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There are some methods to decompose a signal into different components such as: Fourier
decomposition and wavelet decomposition. But they have limitations in some aspects.
Recently, there is a new signal decomposition algorithm called the Empirical Mode
Decomposition (EMD) Algorithm which provides a powerful tool for adaptive multi-
scale analysis of nonstationary signals. Recent works have demonstrated that EMD has
remarkable effect in time series decomposition, but EMD also has several problems such
as scale mixture and convergence property. This paper proposes two key points to design
Bandwidth EMD to improve on the empirical mode decomposition algorithm. By analyz-
ing the simulated and actual signals, it is confirmed that the Intrinsic Mode Functions
(IMFs) obtained by the bandwidth criterion can approach the real components and
reflect the intrinsic information of the analyzed signal. In this paper, we use Bandwidth
EMD to decompose electricity consumption data into cycles and trend which help us
recognize the structure rule of the electricity consumption series.

Keywords: Intrinsic Mode Function (IMF); Empirical Mode Decomposition (EMD);
sifting algorithm; instantaneous frequency.

AMS Subject Classification: 15A90, 65Y99

§Corresponding author.

777



November 18, 2008 9:39 WSPC/181-IJWMIP 00268

778 Q. Xie et al.

1. Introduction

There are several methods to decompose a time series into different cycles and
trends. One of the most fundamental methods is the Fourier decomposition, which
deem the signals as a linear combination of harmonic components. Although the
Fourier transform is valid under extremely general conditions, there are some crucial
restrictions of the Fourier spectral analysis: the system must be linear and the data
must be strictly periodic or stationary. In recent years, wavelet decomposition has
been developing rapidly. But if the mother wavelet is selected, we will have to
use it to analyze all the data. Except non-adaptive nature, the problem of the
most commonly used wavelet is its leakage generated by the limited of the basic
wavelet function, which makes the quantitative definition of the energy-frequency-
time distribution difficult.

Empirical mode decomposition, introduced by Huang et al.,1,2 is a method for
decomposing complex, multi-component signal into several elementary Intrinsic
Mode Functions (IMFs). Differing from Fourier and wavelet analysis which have
predefined basis, EMD uses only scale and frequency characters of the original sig-
nal. EMD is a local, fully data-driven and self-adaptive analysis approach. Moreover,
the combination of the EMD method and the associated Hilbert spectral analysis
can offer a powerful method for time frequency analysis.

Although it often proved remarkable effect in many applications, such as engi-
neering mechanics,3 image processing4,10 and signal processing,6,9 EMD method
has several drawbacks. Firstly, it lacks a mathematical base which can represent
EMD method naturally. Secondly, it is a pity that the criteria,1,7,8,11 considered so
far are all constraints on the amplitude and have nothing to do with the frequency or
phase of the IMF so that IMF obtained based on those criteria will have dramat-
ically different frequencies and cause scale mixing problem. The paper improved
EMD algorithm based on the two aspects and used updated EMD algorithm to
analysis a time sequence about electricity consumption.

In the next section, we introduce the Empirical Mode Algorithm. In the third
section, we provide convergent property of EMD and present an example which
leads to stop criterion problem. The fourth section contains stop criterion overview
of the SD criterion, 3-thresholds criterion, EDT criterion, Damerval criterion and
a detailed Bandwidth Stop criterion which includes bandwidth definition, instan-
taneous frequency estimation and our sifting algorithm. Finally, Bandwidth EMD
is used to decompose a simulated series and one electricity consumption series. We
analyze the results carefully and compare the results with other criterion. The sixth
section concludes the paper.

2. EMD Basics

In order to let its instantaneous frequency (IF) have a meaningful interpretation,
the IMF has to satisfy two conditions: (1) in the whole data set, the number of
extrema and the number of zero-crossings must either equal or differ at most by
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one; (2) at any point, the local average of upper and lower envelop is zero. The
EMD uses sifting process to extract IMF form the analyzed signal. The sifting
process actually serves two purposes: to eliminate riding waves and to smooth
uneven amplitudes. The following presents the EMD method in brief. The details
with regard to the implementation of the EMD algorithm are available in Ref. 1.

