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Abstract. In system identification or modeling problems, interval type-2 fuzzy logic
systems (IT2FLSs), which have obvious advantages for handling different sources of un-
certainties, are usually constructed only using the information from sample data. This
paper tries to utilize the information from both sample data and prior knowledge to design
IT2FLSs to compensate the insufficiency of the information from single knowledge source.
First, sufficient conditions on the antecedent and consequent parameters of IT2FLSs are
given to ensure that the prior knowledge can be incorporated into IT2FLSs and three
kinds of prior knowledge – bounded range, symmetry (odd and even) and monotonicity
(increasing and decreasing) – are explored. Then, design of IT2FLSs using the informa-
tion from both sample data and prior knowledge is transformed to the constrained least
squares optimization problem. At last, to show the superiority of the proposed method,
simulations and comparisons are made.
Keywords: Information fusion, Type-2 fuzzy, Least squares algorithm, Prior knowledge

1. Introduction. Recently, a number of extensions to classical fuzzy logic systems (type-
1 fuzzy logic systems: T1FLSs) have been attracting interest. One of the most widely
used extensions is the interval type-2 fuzzy logic system (IT2FLS) [1-10]. IT2FLSs have
obvious advantages for handling different sources of uncertainties, reducing the number of
fuzzy rules and weakening noisy disturbance, etc., as IT2FLSs utilize interval type-2 fuzzy
sets (IT2FSs) which can provide additional degrees of freedom and have more parameters
than type-1 fuzzy sets (T1FSs) in T1FLSs [1,2,6]. Due to these merits, IT2FLSs have
found lots of applications, for example, time-series forecasting [2], control of autonomous
mobile robots [3] and direct model reference control [8].

Until now, IT2FLSs are always constructed only using the information from the single
knowledge source – sample data (training data). Sometimes, satisfactory performance
of IT2FLSs can be achieved using this data-driven design method, but, in general, only
sample data is not enough to provide sufficient information for system identification,
especially when the sample data is not informative enough or is noisy.

One way to compensate this weakness is to incorporate prior knowledge into IT2FLSs.
Although, in most cases, it is hard to obtain exact physical structure knowledge of some
complex systems, part of their physical properties can be observed easily, such as mono-
tonicity, bounded range, symmetry, etc. Such prior knowledge can partly reflect the
characteristics of the unknown systems and compensate the insufficiency of the informa-
tion from sample data. Recently, this topic has gained considerable concern from different
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research areas. Some work has been done to incorporate prior knowledge into support
vector machines [11,12], neural networks [13-15], T1FLSs [16-19], etc.
But, to the authors’ knowledge, there is no work concerning on how to make full use of

the information from multiple knowledge sources (sample data and prior knowledge) to
compensate the insufficiency of the information from single knowledge source in the design
of IT2FLSs. In this paper, we will study this issue and three kinds of prior knowledge –
bounded range, symmetry (odd and even) and monotonicity (increasing and decreasing)
– will be considered. First, we will present sufficient conditions on the parameters of
IT2FLSs to ensure that the prior knowledge can be encoded. Then, we will show how
to utilize the constrained least squares algorithms to incorporate the information from
both sample data and prior knowledge into the design of IT2FLSs. At last, we will give
simulations and comparisons to show the superiority of the proposed method.

2. Interval Type-2 Fuzzy Logic Systems. In this section, we will introduce the in-
ference process of IT2FLSs [1-10] briefly. At first, let us give the definition of trapezoid
IT2FSs. Without detailed specification, in this study, all IT2FSs are the trapezoid IT2FSs.

2.1. Trapezoid IT2FS. Figure 1 shows a trapezoid IT2FS and a triangular IT2FS. The

triangular IT2FS is a special case of the trapezoid IT2FSs. A trapezoid IT2FS Ã can be
described by its lower and upper membership functions µ

Ã
(x,θθθ) and µÃ(x,θθθ) as

µ
Ã
(x,θθθ) =


h2

x−a2
b2−a2

, a2 < x ≤ b2,

h2, b2 < x ≤ c2,
h2

d2−x
d2−c2

, c2 < x ≤ d2,

0, else,

and µÃ(x,θθθ) =


h1

x−a1
b1−a1

, a1 < x ≤ b1,

h1, b1 < x ≤ c1,
h1

d1−x
d1−c1

, c1 < x ≤ d1,

0, else,

where a1 ≤ b1 ≤ c1 ≤ d1, a2 ≤ b2 ≤ c2 ≤ d2, a1 ≤ a2, d1 ≥ d2, h2 ≤ h1 ≤ 1 and

θθθ = (a1, b1, c1, d1, a2, b2, c2, d2, h1, h2) is the parameter vector of all the parameters in Ã.
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Figure 1. Examples of trapezoid IT2FSs

