Pergamon

PII: S0005-1098(98)00060-0

Automatica, Vol. 34, No. 9, pp. 1125-1133, 1998
4+ 1998 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

0005-1098/98 $-—see front matter

Brief Paper

Control Curve Design for Nonlinear (or Fuzzy)
Proportional Actions Using Spline-based Functions™®

B.-G. HU,#1 G. K. . MANN{§ and R. G. GOSINE#§

Key Words—Nonlinear PID control; fuzzy PID control; fuzzy proportional actions; control curves; spline

functions.

Abstract—This work explores a novel approach for a systematic
design of a nonlinear mapping system typically for nonlinear, or
fuzzy, PID control applications. The paper investigates a non-
linear design of proportional actions using spline-based func-
tions. Specifically, the controller uses Bézier curves to form the
nonlinear mapping in order to emulate fuzzy PID systems.
While other researchers have addressed the fuzzy systems for
approximations of given functions, we believe that, in general
control problems, these approximations should be considered in
dealing with the properties of unknown control actions. Propor-
tional action is selected as a basic function for nonlinear control
curve designs. The reasons for this selection are discussed. Spe-
cific heuristic properties for the proportional action are defined
based on the intuitions in general PID controller applications.
The new controller is designed to be compatible with these
properties. The nonlinearity variation index is used as a process-
independent measure for evaluation of different designs. The
system has been shown to improve the conventional fuzzy PID
controllers on three aspects. These include a high degree of
transparency with respect to nonlinear tuning parameters, versa-
tility to cover various nonlinear functions, and simplicity of
nonlinear mapping expressions. © 1998 Elsevier Science Ltd.
All rights reserved.

1. Introduction

One of the important features of fuzzy PID control systems is
their accommodation of the nonlinear control to the process
(Ying, 1993; Zhao er al., 1993; He et al,, 1993; Lewis and Liu,
1996; Tan et al, 1997). With nonlinear control actions, the
process is regulated according to the error signal to produce
better performance than the conventional, or linear, PID con-
trollers. The design of a fuzzy PID controller is actually a task of
building an inference engine with a nonlinear relationship be-
tween crisp input and output using linguistic expressions. This
task is related to two basic issues. First, what kind of nonlinearity
of the controller output does a process require with respect to the
specific performance criteria? Second, how does one construct
a system which produces the desired or approximate nonlinear
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Sfunctions? To the authors’ knowledge, there do not seem to be
any analytical findings in an explicit form to solve the first issue.
In a previous investigation (Hu et al., 1997), a three-rule fuzzy
PID controller was investigated. The single-input-single-output
(SISO) fuzzy inference was used to produce nonlinear propor-
tional actions (or curves) with respect to the error. Four types of
nonlinear curves, defined within the positive range of the error
signal, could be constructed by the controllers (Fig. 1). In the
numerical simulations, the two simplest nonlinear, C-type,
curves (Fig. 1a and b) were selected for the fuzzy proportional
action by using a genetic optimization solver. These C-type
curves, approximating desired but unknown controlier output
for a specific performance, have produced satisfactory results for
several processes including first and second-order plants.

Significant studies have been reported in regard to the second
issue of using fuzzy systems (Wang and Mendel, 1992; Buckley,
1992; Kosko, 1994; Ying, 1994). Stimulated by the success of
approximation using neural networks (Funahashi, 1989; Hornik
et al., 1989; Cotter, 1990), Wang and Mendel (1992), Buckley
(1992) and Kosko (1994) have derived the Universal Approxima-
tion Theorem for using fuzzy systems. The theorem suggests that
a fuzzy system would be capable of forming an arbitrarily close
approximation to any continuous nonlinear function. Generally,
most investigations addressed the approximation of given func-
tions using either fuzzy systems or neural networks. Compari-
sons were made of “approximation accuracy” when using
different paradigms, rules, or parameters in the fuzzy (Ying,
1994; Wang, 1994) and neural network systems (Narendra and
Parthsarathy, 1990). Recently, the study of reducing the rule size
in fuzzy systems has received attention (Rovatti et al., 1995;
Chao et al, 1996; Koczy and Hirota, 1997). For this study,
a term “parsimony” is used to represent the economisation of
parameters in neural network or fuzzy system design (Manson
and Parks, 1992).

As shown by Hu et al. (1997), the nonlinearity of fuzzy propor-
tional action can be changed by a number of parameters, called
nonlinear tuning parameters. Ideally, we hope to select sufficient
parameters and adjust them to realize the desired nonlinear
functions (or nonlinear control laws) for the optimal perfor-
mance of the controller. In most cases, however, this may never
be achieved because an explicit expression of the desired nonlin-
ear function does not exist. If this is the case, the problems
encountered in using approximation algorithms for the system-
atic design of fuzzy controllers are better defined as:

(1) to guess the general (or process-independent) properties of
the desired nonlinear functions,

(2) to generate a set of closed-form nonlinear functions com-
patible with the properties, and

(3) to relate the nonlinear tuning parameters quantitatively to
their associated versatility and flexibility to cover various
nonlinear functions.

This work is a further study of our previous investigation (Hu
et al., 1997). Although those systems, using two nonlinear tuning
parameters, have shown superior performance in the processes
controlled, we recognize a number of weaknesses in their nonlinear
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Fig. 1. Four types of simple nonlinear curves.

design. Firstly, their closed-form fuzzy nonlinear mapping
requires multiple and non-uniform expressions, which cause the
nonlinear analysis to be relatively complex and tedious. Second-
ly, their associated nonlinear variations is limited in covering
the whole spectrum of the C-type curves. This constrains the
searching space of optimal solutions to the process. Finally, the
system becomes more difficult to design if additional tuning
parameters are required.

