGRAPH’92, New York: ACM, pp. 351-352.

[31] M.Zhao,]J. Tian, J. Xue, and X. Zhu, “3DMed: An integrated 3-D medical
image processing and analyzing system,” presented at the Proc. RSNA’04,
San Francisco, CA, Sep.

New

812 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 12, NO. 6, NOVEMBER 2008

Jie Tian (M’03-SM’03) received the Ph.D. degree
(with honors) in artificial intelligence from the Insti-
tute of Automation, Chinese Academy of Sciences,
Beijing, China, in 1992.

During 1995-1996, he was a Postdoctoral Fellow
at the Medical Image Processing Group, University
of Pennsylvania. Since 1997, he has been a Professor
in the Medical Image Processing Group, Institute of
Automation, Chinese Academy of Sciences. His cur-
rent research interests include medical image process
and analysis, and pattern recognition. He is the au-
thor or coauthor of more than 60 research papers published in the international
journals and conferences.

Dr. Tian is the reviewer of mathematical reviews of the American mathe-
matical society, the Director of the Special Committee of Pattern Recognition
and Machine Intelligence of the Chinese Society of Automation, the Beijing
Chapter Chair of the Engineering in Medicine, and the Biology Society of the
IEEE.

Jian Xue received the Ph.D. degree in computer ap-
plied technology from the Institute of Automation,
Chinese Academy of Sciences, Beijing, China, in
2007.

He is currently with the College of Computing
and Communication Engineering, Graduate Univer-
sity of Chinese Academy of Sciences, Beijing. Since
2003, he has participated in the development of Med-
ical Imaging ToolKit (MITK) and 3-Dimensional
Medical Image Processing and Analyzing System
(3DMed). His current research interests include out-
of-core processing and visualization of large medical datasets.

Yakang Dai received the B.S. degree in electric engi-
neering from the University of Hunan, Hunan, China,
in 2004.

He is currently the Team Leader of the Medi-
cal Imaging ToolKit (MITK) in the Medical Image
Processing Group, Institute of Automation, Chinese
Academy of Sciences, Beijing, China. Since 2004,
he has participated in the development of MITK and
3-Dimensional Medical Image Processing and An-
alyzing System (3DMed). His current research in-
terests include freehand ultrasound imaging and 3-D
visualization.

Jian Chen received the B.S. degree in electric en-
gineering from Beijing Normal University, Beijing,
China, in 2003. He is currently working toward the
Ph.D. degree in computer science at the Institute of
Automation, Chinese Academy of Sciences, Beijing.

Since September 2007, he has been a visiting
student of biomedical engineering at Columbia Uni-
versity, New York. His current research interests in-
clude cardiac image segmentation and multimodality
registration.

Jian Zheng received the B.S. degree in automation
from the University of Science and Technology of
China, Beijing, China, in 2005.

He is currently a team member in Medical Imag-
ing ToolKit (MITK) in the Medical Image Processing
Group, Institute of Automation, Chinese Academy of
Sciences, Beijing. Since 2005, he has participated
in the development of MITK and 3-Dimensional
Medical Image Processing and Analyzing System
(3DMed). His current research interests include med-
ical image registration.