2.2. IT2FLS. Consider the following complete rule base of an IT2FLS

Rj1j2···jp : x1 = Ãj1
1 , x2 = Ãj2

2 , . . . , xp = Ãjp
p , → y =

[
wj1j2···jp , wj1j2···jp

]
where p is the number of the input variables, Ãji

i (i = 1, 2, . . . , p, ji = 1, 2, . . . , Ni) are
IT2FSs of the IF-part and [wj1j2···jp , wj1j2···jp ]s are consequent interval weights of the
THEN-part. There are totally

∏p
i=1Ni fuzzy rules in this complete rule base.

Once a crisp input xxx = (x1, x2, . . . , xp)
T is applied to the IT2FLS, through the singleton

fuzzifier, the interval firing strength of the rule Rj1j2···jp can be obtained as

F j1j2···jp(xxx,Θa) =
[
f j1j2···jp(xxx,Θa), f

j1j2···jp
(xxx,Θa)

]
=

[
T p
i=1µÃ

ji
i

(xi, θθθ
ji
i ), T

p
i=1µÃ

ji
i
(xi, θθθ

ji
i )
]
,

where Θa is a vector of all the parameters in the antecedent part of the IT2FLS, and T
denotes minimum or product t-norm.
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Then, using the center-of-sets type-reducer [1,2,4,6] and the center average defuzzifier,
the crisp output of the IT2FLS can be computed as

y(xxx,Θ) =
1

2
(yl(xxx,Θ) + yr(xxx,Θ)),

where Θ = (Θa,Θc)
T in which Θc is the parameter vector of all the parameters (wj1j2···jp

and wj1j2···jp) in the consequent part of the IT2FLS; yl(xxx,Θ) and yr(xxx,Θ) are the left and
right end points of the type-reduced interval set and can be expressed as

yl(xxx,Θ) = min

{∑N1
j1=1

···
∑Np

jp=1
fj1···jpwj1···jp∑N1

j1=1
···

∑Np
jp=1

fj1···jp

∣∣∣fj1···jp∈F j1···jp (xxx,Θa),w
j1···jp∈[wj1···jp ,wj1···jp ]

}
,

yr(xxx,Θ) = max

{∑N1
j1=1

···
∑Np

jp=1
fj1···jpwj1···jp

∑N1
j1=1

···
∑Np

jp=1
fj1···jp

∣∣∣fj1···jp∈F j1···jp (xxx,Θa),w
j1···jp∈[wj1···jp ,wj1···jp ]

}
.

Mendel et al. have given the iterative Karnik-Mendel algorithm based formulas for the
computation of yl(xxx,Θ) and yr(xxx,Θ). For more detail about this topic, see [1,2,4,6].

3. Parameter Conditions. In this section, we will present sufficient conditions on the
parameters of IT2FLSs to ensure that the prior knowledge of bounded range, symmetry
(odd and even) and monotonicity (increasing and decreasing) can be encoded. First, let
us consider the prior knowledge of bounded range.

3.1. Prior knowledge of bounded range. Notice that the bounded range of an IT2FLS
automatically implies the bounded-input-bounded-output (BIBO) stability of the IT2FLS,
which is usually required in many real-world applications. For the prior knowledge of
bounded range, we have the following results for IT2FLSs:

Theorem 3.1. The output y(xxx,Θ) of an IT2FLS falls in the bounded range [b, b], i.e.,
b ≤ y(xxx,Θ) ≤ b, if its consequent parameters satisfy that:

min
ji=1,··· ,Ni
i=1,··· ,p

{wj1···jp} ≥ b and max
ji=1,··· ,Ni
i=1,··· ,p

{wj1···jp} ≤ b.

