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Abstract—A function-based evaluation approach is proposed
for a systematic study of fuzzy proportional-integral-deriva-
tive (PID)-like controllers. This approach is applied for deriving
process-independent design guidelines from addressing two issues:
simplicity and nonlinearity. To examine the simplicity of fuzzy
PID controllers, we conclude that direct-action controllers exhibit
simpler design properties than gain-scheduling controllers. Then,
we evaluate the inference structures of direct-action controllers
in five criteria: control-action composition, input coupling, gain
dependency, gain-role change, and rule/parameter growth. Three
types of fuzzy PID controllers, using one-, two- and three-input
inference structures, are analyzed. The results, according to
the criteria, demonstrate some shortcomings in the Mamdani’s
two-input controllers. For keeping the simplicity feature like
a linear PID controller, a one-input fuzzy PID controller with
“one-to-three” mapping inference engine is recommended. We
discuss three evaluation approaches in nonlinear approximation
study: function-estimation-based, generalization-capability-based
and nonlinearity-variation-based approximations. The present
study focuses on the last approach. A nonlinearity evaluation is
then performed for several one-input fuzzy PID controllers based
on two measures:nonlinearity variation index (NVI) and linearity
approximation index (LAI). Using these quantitative indices, one
can make a reasonable selection of fuzzy reasoning mechanisms
and membership functions without requiring any process infor-
mation. From the study we observed that the Zadeh-Mamdani’s
“max-min-gravity” (MMG) scheme produces the highest score
in terms of nonlinearity variations, which is superior to other
schemes, such as Mizumoto’s “product-sum-gravity” (PSG) and
“Takagi–Sugeno–Kang” (TSK) schemes.

Index Terms—Approximation capability, function-based evalua-
tion, fuzzy control, nonlinearity variation analysis, PID controller,
systematic study.

I. INTRODUCTION

FUZZY logic control (FLC ) technique has been success-
fully applied in many engineering areas and consumer

products since the pioneer work of Mamdani in 1974 [1].
However, a systematic design of fuzzy controllers is still of
great concern due to the following facts. First, there is lack
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of sufficient theories to show that why fuzzy control, either
sometimes or most of times, is able to outperform over the
conventional control. Second, there is limited knowledge or
design guideline available regarding implementation aspects.
For this reason, fuzzy control design usually requires a quite
amount of “trial and error” procedures based on computer
simulation or process test. Third, the final tuning of a fuzzy
controller for improved plant performance is still a complex
task as compared with the straightforward tuning procedures
of conventional PID controllers. All these weaknesses have
greatly hindered the extensive applications of fuzzy controllers
in industries.

In the past some researchers have taken initiatives to inves-
tigate the design aspects of different fuzzy systems systemati-
cally for efficient fuzzy control. In 1988, Mizumoto compared
twelve different inference schemes based on the closed-loop
performance of a first-order process with time delay [2]. This
pioneer work is important since it demonstrated a systematic
approach for selection of valid inference schemes. As the eval-
uation method is process dependent the conclusions may lose
generalization for other higher-order process systems. Recog-
nizing the limitations of Mizumoto’s approach, Ying conducted
an analytically-based method to assess the different fuzzy in-
ference systems [3]. He derived the closed-form solutions of
four-rule fuzzy PI-like controllers using four different inference
schemes. By analyzing the desired properties of typical con-
trol actions, Ying was able to eliminate one reasoning scheme
called “Bounded Product Inference”. This evaluation method,
being process-independent, derives the generalized conclusions
for scheme selections. However, this work did not rank dif-
ferent valid fuzzy reasoning schemes for the best selection. Se-
lections and evaluations of reasoning methods and defuzzifica-
tion methods later became a key issue for a systematic study of
fuzzy control [4]–[6].

In this work, we propose a function-based evaluation
approach for a systematic study of fuzzy proportional-inte-
gral-derivative (PID) controllers. While a performance-based
evaluation approach is more common in assessing control
technique, the function-based evaluation approach receives less
attention. In fact, each approach emphasizes different aspects in
control that usually cannot be derived from the other approach.
Table I lists two sets of evaluation issues addressed by two
approaches respectively in control theory and applications. As
shown in the table, the performance-based evaluation approach
is to examine the controller in terms of performance character-
istics of response to the external process being controlled. As
a result, the findings from the performance-based evaluation
approach are basically process-dependent. In contrast, the

1063–6706/01$10.00 © 2001 IEEE
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TABLE I
COMPARISONS OFEVALUATION ISSUES FOR

TWO EVALUATION APPROACHES OFCONTROLLERS

function-based evaluation approach is to reveal the intrinsic
properties of controllers. This approach does not require any
process information, and the conclusions from this approach
are more general regardless of the process type. A complete
systematic study should include both performance-based
evaluation as well as function-based one.