Motivated to improve the previous fuzzy PID system, we
develop a systematic design strategy in this work to synthesize
the nonlinear controllers using spline-based approximations.
The proposed system constructs a “control curve” in a two-
dimensional plane. This SISO fuzzy inference scheme simplifies
analysis and implementation over a conventional fuzzy system
which involves construction of a “control surface” (Ying, 1993;
Kosko, 1997). The advantages in using low-dimensional fuzzy
PID systems have been discussed elsewhere (Hu et al., 1998).

The paper is organized as follows. Section 2 describes why we
study proportional actions. In Section 3, we propose the heur-
istic properties for the proportional actions. The properties are
general for any fuzzy PID controller design, rather than process-
dependent. In Section 4, the definition of Béziecr curves, which
fall into a general form of spline-based functions, is introduced.
Section 5 presents the procedures used to generate nonlinear
functions using one, two or four parameters. For each case of the
selection of parameters, the associated nonlinear flexibility of the
system is discussed. The procedures for using more parameters
are described in Section 6. Section 7 discusses the nonlinear
functions under symmetric considerations. The linguistic repres-
entation is discussed in Section 8. Finally, the summary and
discussions are given in Section 9.

2. Why study proportional actions

In this work, the basic structure of a fuzzy PID controller is
the same as in Hu et al. (1997). This is an SISO fuzzy system with
a cascade structure similar to a conventional PID controller.
The scaled discrete-time controller output, @(r), is the sum of
three terms, represented by

R o _Ad
i) = Rette() + K S din(DA + Ko ’g’t(r’ ;

i=0

r=0,1,2,.; k}’s Klt RD e [0,1], M

where i, is a nonlinear (or fuzzy) proportional output; its change
is Ailp for the sampling period At; and K, K, and Kp, are the
normalized proportional, integral and derivative gains, respec-
tively. The overall control output of the fuzzy system is the
multiple of a denormalized factor s, and #&. In comparison, the

output of a conventional PID controller is given by

ur) = Kpe(r) + K, 3 e(DAt + KDAZ(:), r=0,1.2, ...

i=0

2

where e is the error signal, and three gains are regular without
normalization. Note that the controller output, egation (1), in
the proposed fuzzy PID system is directly related to iip instead of
e. Rewriting equation (1) in the form of equation (2) gives

. o ), . Zilp . Alp\ A2
U=|Kp— |é+ K= |ZéAt + [ K —
( Pé) 'Zé> ¢ ( DAé)Az

R R Aé
= (Kp)ey€ + (Ki)eqZ2Ar + {Kpleays

A3)

where we define ¢ to be the normalized error, and (Kp)eq, (Ki)eq
and (Kp).q to be the equivalent (or nonlinear) proportional, inte-
gral and derivative gains of a conventional PID controller, re-
spectively. Note that the denormalized factor, s, is neglected for
the equivalency since this does not influence the nonlinear
behavior of the gains. For static fuzzy controllers, we drop
the notation of time instant r in the expressions. Thus, a
nonlinear mapping is constructed between é and #p using
the form:

i, =f(é,z), 4

where z is the data set of nonlinear tuning parameters, in the
form of either a matrix or vector, and fis a “# — #” nonlinear
function of its input é. The function is time invariant and
exhibits non-dynamical behavior (Mohler, 1991) unless the tu-
ning parameters are a function of time.

It is understandable that the design of nonlinear functions for
the overall controller output is difficult since this output may
show a high degree of complexity. This is also true for the
nonlinear PID gains. We select the proportional action, ip, as
the basic nonlinear function for the following reasons. Firstly,
any feedback control should include the proportional action.
This means whenever an error occurs, there is a control force to
regulate the process. Sometimes, the process is possibly control-
led without resorting to the integral or derivative actions. Sec-
ondly, the fuzzy controller readily simulates a linear PID
controller by setting fip = é, which provides control engineers
the simplest and theoretically solid starting point for nonlinear
control design. Thirdly, the proportional action may possess the
simplest nonlinear curve in the error domain (Hu et al., 1997).
The conditions for #p(é = 0) and dp(é = 1) are predictable (see
the next section) but may not be for integral or derivative
actions. The gain-scheduling scheme (Astréom and Wittenmark,
1995; Zhao et al., 1993; He et al., 1993; Tan et al., 1997), which
produces nonlinear gains directly, may require more parameters
due to the complex nature of gain changes and their varied
ranges. Finally, the proportional action also influences, or con-
trols, the integral and derivative actions in an associated means
by e(r). We believe that the selection of proportional actions for
the nonlinear design will be a crucial step toward the simplicity
of fuzzy, or nonlinear, PID control systems.

3. Heuristic properties and preferred features

The knowledge of strict expressions of nonlinear control func-
tions is usually unknown to most processes, and the desired
nonlinearity of the proportional actions strongly depends on the
process dynamics. Therefore, we will derive the heuristic proper-
ties of nonlinear or fuzzy proportional actions by intuitions
based on the general applications for such nonlinear design. All
properties are presumed to be process- or problem-independent.
For this static system, we will present the properties as well as
their associated heuristic reasons as follows:

#1 “ip vs. € has to be within a normalized compact region,
je, —1<é<l1,and — | < flp < 1. Boundedness is a ne-
cessary condition for a controller to be stable. Normaliz-
ation is used for realizing standard design procedures.

P2 0p(é #0) #0 is a necessary condition for a non-zero
controller output when an error exists. Otherwise, the
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steady-state error may occur even for a zero-steady-state-
error process.