Proof: ∀f j1···jp ∈ F j1···jp(xxx,Θa) and ∀wj1···jp ∈ [wj1···jp , wj1···jp ], we have∑N1

j1=1 · · ·
∑Np

jp=1 f
j1···jpwj1···jp∑N1

j1=1 · · ·
∑Np

jp=1 f
j1···jp

≥ min
ji=1,··· ,Ni
i=1,··· ,p

{wj1···jp} ≥ min
ji=1,··· ,Ni
i=1,··· ,p

{wj1···jp}.

Thus,

yl(xxx,Θ) = min

{∑N1
j1=1

···
∑Np

jp=1
fj1···jpwj1···jp∑N1

j1=1
···

∑Np
jp=1

fj1···jp

∣∣∣fj1···jp∈F j1···jp (xxx,Θa),w
j1···jp∈[wj1···jp ,wj1···jp ]

}
≥ min

ji=1,··· ,Ni
i=1,··· ,p

{wj1···jp}.

Similarly, we can prove that yr(xxx,Θ) ≤ max
ji=1,··· ,Ni
i=1,··· ,p

{wj1···jp}.

Therefore, if min
ji=1,··· ,Ni
i=1,··· ,p

{wj1···jp} ≥ b and max
ji=1,··· ,Ni
i=1,··· ,p

{wj1···jp} ≤ b, then,

b ≤ y(xxx,Θ) =
1

2
(yl(xxx,Θ) + yr(xxx,Θ)) ≤ b. �

Remark 3.1. For the prior knowledge of bounded range, we only need to constrain the
consequent parameters Θc and there is no need to constrain the antecedent parameters.
As a result, in this case, there is no requirement on how to partition each input domain.
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3.2. Prior knowledge of symmetry (odd and even). For many applications, espe-
cially control problems, the fuzzy systems designed for them should be odd symmetric or
even symmetric. The following two theorems will show how to constrain the parameters
of IT2FLSs to incorporate the prior knowledge of odd symmetry and even symmetry.

Theorem 3.2. An IT2FLS is odd symmetric, i.e., y(xxx,Θ) = −y(−xxx,Θ), if the following
conditions are satisfied:
1) ∀i ∈ {1, 2, . . . , p}, the input domain of xi is partitioned symmetrically around 0 by

trapezoid IT2FSs Ã1
i , Ã

2
i , . . . , Ã

Ni
i as shown in Figure 2, where Ni is an odd number.

2) The consequent parameters of the rules Rj1···jp and R(N1+1−j1)···(Np+1−jp) satisfy that[
wj1···jp , wj1···jp

]
=
[
−w(N1+1−j1)···(Np+1−jp),−w(N1+1−j1)···(Np+1−jp)

]
, where ji=1, 2, . . . , Ni+1

2
.
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Figure 2. Interval type-2 fuzzy partition with Ni trapezoid IT2FSs

Proof: Suppose that t fuzzy rules, which are denoted as Rj11 ···j1p , . . . , Rjt1···jtp , can be
fired when xxx is given to the IT2FLS.
As the rule base is complete, and each input domain is partitioned symmetrically

around 0, hence, when −xxx is given to the IT2FLS, the fuzzy rules R(N1+1−j11)···(Np+1−j1p),
. . . , R(N1+1−jt1)···(Np+1−jtp) can be fired.
Also, from the conditions above, it is obvious that, for s = 1, 2, . . . , t

F js1 ···jsp(xxx,Θa) = F (N1+1−js1)···(Np+1−jsp)(−xxx,Θa),[
wjs1 ···jsp , wjs1 ···jsp

]
=

[
−w(N1+1−js1)···(Np+1−jsp),−w(N1+1−js1)···(Np+1−jsp)

]
.

Hence,

yl(xxx,Θ) = min

{∑t
s=1 f

sws∑t
s=1 f

s

∣∣∣∣f s ∈ F js1 ···jsp(xxx,Θa), w
s ∈

[
wjs1 ···jsp , wjs1 ···jsp

]}
= −max

{∑t
s=1 f

s(−ws)∑t
s=1 f

s

∣∣∣∣f s ∈ F js1 ···jsp(xxx,Θa),−ws ∈
[
−wjs1 ···jsp ,−wjs1 ···jsp

]}
= −max

{∑t
s=1 f̃

sw̃s∑t
s=1 f̃

s

∣∣∣∣f̃ s ∈ F (N1+1−js1)···(Np+1−jsp)(−xxx,Θa),

w̃s ∈
[
w(N1+1−js1)···(Np+1−jsp), w(N1+1−js1)···(Np+1−jsp)