2.1. Sifting process

Given a real valued signal x(t), let r(t) = x(t), k = 1, i = 0, the process of EMD
can be summarized as follows

(1) Find all local minima and maxima of r(t).
(2) Get the upper envelop emax(t) by interpolating between maxima. Similarly get

the lower envelop emin(t) with minima.
(3) Compute the mean envelop as an approximation to the local average, m(t) =

(emax(t) + emin(t))/2.
(4) Let i = i+1 and define the proto-mode function (PMF) as pi(t) = r(t)−m(t),

and let r(t) = pi(t).
(5) Repeat Steps 1–4 on PMF pi(t) until it is an IMF, then record the IMF

imf k(t) = pi(t).
(6) Let r(t) = r(t) − imf k(t), if the extremum point number of r(t) is larger than

three, let k = k+1, i = 0, and go to Step 1; otherwise, finish the sifting process.

3. Convergent Property

EMD deems that the extreme point has reflected the frequency essence informa-
tion and separates different frequency components step by step according to the
position and value of extreme point. In order to comprehend EMD better, we need
to consider the convergence property. But we consider convergence property of
EMD based on the phenomenon that the number and position of extreme points
are approximately invariable when sifting process iterates excessively. In order to
exhibit the algorithm conveniently, we give three definition and one assumption.

Definition 3.1. Given time-series S, matrix Au is called upper envelop matrix if
the following property hold: AuS is upper envelop of time series S.

Definition 3.2. Given time-series S, matrix Al is called lower envelop matrix if
the following property hold: AlS is lower envelop of time series S.

Definition 3.3. Given time-series S, matrix A is called envelop matrix if the fol-
lowing property hold: AS is mean envelop of time series S.

Hypothesis 1. The position of extreme point is invariable when sifting process
iterates sufficiently.
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Under the definition and assumption, the EMD sifting procedure is rewritten
as follows:

(1) Set S0 = S = x, given a threshold τ and i = 1.
(2) Find the local extremal points.
(3) Construct a matrix Ai−1 that computes the mean value of the upper and lower

envelops.
(4) Compute Si = Si−1 − Ai−1Si−1.
(5) If is ‖Ai−1Si‖ smaller than a given threshold, terminate the algorithm; other-

wise, go to Step 2.

Theorem 3.1. Eigenvalue of upper envelope Au is either 0 or 1.

Proof. The signal S length is N . Set local maxima point sequence {xmi}, i ∈ ∆,
∆ is index of the local maxima sequence and the total number is L. We denote Ω =
[m1, . . . , mL] ⊂ [1, . . . , N ]. Actually Au is written as Au = BC (C a matrix meaning
the maxima position can be presented as RL×N . B is interpolation coefficient matrix
which can be presented as RN×L).

C(m, n) =

{
1 if S(mi) ≥ S(mi − 1) and S(mi) ≤ S(mi + 1),

0 else.
(3.1)

In our proof, we take the cubic spline interpolation as the interpolation of the EMD
algorithm. The 0th non-uniform B-spline function, is defined as follows

Nmi,0(m, n) =




1 if mj ≤ x ≤ mj+1,

0 otherwise.
(3.2)

From De Boor,5 the recursion formula is given by

Nmj,k = ωmj ,kNmj ,k−1 + (1 − ωmj+1,k)Nmj+1,k−1,

ωmj,k =
x − mj

mj+k − mj
for k > 0. (3.3)

A sequence {c2
mj

(k), mj ∈ ∆, k ∈ ∆}, is solved by

L∑
k=1

c2
mj

Nmk,4(x)|x=mj = δmj ,0. (3.4)

So we can define

Lj,4 =
L∑

k=1

c2
mj

(k)Nmk,4(x). (3.5)
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And then, we have B(:, i) = [Li,4(1), . . . , Li,4(N)]T , where [·]T denote transpose.
From Eq. (3.4), it is trivial to get that


B(mi, i) = 1,

B(mj,j �=i, i) = 0,

B(k, i) = Li,4(k) if k ∈̄Ω.