#3 ip(é =0)=0 is a necessary condition for a zero steady-
state error of process response.

24 |ip(é = + 1)| = max(]&p|) = 1 indicates a maximum pro-
portional controller output for a fast rise-up or fall down
response when an error signal is at an extremum.

25 é and dp have a one-to-one (or two-way) correspondence.
A unique controller output is a necessary condition for
a mapping from é to ;.

26 1p(8) is a continuous (C° continuity) function (Driankov
et al., 1996). Discontinuity will result in an abrupt change
of the response, which may influence the controller perfor-
mance negatively (Driankov et al., 1996; Lewis and Liu,
1996) or even damage the plants.

P7 iip(é) has the first derivative (C' continuity). This indicates
the normalized sensitivity function, NS = d1p/0¢ is continu-
ous; and the equivalent derivative gain in equation (3),
(Kp)eqg = Kp(0hip/0é), is also continuous.

28 iip(é) is a monotonic function. This condition is implied
from 5.

29 #p/é has the C° continuity. This property is for smooth,
non-abrupt, variation of the equivalent proportional gain
in equation (3), (Kp)eq = Rop(tip/é).

210 dip/cé > 0 states that the equivalent derivative gain is
positive if K, # 0. This property implies the curve, ép(¢), is
a monotonically increasing function.

#11a fip(é) is a non-symmetric function in the situation that
a process has non-symmetric behaviors in dynamic re-
sponses, say, different overshoot and undershoot charac-
teristics. The necessity for applying this property can also
be found out by checking process arrangement. For
example, a non-symmetric saturation range, [0, tpa, ]
(where u,,, denotes the upper saturation bound), of the
heater to a temperature control process suggests a need to
employ this property for a high performance of control-
lers in both rise-up and fall-down response situations.

211b i4p(é) could be an antisymmetric function,
fip( — &) = — dp(é), to reduce the total number of tuning
parameters although sometimes this may result in
poorer performance to the process than using non-sym-
metric functions.

212 The nonlinearity of ip(é, z) is changeable by tuning z. This
is necessary for a nonlinear PID system to adjust the
control performance through an optimal solver or human
interactive operations. The tuning parameters, z, should be
within a compact range, ze [0, 1]. This is properly for
using a genetic-optimization solver where the searching
resolution, say, 1/(2% — 1), is fixed for the given bits of the
coding string, say, eight, on the parameters.

213 dp is able to form a linear function, ip = &, by tuning z. The
system which satisfies this condition is called a Guaran-
teed-P1D-Performance (GPP) system (Hu et al,, 1997). In
this case, the performance analysis for the corresponding
linear PID systems will provide a safe (or lower) bound of
the specified performance criteria (say, time response error,
stability, robustness, etc.) for the GPP system which con-
sists of an optimal solver for tuning the system.

P14 0 < ip/é < oo suggests that the equivalent proportional
gain should be positive and finite. This property also states
that dp(é) is a “first and third quadrant nonlinear func-
tion”, because the curve lies in the first and third quadrants
of the normalized compact region.

P15 0p(é;) # Gp(é)) if é; # ¢;. This indicates that there is no
“perfect flat” zone in the curve. A curve including a flat
segment needs more tuning parameters than its approxi-
mation.

All properties are basically performance-related, but the prop-
erties, #1, 24 and 212, are also considered for the reason of
implementation. Some properties are inter-related and can be
derived from others. We list them separately since these proper-
ties present apparent guidelines for systematic design of fuzzy
control systems. While the controllers are designed to include
the heuristic properties listed above, three preferred features are
also suggested below to the systems from the viewpoint of
applications:

# 1 The nonlinearity of the system should exhibit transparency
with respect to tuning parameters, z. This requires explicit
expressions of iip (&, z). This feature, proposed by Brown and
Harris (1994), is important for systematic design as well as
for manual tuning during human interactive operations.
A closed-form relationship of fuzzy nonlinear mapping is
a key step to integrate fuzzy control theory and conven-
tional/modern control theories.

#2 The system should offer a high degree of versatility ( flexibil-
ity or effectiveness) by using a finite number of nonlinear
tuning parameters to generate a wide spectrum of nonlinear
functions. Fuzzy controllers, typically high dimensional
systems due to their multiple parameters, usually suffer
from the difficulty “curse of dimensionality” (Kosko, 1997).
This suggests that fuzzy systems should contain a small
number of tuning parameters, which can be effectively used
to form various nonlinear functions. The feature of versatil-
ity should be examined based on a quantitative index, like
the Nonlinearity Variation Index (NVI) defined in Section
5 for nonlinear curves. The index can be used as a process-
independent measure for design comparisons of different
control systems.

#3 The system should be implemented with simplicity. This
feature can be evaluated on the following aspects: Firstly, it
should have a simple mathematical expression of d4p(é, z)
(say, low-order polynomials). This will simplify nonlinear
analysis, algorithm implementation and computations. Sec-
ondly, the system should be able to produce uniform repres-
entations (say, unchanged forms when adding or removing
the parameters). Thirdly, it should be possible to implement
the algorithm with high modularity, parallelism, and/or
recursiveness. Finally, manipulation with the tuning para-
meters should be simple and straightforward for an approx-
imation of any given function.