]}
= −yr(−xxx,Θ)

In the similar way, we can prove that yr(xxx,Θ) = −yl(−xxx,Θ).
Therefore,

y(xxx,Θ) =
yl(xxx,Θ) + yr(xxx,Θ)

2
=

−yr(−xxx,Θ)− yl(−xxx,Θ)

2
= −y(−xxx,Θ). �

Similarly, for the prior knowledge of even symmetry, we have following results:
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Theorem 3.3. An IT2FLS is even symmetric, i.e., y(xxx,Θ) = y(−xxx,Θ), if the following
conditions are satisfied:

1) ∀i ∈ {1, 2, . . . , p}, the input domain of xi is partitioned symmetrically around 0 by

trapezoid IT2FSs Ã1
i , Ã

2
i , . . . , Ã

Ni
i as shown in Figure 2, where Ni is an odd number.

2) The consequent parameters of the rules Rj1···jp and R(N1+1−j1)···(Np+1−jp) satisfy that[
wj1···jp , wj1···jp

]
=
[
w(N1+1−j1)···(Np+1−jp), w(N1+1−j1)···(Np+1−jp)

]
, where ji=1, 2, . . . , (Ni+1)/

2; especially, the consequent parameters of the rule R
N1+1

2
···Np+1

2 satisfies that w
N1+1

2
···Np+1

2 =

w
N1+1

2
···Np+1

2 .

Remark 3.2. The first condition in Theorems 3.2 and 3.3 means that: ∀i ∈ {1, 2, · · · p},
1) If ji ∈ {1, 2, . . . , (Ni − 1)/2}, then ∀θ ∈ {a1, b1, c1, d1, a2, b2, c2, d2}, θjii = −θNi+1−ji

i

and ∀θ ∈ {h1, h2}, θjii = θNi+1−ji
i .

2) If ji = (Ni + 1)/2, then a
Ni+1

2
1,i = −d

Ni+1

2
1,i , a

Ni+1

2
2,i = −d

Ni+1

2
2,i , b

Ni+1

2
1,i = −c

Ni+1

2
1,i and

b
Ni+1

2
2,i = −c

Ni+1

2
2,i .

This is the constraint on the antecedent parameters of IT2FLSs to ensure that the prior
knowledge of odd symmetry and even symmetry can be encoded.

3.3. Prior knowledge of monotonicity (increasing and decreasing). The mono-
tonicity is a common kind of prior knowledge [20]. For example, consider the water heating
system [18] and the coupled-tank liquid-level system [21]. The outputs of both systems
will change monotonically with respect to their inputs.

For simplicity, here, we only give useful results about the single-input monotonically
increasing and monotonically decreasing IT2FLSs.

Theorem 3.4. Assume that the input domain U = [u, u] is partitioned by N trape-

zoid IT2FSs Ã1, Ã2, . . . , ÃN , where ∀j ∈ {1, 2, . . . , N}, µÃj(x) = µÃj

(
x, aj1, b

j
1, c

j
1, d

j
1, h

j
1

)
,

µ
Ãj(x) = µ

Ãj

(
x, aj2, b

j
2, c

j
2, d

j
2, h

j
2

)
. Then, the IT2FLS is monotonically increasing, if the

following conditions are satisfied:

1) IT2FSs Ã1, Ã2, . . . , ÃN form fuzzy partition as shown in Figure 3 where a11 = b11 =
a12 = b12 = u, cN1 = dN1 = cN2 = dN2 = u, bj1 ≤ aj+1

1 , dj1 ≤ cj+1
1 , dj2 > aj+1

2 and dj−1
1 ≤ aj+1

1 .
2) The consequent parameters satisfy that w1 ≤ w2 ≤ ... ≤ wN and w1 ≤ w2 ≤ ... ≤ wN .
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Figure 3. Fuzzy partition with N trapezoid IT2FSs

Proof: Denote Ωj (j = 1, . . . , N) as

Ωj =


{u}, j = 1

U \
[(
u, dj−1

1

)
∪
(
aj+1
1 , u

)]
, 1 < j < N

{u}, j = N

As dj−1
1 ≤ aj+1

1 , hence, Ωj ̸= ∅.
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For any point tj ∈ Ωj (j = 1, . . . , N), the input domain U = [u, u] can be partitioned
into N − 1 areas as shown in Figure 3, i.e., U = ∪N−1

j=1 S
j, where Sj = [tj, tj+1].