(3.6)

From Au = BC, we get


A(:, k) = [0, . . . , 0, . . . , 0] if k ∈̄Ω,

A(:, mi) = B(:, i).
(3.7)

From Eqs. (3.6) and (3.7), we know the structure of matrix Au and B. The proof
of the theorem will be completed if we can find the eigenvector and eigenvalue of
Au. Primarily, we consider a group vectors {eT

j = (0,...,0,1,0,...,0)
j , j ∈̄Ω}. It is easy

to obtain Au(k, :)ej = 0, because Au(k, m) = 0, if m ∈̄Ω, 1 ≤ k ≤ N . For another
group vectors {Xi, Xi = B(:, i), i ∈ Ω}, it follows that

Au(k, :)Xi =
∑

j∈Ω,j �=i

Au(k, j)Xi(j) +
∑
j ∈̄Ω

Au(k, j)Xi(j) + Au(k, i)Xi(i)

=
∑

j∈Ω,j �=i

Au(k, j)B(j, i) +
∑
j ∈̄Ω

0 · Xi(j) + Au(k, i) · 1

= Au(k, i)

= Xi(k).

Therefore, it verifies that spectral radius of upper envelop matrix is either 0 or
1. Furthermore, {eT

j = (0,...,0,1,0,...,0)
j , j ∈̄Ω} and {Xi, Xi = B(:, i), i ∈ Ω} are

eigenvectors, which is corresponding to eigvenvalue 0 and 1.

Theorem 3.2. Spectral radius of lower envelop matrix Ad is either 0 or 1.

Proof. This follow immediately from Theorem 3.1.

Theorem 3.3. Spectral radius of a matrix that computes the mean value A of the
upper and lower envelops is between 0 and 1.

Proof. The conclusion is easy from the Theorems 3.1 and 3.2.

Theorem 3.4. The EMD sifting algorithm converges under the Hypothesis 1
condition.

Proof. If we want to prove the convergence of the EMD algorithm, in fact we
need to prove the convergence of the sequence Si. For the sake of obtaining Si
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convergence property, we turn to discussing the convergence of Ui = S − Si. We
define Ui = 0, when i = 0. Hence from the definition of Ui, it follows that

Ui = S − S1 + S1 − S2 + · · · + Si−1 − Si. (3.8)

We can simplify Si−1 − Si to the expression

Si−1 − Si = Si − (Si−1 − ASi) = ASi−1. (3.9)

From the EMD sifting procedure Step 4 which is rewritten by us, we get

ASi−1 = A(I − A)Si−2 = · · · = A(I − A)i−1S. (3.10)

From Eqs. (3.8)–(3.10), we obtain

Ui =
i−1∑
k=0

A(I − A)k, when i ≥ 1. (3.11)

If we suppose that λ1, λ2, . . . , λm are eigenvalues of A, 1 − λ1, 1 − λ2, . . . , 1 − λm

are eigenvalues of 1 − A. And so λ1(1 − λ1)k, λ2(2 − λ2)k, . . . , λm(1 − λm)k are
eigenvalues of A(I − A)k. From Theorem 3.3, it obtains 0 ≤ λi ≤ 1. If there exists
λi = 1, it implies λi(1 − λi)k = 0. It follows that 0 < λi(1 − λi)k < 1 for λi �= 1, 0.
Therefore, we obtain

γ(A(I − A)k) = max(λ1(1 − λ1)k, λ2(1 − λ2)k, . . . , λm(1 − λm)k) < 1,

where γ(·) represtens spectral radius.
It is easily perceived that

∑p−1
k=0 z(1− z)k is convergent, when 0 ≤ z ≤ 1. Based

on the matrix theory, we conclude that
∑i−1

k=0 A(I − A)k is convergent. So Ui has
been proved to be convergent, we conclude that EMD sifting algorithm is convergent
under Hypothesis 1.

Through our proof, it can be seen that if sifting iteration steps are enough,
the algorithm is convergence and gets the corresponding IMF. It seemed that the
algorithm ought to iterate more and even iterate unlimited as much as that we can
get the IMFs which reflect the time series essential nature. But it is not consistent
with the reality, we introduce the following example.

Example 1.

x1 = 4 sin(20πt) sin(πt),

x2 = sin(10πt),

x3 = x1 + x2.