4. Definition of Bezier curves (Su and Liu, 1989, Farin, 1990)
In this work, we will use Bézier curves in the design of fuzzy
nonlinear mapping. Let n + 1 control points P; (i =0, 1, ... ,n),
whose coordinates are represented in a column vector form, be
given in space. The parametric curve segment of degree n,

Q(s)= ) PBIs), 0<s<I, (5)
i=0
is called the Bézier curve, which is expressed by a column vector
in terms of Bernstein polynomials:

Bi(s) = CIs'(1 — sy,
(6)
n!
=T

If P; is a point in three (or two) dimensional spaces, a three (or
two) dimensional curve will be formed. Equation (5) indicates
that the Bézier curve is the sum of the control points weighted by
the polynomials. This curve approximates the control (or Bézier)
polygon formed by Py, ..., P,. Several important properties of
Bernstein functions are (Su and Liu, 1989):

Bi(s)e [0, 1], (7a)
i Bis)=1, se[0,1], (7b)
i=0
B = Br(1 — 5) (70)
9 Bris) = n(BI7{ (5) — By (5), (7d)
ds
Brs) = (1 — ) B~ (5) + sBI=1 (5. (7e)

For n = 3, the four Bernstein basis functions are illustrated in
Fig. 2. The properties in equation (7) enable the Bézier curves to
possess many appealing features in the application of curve
design which may not be shared by B-spline functions. These
features include (Sw and Liu, 1989): (a) the Bézier curve lies
within the convex hull which is defined by control points, (b) the
curve interpolates the endpoints, (c) it can be represented by
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Fig. 2. The Bernstein polynomials: the cubic case.

a uniform and recursive expression for a nonlinear function with
any number of parameters. On the other hand, this type of curve
may lose two merits compared to B-spline (Su and Liu, 1989):
local control and closed approximation to the control polygon.
In general, Bézier curves are considered to fall into the category
of spline-based functions and they can be represented inter-
changeably (Farin, 1990).

5. Nonlinear functions with one, two or four parameters

In this section, we will use Bézier forms to generate two-
dimensional nonlinear curves, ép(é. z), compatible with the heu-
ristic properties. For convenience, we consider first the tuning
parameters, no more than four, for the curve generation.

Given a positive compact regionof 0 <é < 1,and 0 <dp < 1
for construction of nonlinear functions, the nonlinear tuning
parameters are considered initially by four control points,
zo = [Po, Py, P3, P37, located within the region. A general form
of a planar curve, Q(s), is represented by a recursive form of
Bézier curves using these four points:

dp(s)

Q(s) = {e(s) } = Po(s) = (1 — 5)P§(s) + sPi(s),

where
Pi(s) = (1 — s)Pi(s) + sPi(s), P(s) = (1 — s)Pi(s) + sP3(s),

(3)
Pi(s) = (1 — )Po(s) + sP,(s), Pi(s) = (1 — )P () + sPafs),

Pi(s) = (1 — s)Py(s) + sPs(s).

The data flow for calculation of the final function, in a tri-
angular form of de Casteljau schemes (Farin, 1990), is shown in
Fig. 3. The recursive feature of the calculation is suitable for
using neural net implementation. Specifically in our problem,
two endpoints are fixed at two corner points of the region,
P, = {0,0}7 to satisfy #3 (Property 3) and Py = {1, 11T for 24,
respectively. These are considered to be the endpoint parameter
constraints. The other two interior points can be placed at any
position within the compact region. Therefore, the nonlinearity
of the curves is controlled by four independent tuning para-
meters, (P,);, r=x, y;i=12

Figure 4 shows the functional procedures for the calculation
and tuning in the controllers. After the parameter constraints
on z,, the independent tuning parameter data, z, can be
represented with two independent row vectors, z, and z,.
For the known tuning parameters, the controller output is
calculated from the first mapping: “¢ to s, then the second

S

mapping: s to @p”. The first mapping needs to solve the cubic

r] [r) [F;
IEANIEANTIAN]
P

1
P,| (P, | [P,

3

Fig. 3. Data flow for the calculation of Bézier curves.

Tuning
Zp Parame'ter
5 Constraints
| Lo l.z)f _____
- j s . 0,
—  e(s) of f,(5) f—
Calculation:

Fig. 4. Control calculation and tuning of nonlinear controllers.

polynomial equation (9a), and the second mapping, equation
(9b), is a direct substitution.

8(s) = 35(1 — 5)2(Py)y + 3s2(1 — s)(Py)2 + 5%, (9a)
(s} =3s(1 — s (Py)y + 3s7(1 —s)(P,)2 + 5. (9b)

A standard linear equation solver, say, the Newton’s method
(Golub and Ortega, 1992), can be used for the solution. Since
equation (9a) is a monotonic function for any given P;, and
P, [0, 1] (see Appendix A), the solutions for s within the
interval [0, 1] is guaranteed to be unique. The curve, dp(é), is
readily drawn from the cross plots (Farin, 1990) of two curves
represented in equation (9).

Now, we define a simple and intuitive method of measuring
the flexibility of the system in producing the nonlinearity vari-
ations in nonlinear design of two-dimensional curves. Let 8, and
f, (Fig. Sa) be the curve slopes in radians at £ =0 and é = 1,
respectively. These slopes also represent the normalized sensitiv-
ity (NS), NS, = tan(f,) and NS, = tan(6,), at the two points,
P, and P, respectively. They provide useful information about
the control. The low value of the slope (or angle) indicates a low
degree of sensitivity to white noise of the system. The high value
means the greater derivative action generated by the system. For
a linear controller, the NS is a constant, although, a fuzzy
controller can produce a varied NS with respect to the error
signal. To examine the nonlinearity variations approximately,
we define the admissible area/line of the nonlinearity diagram
(Fig. 5) on the “0, and 6,” plane. Here, we call 6, and 0,
nonlinearity examination parameters. The points within this
area/line mean that their associated 6, and 6, can be produced
by the system. The larger the admissible area, the greater the
flexibility of the system in generating the nonlinear functions. It
is desirable for a control system, either implemented by fuzzy or
neural network version, to have a large area in the diagram but
to employ only a small number of tuning parameters. For
a dimensionless reason, we proposed the Nonlinearity Variation
Index (NVI) in a relative form:

NVI(N,, N, N.)