The first condition assures that the trapezoid IT2FSs Ã1, Ã2, . . . , ÃN are arranged in
the ascending order, and, at each point, no more than two IT2FSs can be fired. Hence,
from (55) and (56) in [1], we can obtain that:
If x ∈ Sj (j = 1, 2, . . . , N − 1), then

yl(x,Θ) =
f
j
(x,Θa)w

j + f j+1(x,Θa)w
j+1

f
j
(x,Θa) + f j+1(x,Θa)

, (1)

yr(x,Θ) =
f j(x,Θa)w

j + f
j+1

(x,Θa)w
j+1

f j(x,Θa) + f
j+1

(x,Θa)
, (2)

where f j(x,Θa) = µ
Ãj(x), f

j
(x,Θa) = µÃj(x). For short, we use f j(x), f

j
(x) to replace

f j(x,Θa) and f
j
(x,Θa) below.

From (1) and (2), we can see that, if x ∈ Sj, then

wj ≤ yl(x,Θ) ≤ wj+1 and wj ≤ yr(x,Θ) ≤ wj+1.

Hence, if x ∈ Sj, then

wj + wj

2
≤ y(x,Θ) ≤ wj+1 + wj+1

2
. (3)

∀x, x′ ∈ U , suppose that x ≤ x′ and x ∈ Sj, x′ ∈ Sj′ .
If j < j′, from (3) and condition 2) in this theorem, we can see that y(x,Θ) ≤ y(x′,Θ);
If j = j′, then we have following results:
a) From (1), ∀x ≤ x′

yl(x
′,Θ)− yl(x,Θ) =

[
f j+1(x′)f

j
(x)− f

j
(x′)f j+1(x)

]
(wj+1 − wj)(

f
j
(x′) + f j+1(x′)

)(
f
j
(x) + f j+1(x)

)
As f j+1(.) is monotonically increasing and f

j
(.) is monotonically decreasing in Sj, hence

f j+1(x′) ≥ f j+1(x) and f
j
(x) ≥ f

j
(x′).

This implies that

f j+1(x′)f
j
(x)− f

j
(x′)f j+1(x) ≥ 0.

Therefore, yl(x
′,Θ) ≥ yl(x,Θ) in Sj.

b) In the similar way, ∀x ≤ x′ ∈ Sj, yr(x
′,Θ) ≥ yr(x,Θ).

From a) and b), if both x′ and x are in Sj, then y(x′,Θ) ≥ y(x,Θ).
Thus, from the discussion above, we can conclude that this theorem holds. �
Similar results can be obtained for the prior knowledge of decreasing monotonicity.

Theorem 3.5. Assume that the input domain U = [u, u] is partitioned by N trape-

zoid IT2FSs Ã1, Ã2, . . . , ÃN , where ∀j ∈ {1, 2, . . . , N}, µÃj(x) = µÃj

(
x, aj1, b

j
1, c

j
1, d

j
1, h

j
1

)
,

µ
Ãj(x) = µ

Ãj

(
x, aj2, b

j
2, c

j
2, d

j
2, h

j
2

)
. Then, the IT2FLS is monotonically decreasing, if the

following conditions are satisfied:

1) IT2FSs Ã1, Ã2, . . . , ÃN form fuzzy partition as shown in Figure 3 where a11 = b11 =
a12 = b12 = u, cN1 = dN1 = cN2 = dN2 = u, bj1 ≤ aj+1

1 , dj1 ≤ cj+1
1 , dj2 > aj+1

2 and dj−1
1 ≤ aj+1

1 .
2) The consequent parameters satisfy that w1 ≥ w2 ≥ ... ≥ wN and w1 ≥ w2 ≥ ... ≥ wN .
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In this section, sufficient parameter constraints of IT2FLSs have been studied to ensure
the aforementioned prior knowledge. In the following section, we will show how to design
IT2FLSs using the information from both sample data and prior knowledge.

4. Design of IT2FLSs Using Both Sample Data and Prior Knowledge. In the
design of IT2FLSs using the information from both sample data and prior knowledge,
different kinds of prior knowledge are used to constrain the antecedent and consequent
parameters of IT2FLSs, and sample data is utilized to train and optimize these parameters
further. For simplicity, in this study, we only consider the design of the single-input
IT2FLSs using both sample data and prior knowledge.