Sampling interval is 0.01, which is shown in Fig. 1.
From Example 1, it can be concluded that the result does not reflect the nature

when iteration number is too much. If iteration number is too much, the sifting
algorithm reduces the amplitude variety extensively. So the decomposition results
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Fig. 1. Time-series x1, x2, x3.
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Fig. 2. Result of sifting process whose iteration steps are attained 5000.

lack fidelity. Then how to choose stop criterion that makes the sifting iteration pro-
cedure stop appropriately? We will design the stop criterion and our stop criterion
next chapter.

4. Stop Criterion Improvement

4.1. IMF stop criterion

The second condition for IMF is too rigid to use, so we need improve it in the
implementation of EMD. The essential of the improvement is to make the instan-
taneous frequency of IMF meaningful. To guarantee the IMF components retain
enough physical sense, Huang1 limit the size of the standard deviation, SD can be
obtained by the two consecutive PMFs as follows

SD =
∑

t

|pk−1(t) − pk(t)|2
p2

k−1(t)
. (4.1)

The SD is a Cauchy-type criterion. Since the SD is unrelated to the definition of
IMF, the component obtained by this criterion could not be an IMF.
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As an improvement to the SD criterion, Rilling11 brought forward a 3-threshold
criterion. Let the 3-thresholds are θ1, θ2 and α. Then let a(t) = (emax − emin)/2
and σ(t) = |m(t)/a(t)|. Sifting process is iterated until t, σ(t) < θ1 for fraction
(1 − α) of the total time and for the remaining fraction. The typically value of the
thresholds are: α ≈ 0.05 , θ1 ≈ 0.05 and θ2 ≈ 0.5. Furthermore, in the same paper,
a local EMD criterion was proposed to overcome the contaminating problem caused
by singular area of total time. The shortcoming of the 3-thresholds criterion is that
the thresholds do not adapt to the signal.

Recently, Cheng8 put forward the energy difference tracking method based on
the assumption that the residue and IMFs are orthogonal mutually. Suppose the
signal shown in (4.2) contains a finite number of mutually orthogonal components
xi(t), i = 1, 2, . . . , N , and the average of xi(t) is zero. Then we have∫

xi(t)xj(t) ≈ 0, i �= j. (4.2)

When EMD decomposes and obtains an IMF c1(t), and after c1(t) has been
separated from x(t), the energy variation caused by decomposition is

Eerr =
∣∣∣∣
∫

c2
1(t)dt −

∫
x(t)c1(t)dt

∣∣∣∣ . (4.3)

Then the smaller the Eerr, the more entire integrity and orthogonal the IMFs will
be. Hence, we can track Eerr when the signal is decomposed by EMD method.
When Eerr reaches a certain minimum and the mean value of envelops becomes
small enough, sifting process is completed and then comes to the next IMF’s iter-
ation. Thus the obtained IMF component is an orthogonal one of the original sig-
nal. However, the EDT criterion cannot select the correct PMF as IMF when real
components of the analyzed signal have strong correlations. The energy difference
tracking method is based on the assumption that the IMFs are orthogonal. How-
ever, the IMFs of nonlinear and nonstationary signals are not orthogonal. Even for
linear and stationary signals, the real components of the discrete signal we get will
not be orthogonal because of environment noise and sampling. For these reasons,
the energy difference tracking method cannot guarantee that the IMF is the best
approximation of the real component.

Damerval7 proposed a criterion based on the number of iterations and the num-
ber of IMFs for bidimensional EMD. This criterion saves computational cost and
has little boundary effect in sifting process. The number of iterations and IMFs
should be selected carefully. Too few sifting steps cannot eliminate the riding waves
and the obtained IMFs will dissatisfy the two IMF conditions. On the other hand,
too many sifting steps would sometimes obliterate the intrinsic amplitude variations
and make the results physically less meaningful.

Additionally, none of the before-mentioned criteria uses the frequency or phase
information of the analyzed signal. So IMFs obtained with those criteria are
prone to have scale mixing problem, and then have no reasonable interpretation.
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Xuan and Xie16,17 designed a new stop criterion-bandwidth criterion. And we will
discuss the new stop criterion next subsection.