Admissible region in N, dimensional space

(10)

Whole region in N, dimensional space
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Fig. 5. Bézier curves and their associated admissible area/line of nonlinearity diagrams in three cases. (Admissible line: heavy solid line.

Admissible area: gray area. E: point corresponding to a perfectly linear function.) (a) Case A: P, and P, are coincident on trace line. (b)

Case B: P, and P; are coincident. {c) Case C: P, and P, are independent. (d) Case A: Single parameter. (¢) Case B: Double parameters. (f)
Case C: Four parameters.

where N,, N, and N, are the total numbers of input variables,
nonlinear tuning parameters and nonlinearity examination
parameters, respectively. In order to represent the NVI suffi-
ciently in characterizing the system, N should be selected to be
equal to N,. However, this will become very complex for the
calculation of NVI when N, > 3.

One of the advantages in using Bézier curves is the simple
derivation of 6, and 8,. Based on eq. (7d), there have the
relationships:

0o = £ (P, —l)o)=laln'l|:——«—---“)y>l (Py)o]
(Px)l - (Px)o

_ -1 (Py))
= tan [(Px)l , (11a)

(B — (B
6, = £ (PP =t —-——}
1= £ (B - Py) = tan I:(Px);&—(Px)z

= tan“[—i:—:?—;—j. (11b)

These equations show that 6, is simply controlled by the
location of P, (since Py, is fixed), and 8, by P, (P; is fixed).

Due to simple equations expressed in equation (9), the nonlin-
ear analysis of the system becomes straightforward and easy.
For examples, the cubic polynomial functions satisfy C® and
C? continuities. The functions do not have any flat zone. The
nonlinear function, ip(é), is always within the compact region
due to the convex hull property of Bézier curves. The mono-
tonecity of ép(é) within the compact region is shown in Appen-
dix A. The equivalent proportional gain is readily obtained from
equation (9) and #9. For simplicity, we still use the parametric
form to express the gain:

é(s) = 3s(1 — )3 (P); + 35 (1 — s)(P,), + 55, (12a)
i (s)
é(s)
3(1 —5)2(P), + 3s(1 — s)(Py); + s2
P30 = 52(P), + 3s(1 = s)(P)r + 52

(Kp)eg(s) = RP

=R {12b)

In general, (Kp).q is a nonlinear function, which can be shown
from the cross plot of equation (12). A constant (Kp).q is ob-
tained only when (P,); = (P,);, and (P,), = (P,),. This case
corresponds to a liner PID controller with constant gains. Sim-
ilarly, The equivalent derivative gain can be obtained from
equation (9) and #7. The equivalent integral gain can be ex-
plicitly represented only when e (or ¢) is a known function with
respect to time. Based on the proof in Appendix A, we find that
the heuristic properties of #7, #10 and 214 are also satisfied by
the present system. Therefore, we conclude that the nonlinear
functions of the present controller satisfy all the heuristic prop-
erties proposed in Section 3. Further investigation is made on
the Nonlinear Variation Index of the controllers. We will discuss
three cases associated with the different tuning parameter num-
bers as follows:

Case A: One tuning parameter.

By imposing constraints on Z,, the number of the independent
tuning parameters can be reduced. Here is one example of how
to impose constraints:

Py =(Py)y=1—(P)y=1-(P)=c, ce[0,1], (13)

to obtain a single tuning parameter controller. Equation (13)
indicates that the two interior control points are coincident and
follow a trace line of iip(é) = 1 — é (Fig. 5a). Based on equation
(1), we immediately find that the curves have the relation:
0y = n/2 ~ 6,. This results in a single admissible line in the
nonlinearity diagram (Fig. 5d). Denoting A4,(0,) to be a projec-
ted length of the admissible line onto the 8, axis, we obtain:

Ai(0o)

NVI(1L 1, 1) ==
T/

=10. (14)

Using the constraints in equation (13), the controller produces
symmetric C-type curves (Fig. 5a). The mirror plane is coinci-
dent with the tracking function of the control points. When
¢ < 0.5, the controller forms “C-curves” (Fig. 1a). If ¢ > 0.5, we
get “inverse-C-curves” (Fig. 1b). A perfectly linear function will
be obtained when ¢ = 0.5, which corresponds to Point E in
Fig. 5d. This point divides the nonlinearity diagram into four
regions. Each region corresponds to a specific type of curve
(Table 1). Note that the shape and location of the admissible line
are dependent on the trace line. In this case, equation (14) only
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Table 1. Relationship between the regions of nonlinearity dia-
grams (Fig. 5d—f) and the nonlinear curve types (Fig. 1).

Region

number 1 1 j v
Curve “Inverse-C” “ct “Inverse-S” “8”
type (Fig. 1b) (Fig. 1a) (Fig. 1d)  (Fig. 1¢)

gives partial information for the evaluation of the controller. In
control applications, if a single nonlinear tuning parameter is
used, the location of the admissible line is also important for a
control process; this is related to the first issue discussed in the
introduction.

Case B: Two tuning parameters.