4.1. Problem formulation. Suppose that there are M input-output sample data (x1,
y1), (x2, y2), . . . , (xM , yM). And, the training criteria is chosen to minimize the following
squared error function:

E =
1

2

∑M

i=1
|y(xi,Θ)− yi|2, (4)

where y(xi,Θ) is the output of the IT2FLS, and Θ is the parameter vector of all the
antecedent and consequent parameters of the IT2FLS.

In Section 3, we have studied how to transform different kinds of prior knowledge to
the constraints of the antecedent and consequent parameters of IT2FLSs. These con-
straints can be rewritten abstractly as Θ ∈ Ω, where Ω represents the constrained feasible
parameter space.

Therefore, design of the IT2FLSs using the information from both sample data and
prior knowledge can be seen as the following optimization problem{

min
Θ

1
2

∑M
i=1 |y(xi,Θ)− yi|2

subject to Θ ∈ Ω.
(5)

As the outputs of the IT2FLSs are nonlinear with respect to the parameters of their
antecedent IT2FSs, this optimization problem needs to be solved using constrained non-
linear optimization algorithms, e.g., genetic algorithms, particle swarm algorithms.

4.2. Problem transformation. Although different optimization algorithms can be uti-
lized to solve the optimization problem in (5), in this work, we adopt another strategy,
which determines and optimizes the antecedent parameters and consequent parameters
separately. In this strategy, two steps are needed. The first step is to set up the member-
ship functions of the IT2FSs in the antecedent part of the IT2FLSs, and the second step
is to optimize the consequent interval weights under the constraints on these parameters.
The first step can be accomplished by partitioning the input domains intuitively or by the
clustering algorithms. How to use different clustering algorithms to obtain optimal or sub-
optimal interval type-2 fuzzy partitions, which satisfy the constraints on the antecedent
membership functions in Theorems 3.1 – 3.5, will be one of our research directions in the
near future. In this study, we mainly focus on the second step.

Below, we will first show that the output of the IT2FLS is linear with its consequent
parameters, and then, we will demonstrate that the optimization problem (5) can be
changed to a constrained least squares optimization problem.

We suppose that the fuzzy partition of the input domain satisfies that no more than
two IT2FSs can be fired at each point as shown in Figure 3, and the rule base of the
single-input IT2FLS is written as

{Rj : x = Ãj → y = [wj, wj]}Nj=1. (6)
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From Theorem 3.3 in [22], we know that the crisp output of the single-input IT2FLS in
(6) is equal to the average of the outputs of two T1FLSs (called Lower T1FLS and Upper
T1FLS). The rules of the two T1FLSs are [22]:

Lower T1FLS :
{

Rj
L : x = Aj

L → y = wj
}N

j=1
,

Upper T1FLS :
{

Rj
U : x = Aj

U → y = wj
}N

j=1
,

where A1
L, . . . , A

N
L , A

1
U , . . . , A

N
U are type-1 fuzzy sets. Their membership functions can be

determined by

µAj
L
(x) =


µ
Ãj(x), x ∈ Sj−1, wj−1 ≤ wj,

µÃj(x), x ∈ Sj−1, wj−1 > wj,
µÃj(x), x ∈ Sj, wj ≤ wj+1,
µ
Ãj(x), x ∈ Sj, wj > wj+1.

µAj
U
(x) =


µÃj(x), x ∈ Sj−1, wj−1 ≤ wj,
µ
Ãj(x), x ∈ Sj−1, wj−1 > wj,

µ
Ãj(x), x ∈ Sj, wj ≤ wj+1,

µÃj(x), x ∈ Sj, wj > wj+1.

Therefore, the crisp output of the single-input IT2FLS can be computed as

y(x,Θc) =
1

2

[∑N
i=1 µAi

L
(x)wi∑N

i=1 µAi
L
(x)

+

∑N
i=1 µAi

U
(x)wi∑N

i=1 µAi
U
(x)

]
= [ϕ1(x), . . . , ϕ2N(x)]Θc, (7)

where

Θc =
[
w1, . . . , wN , w1, . . . , wN

]T
,

ϕi(x) =


1
2

µ
Ai
L
(x)∑N

i=1 µAi
L
(x)

, i = 1, . . . , N,

1
2

µ
Ai−N
U

(x)∑N
i=1 µAi−N

U
(x)

, i = N + 1, . . . , 2N.