4.2. Bandwidth stop criterion

Given a real valued signal x(t), using the analytic signal theory can get a complex
valued signal whose real part equals to x(t). So we use complex signal directly. Given
a signal z(t) = a(t) exp(jϕ(t)), the instantaneous frequency of z(t) is dϕ/dt. A
signal has meaning in instantaneous frequency if and only if it is a monocomponent
signal the sum of two unequal strength tones. For lack of exact definition of the
monocomponent signal was given by now, Huang,1 used the two IMF condition
to replace monocomponent. The paper put forward local narrow band signal to
substitute monocomponent. A signal z(t) = a(t) exp(jϕ(t)) is narrowband if and
only if a(t) is a band-limited signal and the highest frequency of a(t) is far less
than dϕ/dt. If any little component of a signal is narrow band, the signal is called
a local narrowband signal. The IMF conditions can get good component from the
analyzed signal sometimes, but the instantaneous frequencies of IMFs are usually
are meaningless because the IMFs are not monocomponent. Consider a signal which
is composed of N AM-FM component signals

z(t) = a(t) exp(jϕ(t)) =
N∑

m=1

am(t) exp(jϕm(t)) (4.4)

where am(t), ϕm(t) are the amplitude and phase function, respectively. Then

a2 =
N∑

m=1

ωm(t), (4.5)

ωm(t) =
N∑

n=1

aman cos(ϕm(t) − ϕn(t)). (4.6)

We can get

dϕ

dt
=

N∑
m=1

wm(t)
a2(t)

dϕm

dt
+

1
a2(t)

N∑
m=1

N∑
n=1

dam

dt
an(t) sin(ϕm(t) − ϕn(t)). (4.7)

If we have established the followed two conditions

ωm(t) ≥ 0, (4.8)

N∑
m=1

N∑
n=1

dam

dt
an(t) sin(ϕm(t) − ϕn(t)) = 0 , (4.9)

we can guarantee that dϕ/dt is interpreted as a nonnegative weighted aver-
age of the instantaneous frequency and instantaneous frequency stays within the
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instantaneous spectral range of x(t) at time t. But Eqs. (4.8) and (4.9) defined the
conditions are too strict, we modified some changes in Eqs. (4.10) and (4.11)

Dϕ(t) = sup
1≤m≤N

∣∣∣∣dϕ

dt
− dϕn

dt

∣∣∣∣ (4.10)

Dϕ(t) ≥
max

1≤m≤N

(
dϕm

dt

)
− min

1≤n≤N

(
dϕn

dt

)
2

. (4.11)

So the smaller Dϕ(t), the instantaneous frequency at time t will be more significant.
On the other hand, the instantaneous bandwidth14,15 of the signal at time t is

Bt = σω|t = |a′/a|. (4.12)

So when Bt is very small, z(t) is construed as a local narrowband signal. Moreover,
the smaller Bt is, the smaller |dϕm/dt−dϕn/dt|. And then from (4.11), the smaller
|dϕm/dt−dϕn/dt|, the larger probability of Dϕ(t) has small value. So the instanta-
neous frequency has perfect physical sense only when Bt is very small, the details
of instantaneous frequency is available in Refs. 9 and 10. From the knowledge of
Fourier analysis, S(ω) is Fourier transform of z(t), and B is the bandwidth of z(t),
then we can get

B2 = σ2
ω =

∫ ∞

−∞
(ω − 〈ω〉)2|S(ω)|2dω =

∫ ∞

−∞
z(t̄)

(
1
j

d

dt
− 〈ω〉

)2

z(t)dt. (4.13)

Substitute z(t) = a(t) exp(jϕ(t)) into (4.13) then obtain

B2 = B2
a + B2

f , (4.14)

where

B2
a =

∫ ∞

−∞

(
a′

a

)2

a2(t)dt, (4.15)

B2
f =

∫ ∞

−∞

(
dϕ

dt

)2

a2(t)dt. (4.16)

Equation (4.14) implies that B2 is the sum of two terms. B2
a results from the change

of amplitude a(t) and only associates with amplitude modulating. Furthermore,
B2

a is the nonnegative weighted sum of instantaneous bandwidth. We call B2
f as

frequency bandwidth. B2
f results from the change of instantaneous frequency ϕ′(t)

and reflects the consistency of instantaneous frequency at all time extended. The
smaller B2

f , the closer the scale characters at different time, and the milder the
scale mixing problem. So we can take B2

f as a stop criterion.
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4.3. Instantaneous frequency estimation