The constraints for this case are:

(P, = (P2 €[0,1] and (P), =(P,),€[0,1]. (19)

This equation suggests that the two interior control points
should be coincident (Fig. 5b). Whenever the points are located
at the identity function of iip(é) = €, a perfectly linear function is
generated. This perfect linear function corresponds to a single
point, Point E, in the nonlinearity diagram (Fig. Se). If the
control points are only allowed to vary above the identity
function of the compact region, C-curves are formed. Variation
below the identity function produces only inverse-C-curves.
Now, we will examine the Nonlinear Variation Index of the
controller. The two independent admissible areas (Fig. 5e), A,,
are readily obtained from equation (11). Then, we have

 Au(80,0)
NV[(I,Z,Z)——@)Z——-O.S. (16)

It is interesting to note that the present controller with only
two nonlinear tuning parameters has a greater value of NVI
than that of the fuzzy controller with the same number of tuning
parameters in Hu et al. (1997) (where, NVI (1, 2, 2) = 0.366). This
means that if a “C” type curve is suggested by the process, the
present controller will produce improved flexibility of nonlin-
earity variations in the process. While that fuzzy controller
involved a cumbersome derivation for the nonlinearity variation
analysis, this controller requires only simple and straightfor-
ward design efforts.

Case C: Four tuning parameters.

This case corresponds to a controller without constraints
imposed on the two interior control points (Fig. 5¢c). The curve
analysis is similar to Case B. A perfectly linear function is
obtained when the points are located at the identity function.
Four types of curves, as shown in Fig. |, can be generated by this
controller. The difference between “C” type and “S” type curves
is the occurrence of an inflection point on the curves. While the
“C” type curve has zero inflection point, the “S” type curve has
a single inflection point (Fig. 1). A strict derivation of forming
what type of curves with respect to the tuning parameters is
quite complex and difficult in this case. For approximation and
convenience, we observe that if P is within the region below (or
above) the generated curve and P, is above (or below) the curve,
an “S- (or inverse-S-) curve” is obtained. 8, and 0, can be varied
independently in a range [0, 7/2].

In this case, for simplification, we will use the nonlinearity
diagram with respect to 6, and 8, for calculations of NVI (1, 4,
2). Therefore, the controller covers a full admissible area in the
nonlinearity diagram (Fig. 5f).

NVI(1,4,2) A0 o 17

(m/2)

The system is able to span a complete spectrum of nonlin-
earity in terms of NVI (1, 4, 2). We use equation (17) to indicate
that any one of the four types of simple curves in Fig. 1 can be
generated by applying four tuning parameters. To realize the
same NVI value, we found it was very complex to design the
fuzzy controller using the same tuning parameters. The strictly
defined NVI (1, 4, 4), represented in four dimensions, is quite
complex and it involves a calculation of hyper-volumes. How-

v

0 1

Fig. 6. Different C-type curves for the fixed 6, and 8; when
using four tuning parameters. (Solid points: control points cor-
responding to C,. Hollow points: Control points corresponding

to C;.)
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Fig. 7. Nonlinear curves of NS(= (Kp)eo/Kp) and (Kp)eo/Kp
associated with four types of simple curves in Fig. 1. (Solid line:
NS(e). Dash line: (Kp)eo/Kp). (@) With “C” curve. (b) With “In-
verse-C” curve. (¢) With “S” curve. (d) With “Inverse-S™ curve.

ever, it should be understood that adding two more tuning
parameters enhances the controller not only by encompassing
the S-type curves, but also by enlarging the spectrum of C-type
curves. Figure 6 demonstrates two different C-type curves for
the fixed 6, and #,. The length between two associated control
points changes the curvature of the curve. Therefore, the vari-
ations of C-type curves are greatly enriched in this case.
When using four tuning parameters, at least four types of
nonlinear curves are formed. More complicated curves are pos-
sible, but we believe that the “C” and “S” types are basic to
approximate any complex curve piecewisely with efficiency.
While the curve of #p(é) is generated, the functions for the
normalized sensitivity, NS(é), and equivalent proportional gain,
(Kp)eq» Will be obtained readily. Figure 7 shows the nonlinear
curves for NS( = (Kp)eo/Kp, if Kp 5 0) and (Kp)eo/Kp in the
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normalized error domain associated with the four curves in
Fig. 1. Note that the NS(é) for “C” type curves is monotonic, but
has a peak or valley for “S” type curves. The curves of (Kp)eo/Kp
always start at the height of NS, and end at a unit. The curve
features of both equivalent proportional and derivative gains
have confirmed our discussions in Section 2.

At this point, it is interesting to note that the parametric
representations of the spline-based functions, using an indirect
mapping scheme (x — s — y), offer unique characteristics to the
nonlinear approximators when compared to other approxi-
mators. For example, a loop-type curve (say, circle, ellipsoid, or
spiral) can be generated by simple polynomial functions (Su and
Liu, 1989), which seems very difficult, if not impossible, by using
direct-mapping (x — ¥) approximators, say, the fuzzy or neural
networks (Ying, 1994; Wang, 1994; Brown and Harris, 1994;
Kosko, 1997). Note that Brown and Harris also applied B-spline
functions for their systems, which have the Jocal control feature
when adjusting the tuning parameters. This discussion shows
the powerfulness of the proposed method in generating the
various nonlinear curves even they may be not the case in the
control applications.

6. Nonlinear functions using more than four parameters

For generating nonlinear functions more complex than the
four basic curves in the compact region (Fig. 1), additional
parameters are needed. This section illustrates a general method
which present a uniform expression in generation of nonlinear
functions regardless of the number of parameters. As discussed
before, the heuristic properties are still applied for those nonlin-
ear functions.