From (7), we can see that the output of the IT2FLS is linear with its consequent
parameters. And, the training criteria (4) can be rewritten as

E =
1

2

∑M

i=1
|y(xi,Θc)− yi|2 = 1

2
(ΦΘc − yyy)T(ΦΘc − yyy),

where

yyy = [y1, y2, . . . , yM ]T,

Φ =


ϕ1(x

1) ϕ2(x
1) · · · ϕ2N(x

1)
ϕ1(x

2) ϕ2(x
2) · · · ϕ2N(x

2)
...

...
...

...
ϕ1(x

M) ϕ2(x
M) · · · ϕ2N(x

M)

 ∈ RM×2N .

As we only consider to optimize the consequent parameters, therefore, the abstract
constraint Θ ∈ Ω in (5) can be rewritten as Θc ∈ Ωc. Below, we will write the constraints
on the consequent parameters in Theorems 3.1 – 3.5 into the forms of linear-inequality
constraints CΘc ≤ bbb and/or linear-equality constraints CeqΘc = bbbeq.
1) Linear constraint for bounded range[

−IN 0
0 IN

]
Θc ≤

[
−bbb
bbb

]
,

where IN is the N ×N identity matrix, bbb = [b, b, . . . , b︸ ︷︷ ︸
N

]T and bbb = [b, b, . . . , b︸ ︷︷ ︸
N

]T.

2) Linear constraint for odd symmetry[
IN , R(IN)

]
Θc = 000,
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where R(IN) denotes the N ×N matrix obtained by rotating IN 90 degrees clockwisely.
3) Linear constraint for even symmetry IN−1

2
000N−1

2
×1 −R(IN−1

2
) 000N−1

2
000N−1

2
×1 000N−1

2

0001×N−1
2

1 0001×N−1
2

0001×N−1
2

−1 0001×N−1
2

000N−1
2

000N−1
2

×1 000N−1
2

IN−1
2

000N−1
2

×1 −R(IN−1
2
)

Θc = 000.

4) Linear constraint for increasing monotonicity[
V 000
000 V

]
Θc ≤ 000,

where

V =


1 −1 0 · · · 0 0
0 1 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −1

 ∈ R(N−1)×N .

5) Linear constraint for decreasing monotonicity[
−V 000
000 −V

]
Θc ≤ 000.

From the discussions above, we can observe that design of the IT2FLSs using both
sample data and prior knowledge can be transformed to the following constrained least
squares optimization problem{

min
Θc

(ΦΘc − yyy)T(ΦΘc − yyy)

subject to CΘc ≤ bbb and/or CeqΘc = bbbeq.

5. Simulations and Comparisons.

5.1. Problem description. To show the usefulness of the prior knowledge, let’s consider
the following nonlinear function:

g(x) = (|x|/3)2 tanh(|x|),

where x ∈ U = [−3, 3]. Obviously, this function is bounded in [0, 1], even symmetric,
monotonically decreasing in [−3, 0] and monotonically increasing in [0, 3].

The noisy training data is generated by

ỹ(x) = g(x) + ñ,

where ñ is the uniformly distributed additive noise in [−b, b]. In this simulation, three
different levels of noisy disturbance are tested, where b = 20%, 30% and 40%, respec-
tively. In each noisy circumstance, we consider 5 cases. In these cases, the sizes of
both the training data and the evaluation data are 30, 60, 100, 200, 300. In case
i, we denote the training data set as Ti =

{
(x1, ỹ1) , (x2, ỹ2) , . . . ,

(
xKi , ỹKi

)}
. Fur-

thermore, in each case, the noise-free data set is chosen as the evaluation data set
Di =

{
(x1, g(x1)) , (x2, g(x2)) , . . . ,

(
xKi , g(xKi)

)}
which can be used to check whether

the trained model could follow the characteristics of the original data rather than the
noisy data.