There are many algorithms to compute instantaneous frequency, such as phase dif-
ferencing of the analytic signal, Teager–Kaiser operator, counting the zero-crossings,
and adaptive estimation methods based on the Least Mean Square (LMS) algo-
rithm, etc. Since IF should be unrelated with amplitude, we choose zero-crossings
points to estimate the frequency of the analytic signal. For a sinusoidal signal, the
frequency is given by the inverse of the period, or alternatively by half the inverse
of the interval between zero-crossings, i.e.

f =
1

2Tz
(4.17)

or

f =
1
2

, (4.18)

where Tz is the interval between zero crossings, 2Tz is the period, f is the frequency,
and Z is the zero-crossing rate. To reduce the variance of the zero-crossings estimate,
an estimator is defined by

f(n) =
z(n)

2
(4.19)

Z(n) =
M∑

m=−M

|sgn(s(m)) − sgn(s(m − 1))|h(n − m) (4.20)

where M is a window length,

sgn(s(n)) =

{
1 for s(n) �= 0,

−1 for s(n) < 0,

h(n) =




1
2M

for 0 ≤ n ≤ M,

0 otherwise.

The details are available in Ref. 15. The variance of f is defined by σ2
f . The

smaller the σ2
f , the closer the frequencies at different sample points are. If we get a

minimum for σ2
f during sifting process, we consider that current signal is an IMF.

4.4. Our sifting algorithm

Given a real valued signal x(t), let r(t) = x(t), k = 1, i = 0, the process of EMD
can be summarized as follows:

(1) Find all local minima and maxima of r(t).
(2) Get the upper envelop emax(t) by interpolating between maxima. Similarly, get

the lower envelop emin(t) with minima.
(3) Compute the mean envelop as an approximation to the local average, m(t) =

(emax(t) + emin(t))/2.
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(4) Let i = i + 1 and extract the proto-mode function (PMF) pi(t) = r(t) − m(t),
and let r(t) = pi(t).

(5) Repeat Steps 1–4 on PMF, stop criterion is presented by next three subsidiary
processes:

(5.1) Use 3-thresholds (α1, θ1, θ2) criterion to get PMF that almost satisfies
the two conditions of IMF.

(5.2) Continue the sifting process until we find the minimum of σ2
PMF or until

the difference of σ2
PMF between two consequent PMF is very small, which

is estimator from Chap. 4.3.
(5.3) Take the final PMF as an IMF, then the IMF has small frequency band-

width mild scale mixing problem. Then record the IMF imf k(t) = pi(t).

(6) Let r(t) = r(t) − imf k(t), if the extremum point number of r(t) is larger than
T , let k = k + 1, i = 0, and go to Step 1; otherwise finish the sifting process.

5. Simulated Experiment and Economic Data Analysis

5.1. Simulated experiment

The follows illustrate the decomposition results obtained with 3-threshold, EDT,
Damerval criterion and bandwidth criterion, respectively. In order to compare EDT
and bandwidth criterion, we choose a signal whose components are almost orthog-
onal mutually.

As shown in (5.1) and Fig. 3, the simulated signal x(t) consists of an amplitude
modulated signal and a sine signal

x1 = 4 sin(20πt) sin(0.2πt),

x2 = sin(10πt),

x3 = x1 + x2, (5.1)

where t ∈ [0, 1], and sampling frequency is 1024Hz.
The thresholds used in this paper are: α = 0.05, θ1 = 0.05 and θ2 = 0.5 for

3-thresholds and energy difference tracking criterion; α = 0.1, θ1 = 0.5 and θ2 = 0.5
for bandwidth criterion; the number of iterations is 100 for Damerval criterion.

Suppose the IMF corresponding to xi(t) is ci(t), we define the error signal
between xi(t) and ci(t)

Di(t) = |xi(t) − ci(t)| (5.2)

and define

Edif (i) =

√∫
D2

i (t)dt (5.3)

where D(t) describes the performance of EMD. Edif (i) is the distance between xi(t)
and the corresponding IMF.
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Fig. 3. The simulated signal and its two components.
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Fig. 4. IMFs of x(t) obtain with 3-threshold criterion (real lines) and bandwidth criterion (lash
lines).