The inclusion of more parameters starts with the division of
the compact region into subdivisions. The first simplest case
occurs when there are two subdivisions (Fig. 8). It is interesting
to see that this case is similar to a “two-stage” fuzzy PI control-
ler developed by Li and Lau (1989), where two sets of rules have
been used in “coarse” and “fine” error ranges, respectively. In
Fig. 8, the first subdivision is “a-b-c-d”, and the second is
“d-e-f-g”. The total number of control points will be seven,
Po, ... ., Ps. Imposing the endpoint constraints eliminates
P, and P¢ from the tuning parameter data. Another constraint is
necessitated by #7, as described in Section 3 around the junction
point, Py:

L(Py—Py)=((P,—P;) and |P;—~Py|=|P,—Ps,
(18)

to realize the C' continuity between the two subdivisions (Farin,
1990). This constraint indicates that the location of P, implies
the location of P,. These two control points are asymmetrically
aligned with P; as shown in Fig. 8. Therefore, the independent
tuning parameters for the two subdivisions are:

z =[P, P, P, P]. (19
1 Up g h o f
Ps Ps
9
C di: ... / 4 e
I AN >p, |
P, e
0 >
b a 1

Fig. 8. Generation of nonlinear function from two subdivisions.

The total number of the tuning parameters becomes eight.
Note that if an optimal solver is applied for searching the
optimal tuning parameters, the two subdivisions will be readily
determined from the parameters. The final function, represented
in a triangular form of the de Casteljau schemes (Fig. 9), always
keeps a uniform expression when adding or removing the para-
meters. For convenience, however, the calculation of the final
function is made on two intermediate functions, P3(s) and P3(s)
(Fig. 9). The procedure for the calculations is as follows:

(1) Set the subdivisions according to the locations of endpoints
and junction points, say, “a-b-c-d” and “d-e-f-g” as shown in
Fig. 8;

(2) Determine the permitted-location region (PLR) for each con-
trol point in equation (19). In this case, we have P; (0, 1)
(this is an open region), P, € Region “a-b-c-d”, Ps € Region
“d-e-f-g”, and P, e Region “c-d-k-j”. The PLR for P, is
calculated from a rectangular region given by:

P,’sPLR: Width = minimum (Length “c-d”,
Length “d-¢”)
Height = minimum(Length “b-¢”,
Length “g-d”),
becomes smaller than its associated subdivision due to the

consideration that P, should be within the compact region
too (Fig. 8), that is, P4, € Region “d-i-h-g”.

(3) Introduce a local parameter g (Farin, 1990) for the interval
S-SR RPN

—¢

q= » qe[0,1]. (20)

€3~ ¢y
The interval points ¢, and ¢, are calculated from equation
(9a) using the known subdivision data with respect to é.

(4) Calculate the piecewise Bézier curves for each subdivision
from the nonlinear mapping, “é to ¢”, “q to ip".

The above procedures can be extended to a general case,
N, =1,2,4,8, ..., 4m, where m is an integer number. Whenever
one subdivision is added in, four additional parameters are
augmented to the tuning parameter set. It seems difficult to
define an NVI in this case for an overall evaluation of the
function. The original definition of NVI can be used in each
subdivision.

7. Nonlinear functions under symmetric considerations

All derivations above regarding the tuning parameters are
valid for positive values of ¢ in the interval [0, 1]. If a non-
symmetric function is required in the design, we will need an-
other set of tuning parameters to form the nonlinear mapping
for the negative values of é. The procedures for realizing the
nonlinear functions are the same as those described in the
previous sections. Two sets of tunning parameters, not necessar-
ily equal, will vary the nonlinear functions in the positive é and

Fig. 9. Calculation for two subdivisions.
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negative & domains. Though they can be joined in as a single
uniform expression, for simplicity, however, we calculate the
whole curve separately. If an antisymmetric function is desired
(211b), the calculation of the function in the negative € domain
can be made by

tp(— €)= — 4e(é). @n

8. Linguistic representation

Some researchers (Wang, 1994; Driankov et al., 1996) have
commented that fuzzy controllers are simply a kind of nonlinear
transfer element. The present controller, emulating a fuzzy con-
troller, can be implemented without involving the concept of
fuzzy logic. Given the known relationship of the mapping, like
equation (9), the system can calculate the controller output
directly. An optimization solver can be used for tuning a process
according to the specific performance criteria. However, as
pointed out by Zadeh (1996), “the main contribution of fuzzy logic
is a methodology for computing with words”. The capability of
incorporating human linguistic descriptions has significant im-
portance in applications since many real-world problems are
directly solved by human expertise and decision making. In
control problems, fuzzy systems produce an elegant solution
which makes use of human knowledge in handling many com-
plex processes, which might have failed if traditional control
approaches had been used. Therefore, the feature of computing
with words is imperatively preserved in the present system.

The fuzzy system is constructed from the fuzzy “IF-THEN”
rules using linguistic information to describe the control action
from human experts. The simplest fuzzy linguistic representa-
tion, based on the heuristic property Z1la, for the present
controller is

R1: If(é is positive) then {ilp = (dip)"}
(22)

R2: If(é is negative) then {ip = (ip) " }

where the superscripts of “ + ” and “ — ” are used for describing
the functions in positive é and negative é domains, respectively.
This set of rules works like the control scheme switchers,
and has lost the conventional meaning of fuzzy reasoning. We
believe that this is the weakness of the present controllers.
However, the benefits are significant for applying this approach
since it provides a systematic and simple solution to formulate
human knowledge in nonlinear design for PID control applica-
tions. For example, some rules can be constructed according to
the control curve types (or the number of nonlinear tuning
parameters):

R1: If(performance is unkmown) then (iip = linear fuction),

R2:  If (performance for linear fuction is unsatisfied) then
up = C-type fuctions),
(p ype fi ) 23)
R3: If (performance for C-type Fuction is unsatisfied) then
(ihp = S-type fuctions),

R4: If (performance for S-type fuction is unsatisfied) then
(fip = subdivisional functions).