In our simulation, for comparison, we design four fuzzy logic systems (FLSs) to identify
the nonlinear function: sample-Data-and-prior-Knowledge based IT2FLS (DK-IT2FLS),
only sample-Data based IT2FLS (D-IT2FLS), sample-Data-and-prior-Knowledge based
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T1FLS (DK-T1FLS), only sample-Data based T1FLS (D-T1FLS). To evaluate the ap-
proximation performance and the generalization performance of different FLSs, we con-
sider the following two performance indexes – Root of the Mean Squared Errors (RMSE s)
of the training data and evaluation data:

δi =

(
1

Ki

∑Ki

k=1

(
ỹk − ŷ

(
xk
) )2

) 1
2

,

σi =

(
1

Ki

∑Ki

k=1

(
g(xk)− ŷ

(
xk
) )2

) 1
2

,

where ŷ(xk) is the output of FLSs for the input xk. The first index δi can reflect the
approximation ability of different FLSs for the training data in case i in each level of the
noisy disturbance, while the second index σi can reflect the generalization characteristics of
different FLSs for the original noise-free data in case i in each level of the noisy disturbance.
For both indexes, the less the value is, the better the result is.
For each FLS, we use 7 fuzzy rules, the membership functions of whose antecedent parts

are shown in Figure 4. Note that the fuzzy partitions in Figure 4 satisfy the conditions
on fuzzy sets in Theorems 3.1 – 3.5. The left task is to tune the consequent weights with
or without constraints.

4
A

5
A

6
A1

x

7
A

1
A
~ 2

A
3

A

- - -3 2 1 0 1 2 3

~ ~ ~ ~ ~ ~

Figure 4. Type-1 (dotted line) and type-2 (gray area) fuzzy partitions

5.2. Simulation results and comparisons. As stated above, three different levels of
noise are considered, and, under each noisy circumstance, five cases are tested. What is
more, in each case, the data generation processes and the identification processes of the
four FLSs are run 50 times. After that, the performance indexes in case i are calculated
as the average of the corresponding values obtained in the 50 run times, i.e.,

δ̃i =
1

T

∑T

j=1
δji ,

σ̃i =
1

T

∑T

j=1
σj
i ,

where T = 50, and δji and σj
i are the first and second performance indexes obtained in

the jth run in case i.
For the aforementioned three noise levels, the comparisons of the four FLSs with respect

to the RMSE s for the training and evaluation data are shown in Figure 5. And, Figure
6 shows us an example of the identification result where 100 sample data are utilized to
train the four FLSs and the noise distributes uniformly in [−30%, 30%].
As stated above, the RMSE s δi for training data can reflect the approximation abilities

of different FLSs. From Figures 5(a) – 5(c), D-IT2FLS has the best approximation ability,
and then, DK-IT2FLS, at last, D-T1FLS and DK-T1FLS. In general, according to the
approximation performance in this simulation, the type-2 FLSs perform better than the
type-1 FLSs; the reason for this is that the type-2 FLSs have more parameters and
more freedoms than the type-1 FLSs. On the other hand, D-IT2FLS and D-T1FLS have
better approximation performance compared with DK-IT2FLS and DK-T1FLS, as the
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Figure 5. Performance comparisons of the four FLSs
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Figure 6. The identification results of the four FLSs

consequent weights of DK-IT2FLS and DK-T1FLS are constrained, and this makes their
feasible parameter spaces smaller than those of D-IT2FLS and D-T1FLS.

Also, as stated above, the RMSE s σi for evaluation data can reflect the generalization
abilities of different FLSs. From Figures 5(d) – 5(f), we can see that DK-IT2FLS and DK-
T1FLS have better generalization ability than D-IT2FLS and D-T1FLS. This means that
DK-IT2FLS and DK-T1FLS can follow the characteristics of the real system dynamics
better than D-IT2FLS and D-T1FLS under noisy training circumstances.

In conclusion, the type-2 FLSs have better approximation ability than the type-1 FLSs,
but the FLSs designed using both sample data and prior knowledge have better general-
ization characteristics. The reason for this is that prior knowledge can prevent impossible
or implausible values, so that the designed FLSs will not be over fitted. Therefore, we
can say that the prior knowledge can improve the performance of the IT2FLSs.

6. Conclusions. This study has presented how to design IT2FLSs using the information
from both sampled data and prior knowledge. From the simulation results and compar-
isons, we can conclude that: 1) DK-IT2FLS is able to prevent impossible or implausible
values which conflict with the prior knowledge; 2) the prior knowledge may improve the
generalization ability of IT2FLSs. Here, we have just explored the prior knowledge of
bounded range, symmetry (odd and even) and monotonicity (increasing and decreasing).
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How to utilize the other prior knowledge, such as fixed points, stability, etc., will be one
of our future research directions.
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