Figure 2 presents the decomposition results of x(t) with 3-threshold criterion
and bandwidth criterion. It is clearly illustrated that the foresides of IMFs obtained
with 3-threshold criterion are all anamorphic and lose their physical sense. As shown
in Fig. 3, the IMFs obtained with 3-threshold and Damerval criterion have scale
mixing problem because spectrum lines are disordered near 5Hz. On the contrary,
the IMFs obtained with bandwidth have slight scale mixing problem and are close
to the real components. From Fig. 4, we know that D(t) with bandwidth criterion
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Table 1. Edif of the simulated signal with different IMF criterion.

Criterion 3-Threshold Damerval Criterion Energy Difference Tracking Bandwidth

Edif (1) 0.331 0.198 0.110 0.107
Edif (2) 0.254 0.161 0.110 0.105

Fig. 5. The Fourier spectrums for the IMFs of x(t) with different sift criteria. Real lines are
spectrum for IMF1, and lashed lines are spectrum for IMF2. From top to bottom and left to right:
criterion is 3-threshold, Damerval, energy difference tracking and bandwidth.

are smaller than D(t) with the other three criteria in the majority of this time range.
Table 1 illustrates that the bandwidth criterion gets the best approximations to the
real components of x(t). In addition, c2(t) needs only one iteration with bandwidth
criterion. This confirms that the numbers of sifting iterations are adaptive to signal
automatically.

This example also shows that the bandwidth criterion has some superiority over
the EDT criterion even when the real components are nearly orthogonal mutually.
The details are available in Ref. 16.

5.2. Economic data analysis

Poland everyday electricity consumption18,19 from 1990 to 1994 is used to evaluate
the performance of our proposed algorithm. This time-series is shown in Fig. 7.

Business and economic time series frequently exhibit seasonality-period fluctu-
ations that recur with about the same intensity each year. Economists20−22 are
far more interested in the delicate patterns of the fluctuations which are super-
imposed upon the trend only in order to see these patterns more clearly. From
prior knowledge, we know that electricity consumption is related with climate and
human activity. We might conclude that the time-series can be decomposed as
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Fig. 6. Part of D(t) with difference criteria. Left: D1(t). Right: D2(t).

0 700 1400
0.6

0.9

1.2

1.4

Fig. 7. The electricity load values of Poland from 1990’s.

some components which are corresponding with the four seasons or human activity
cycles. Let’s review the decomposition result and contrasting outcome using other
decomposition methods.

If we cannot use the bandwidth stop criterion, we will get the result which is
not perfect. So we will show the compared result in Figs. 9–12. Figures 9–11 are
not used bandwidth stop criterion and Fig. 12 is used. The left part of the figures
is Hilbert spectrum of the IMF which is the seasonal component corresponding to
the cyclic part that the period is one year. The thresholds that are used in the
paper are α1 = 0.01, θ1 = 0.01 and θ2 = 0.1 for 3-threshold of all the stop criterion;
and the number of iterations is 10 for Damerval criterion. From the Fig. 9, we see
that band criterion reflects more essential content and the result confirms seasonal
factor. It is shown that our sifting process can improve the result which is shown in
Fig. 8. We will analyze the electricity consumption using result from our proposed
algorithm and obtain some periodic rules of the electricity consumption.
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Fig. 8. Result of our sifting process.

We set up the time-series as x(t) which is shown by Fig. 7. The decomposition
result is imf i(t), i = 1, . . . , 11, and imf 11(t) is the trend item. Define the energy
and energy ratio to investigate the decomposition items

E(f) =
∫

|f(t)|2, thereupon E(imf i) =
1400∑
t=1

imf 2
i (t), (5.4)
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Fig. 9. The 8th IMF with 3-threshold criterion4 and its Hilbert spectrum.
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Fig. 10. The 6th IMF of Damerval criterion and its Hilbert spectrum.

Eri =
√

Ei

10∑
i=1

√
Ei

. (5.5)

We use the energy as defined in (5.4) and energy ration as defined in (5.5) to sieve
the IMFs in order to delete some IMFs rooted from scale mixture. Computational
result and its comparison shown in Table 2 are obviously items imf 1(t), imf 2(t),
imf 9(t) and the trend item. Other items are mixture items which are leaked from
the actually items. imf 1(t), imf 2(t), imf 9(t) and imf 11(t) can reconstruct the f(t).
Further investigate the function

f1(t) = imf 1(t) + imf 2(t) + imf 9(t) + imf 11(t). (5.6)
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Fig. 11. The 9th IMF of energy criterion and its Hilbert spectrum.
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Fig. 12. The 9th IMF of bandwidth criterion and its Hilbert spectrum.