This set of rules represents the “simple-first” strategy for fine
tuning of model-free controls where little or no knowledge is
available to the plant. We consider a linear function as a starting
point since the corresponding linear PID controllers have
a well-developed control technique and are familiar to the con-
trol engineers. This strategy, different from the strategy of “rule
(or complexity) reduction”, requires less design efforts and is
more compatible with engineering practice. The optimization in
using a rule-reduction design method may involve two conflict-
ing criteria with respect to simplicity and accuracy, respectively.
This makes it difficult to define the appropriate criteria. How-
ever, a simple-first design method will apply a single accuracy
criterion without involving a trade-off consideration of two
conflicting criteria.

In equation (23) we assume that the control performance is
improved by adding more tunning parameters. Note that Rule
2 in equation (23) was proved to be numerically true in Hu et al.
(1997) for the proposed properties. However, the assumption

becomes invalid if the heuristic properties of the desired nonlin-
ear functions are not properly defined. At least we can find that if
the number of tuning parameters (or subdivisions) is close to
infinite, a C-type curve will be obtained. This is against the
assumption. This discussion suggests that equation (23), as well
as the proposed heuristic properties, need to be refined based on
further investigations into the relationship between “nonlin-
earity and performance”.

9. Summary and discussions

In this work, a nonlinear PID controller is designed using
spline-based functions to emulate a fuzzy PID system. The
proportional actions are selected as a basic function for the
nonlinear “control curve” design. This selection is of great signi-
ficance in nonlinear control design since this action may provide
maximum intrinsic simplicity of nonlinear functions than other
contro!l actions and tuning gains. The heuristic properties are
proposed for the functions, which can also serve as design
guidelines for a single-input fuzzy controller. Due to several
distinguished features of spline functions, such as generality,
parametrization, parallelism and recursiveness, the present de-
sign method has been greatly enhanced. While the associated
nonlinearity variations of the previous controller in Hu et al.
(1997) did not cover the whole range of the C-type curves,
the present controller has encompassed a wider spectrum of
C-type curves when using two tuning parameters. At the same
time, the nonlinear analysis becomes straightforward and simple
for the control design, and the system is readily extended to
include more nonlinear tuning parameters (say, a complete spec-
trum of C- and S-type curves in terms of NVI(1, 4, 2) when using
four tuning parameters). A perfect linear function can be realized
to generate a guaranteed-PID-performance system, which is
considered to be the starting point for tuning of the present
system.

In PID control applications, we view any controller as a non-
linear approximator. It works to approximate the nonlinear
functions of the controller output which are implicitly suggested
by the process. These functions, varying with the specific perfor-
mance criteria, are generally unknown to control engineers. For
this reason, any approximator, either fuzzy, neural network or
spline-based version, should be evaluated using three features:
transparency, versatility and simplicity. We have used the non-
linearity variation index as a process-independent measure, not
the approximation accuracy of the specific function, to evaluate
the control systems. This work explores a new direction for
a systematic design of a nonlinear approximator in control
applications. We believe that further investigations. of the ap-
proach are needed. An improved definition of the nonlinearity
variation index is required to evaluate a system's nonlinear
characteristics sufficiently. Additional studies are also expected
regarding the implementation of the present approach with
a true fuzzy reasoning approach, as well as integration with
neural networks and genetic optimization techniques for ap-
plications of high-performance controllers.
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Appendix A—-Proof of the monotonecity of 1ip(é) in the compact
region

The proof of the monotonecity of ip(é) can be made on their
associated parametric functions of equation (9). If both é(s) and
tip(s) are monotonic to s in the interval [0, 1], respectively, the

v

Fig. Al. The curves of f, (s) and f; (s).

curve of dp will be monotonic with respect to é in its compact
region. Since é(s) has the same form as #p(s), the conclusion on
é(s) will be valid for dp(s). Therefore, the derivation is only given
to the é(s). The derivation is conducted on the differential of &(s),
which is obtained from equation (9):

dé(s)
T 3{(PYLf1(8) + (P2 f2 (8) + 52}, (A1)
where
fils) =1 — 4s + 3s* (A.2a)
Sa(s) = 25 — 352, (A.2b)

and (P;); and (P,), are the independent tuning parameters
within the range of [0, 1]. For simplifying the analysis, two
functions, f; (s) and f; (s), are illustrated in Fig. A1, and they are
examined according to three ranges (which are divided by two
cross-zero points of the functions) as below:

Range A: 0 < s < 1/3.
Since f;(s) = 0 and f>(s) > 0 in this range, the differential of
é(s), in equation (A.1), will always be non-negative:

dé(s)

20 (A3)

Range B: 1/3 <5< 2/3.

In this range, f; (s) < 0 and f,(s) = 0. The minimum of equa-
tion (A.1) within this range is when (P,), = 1, and (P,), = 0. We
can find a relation for equation (A.1):

dé(s) B 1\?
[ . :Lin_lz(s—i) >0. (A4)

Range C: 2/3<s< 1.

Both functions are negative in this range (Fig. A.1). The
minimum of equation (A.1) is obtained when (P,), = (P,), = L.
Then, equation (A.1) has the relation:

[dé(ﬂ =3(—1?20. (A.5)

ds

Equations (A.3)~«A.5) confirm that é(s), having non-negative
differential, is a monotonically increasing function with respect
to s in the interval.