The difference between reconstructed functions f1 and f is measured by the absolute
error ratio and the similarity ratio, respectively, which are presented by√

E(f − f1)
E(f)

= 0.0483 (absolute error ratio),

∑
(f − f̄)(f1 − f̄1)√

E(f − f̄)E(f1 − f̄1)
= 0.9587 (similarity ratio),

where f̄ is mean of f . Similarity ratio measure the correlation between the two
functions. The reconstructed function f1 approximate f according to above two
standards, which is shown in Fig. 13.

Firstly, we analyze the trend item imf 11(t). Figure 8 shows the trend item
imf 11(t) that is obviously a slow-moving descendent trend. But if it is not decom-
posed the time-series we cannot get the trend.
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Table 2. The decomposition results.

IMFs Energy Er IMFs Energy Er

imf 1 2.6086 0.1127 imf 6 0.2403 0.0342
imf 2 7.3184 0.1888 imf 7 0.4998 0.0493
imf 3 0.5162 0.0502 imf 8 0.5107 0.0499
imf 4 0.4027 0.0443 imf 9 28.2983 0.3713
imf 5 0.4662 0.0477 imf 10 0.5446 0.0515

Table 3. The position of extrema and zero-crossings of
imf 9.

Extrema 183 348 540 727 921 1091 1280

Z-Cs 99 260 448 632 823 1008 1186
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Fig. 13. Reconstructed time series.

The item imf 9(t) is local-narrowed function. We investigate the zero-crossings
and extreme points from Table 3. I and II denote zero-crossings, extreme points
respectively. The interval of zero-crossings is 182.8 and the interval of extreme
points is 180.85. If we consider the interval of zero-crossings and extreme points,
we gain the result that imf 9(t) is regarded as a year periodic time-series.

For imf 2(t), is high-frequency component, extreme points population is very
large. We count the interval extreme points’ distribution to express the periodicity.
The interval distribution of the maximal points is shown by right component of
Fig. 14. So it can be concluded that imf 2(t) is a week periodic series.

Similarly, the interval distribution of imf 1(t) is shown by the left component of
Fig. 14 and we conclude that imf 1(t) is half-week periodic series. From Fig. 7, we
gain that the electricity consumption presents the periodic rules, but these rules
are mixed and contained noise. If we apply our sifting algorithm, we can separate
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Fig. 14. The periodic distribution of imf 1(t) and imf 2(t).

the periodic rules. So we obtain three key conclusions:

I The consumption of electricity is slowly descended from 1990 to 1994 which
appears from the trend item imf 11;

II The consumption of electricity expresses periodic property which is, respectively
half-week, one week and one year;

III These three kinds of motions of period is obviously stronger than any other
motions, so we should pay attention to these motions of period when we are
confronted with electricity coordination.

This kind of periodic analysis is helpful to assign national electricity power. We
can gain from the result and be able to decide when to carry on maintaining it,
when we should allow a full burden of equipments revolve and at which particular
time we should pay attention to.

6. Conclusions

The results of this study are based on EMD algorithm. EMD algorithm is a suc-
cinct and valid technique for some engineering application, but the EMD algorithm
has two problems: scale mixture and convergence property. We design a new stop
criterion-bandwidth criterion which cannot only find the IMFs reflecting the scale
and frequency characters of the analyzed time series but also make the IMFs have
reasonable meaning. Except that IMFs obtained with bandwidth criterion have
slighter scale mixing effect.

The performance of the EMD algorithm is presented in many fields, but it is
almost not some application on the economic domain with EMD algorithm. So we
use the Bandwidth EMD algorithm to analyze the electricity consumption data,
where the decomposition components corresponding to the climate or man activity
orderliness are easily selected. From all the sifting above, although we have not
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used any prior information and have selected a fixed basic function, we find the
components have reflected the nature character of the time series. So the results
prove that the Bandwidth EMD is a potential tool for applied economics.
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