One of the objectives of this work is to demonstrate that the
function-based evaluation approach is a unique tool for deriving
process-independent guidelines in a systematic design. We ad-
dress two basic issues in the design of fuzzy PID controllers,
that is, thesimplicity related to the fuzzy inference structures,
and thenonlinearityrelated to the reasoning schemes and mem-
bership functions. Systematic design procedure will be given to
the fuzzy PID controllers according to the two issues of func-
tionality. The rest of this paper is organized as follows. In Sec-
tion II, we classify the fuzzy controllers according to the PID
principles. An initial selection of fuzzy PID structures is made
in Section III with respect to simplicity. In Section IV, we pro-
pose five simple evaluation criteria in assessment of the Mam-
dani’s two-input controllers. Using the same criteria, a similar
analysis is made to three- and one-input fuzzy PID controllers in
Sections V and VI, respectively. In Section VII, the functional
behaviors and the linguistic representations are discussed. We
apply two numerical indices for an indepth nonlinearity evalu-
ation of the fuzzy controllers proposed in Section VIII. Eight
examples are studied as evaluation examples in Section IX. Fi-
nally, a summary and discussions are presented in Section X.

II. CLASSIFICATION OF FUZZY CONTROLLERS

Considering the extensive applications of PID technique
in industry [7], this study is primarily on fuzzy PID-like

Fig. 1. Classification of fuzzy controllers in view of control actions. (The
main reference source is given in the parentheses. The asterisk indicates the
commonly-used type of controllers compared with its counterparts.)

controllers. Let an absolute expression of three-term PID
controllers be given by

(1)

where and are the error and the change of error during
the sampling interval ; and are the proportional,
integral and derivative gains, respectively. Equation (1) can be
rewritten in a form

(2)

where and are proportional, integral, and derivative
actions, respectively. The total, or composed, output of three
actions is denoted by .

In view of PID control principles, we suggest a classifica-
tion of the existing fuzzy controllers as shown in Fig. 1. If a
fuzzy controller is designed (or implied equivalently) to gen-
erate the control actions within the proportional/integral/deriva-
tive (P/I/D) concept(s) like a conventional PID controller, we
call it a fuzzy PID-like (or fuzzy PID) controller. The first fuzzy
controller developed by Mamdani [1], [8] is a fuzzy PI con-
troller. The type of fuzzy non-PID controllers can be found in
model-based fuzzy controllers [9], such as the MIMO models
[10] using the T-S-K consequent representations [11], [12]. We
term the direct-action (DA) type for the Mamdani’s controller
[13], since its fuzzy inference deduces the control-action output
directly to drive the process. The fuzzy gain-scheduling (GS)
type [14]–[16] is most similar to the conventional GS controller
[17] in changing the gains for varied operating conditions or
process dynamics. The other class of fuzzy PID controllers can
be found like the “hybrid” controller [18], which employs the
fuzzy PID for the coarse tuning and linear PID for fine tuning.
We also define the Mamdani’s controller to be composed-ac-
tion (CA) type since its fuzzy inference output is a composed
force of proportional and integral actions. In [19], we proposed
a single-input fuzzy controller and termed it individual-action
(IA) type. In each level of the classification (Fig. 1), the Mam-
dani’s type is the most common in applications.

Another type of classification of fuzzy controllers can
be made based on the dimensionality (defined as the total
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number of input variables) of the inference engines. Up to
now, most researchers have adopted the Mamdani’s two-input
fuzzy inference structure [20]–[22]. They usedand as
the input variables to the fuzzy inference. Three-input fuzzy
PID controllers have been reported in [23], [24]. The general
algorithms for -dimensional fuzzy controller design are given
in [25], and [26].

III. I NITIAL SELECTION OFFUZZY PID STRUCTURESWITH

RESPECT TOSIMPLICITY

While many investigations demonstrated the performance of
each fuzzy PID controller, there is a lack of systematic study of
an optimal selection from various design structures. In this sec-
tion, we will show how to make an initial selection of fuzzy PID
structures if simplicity is concerned in applications. Therefore,
we supposea prior knowledge to form every control design is
sufficient and its performance of control process is not an issue
for each design.

The initial selection of fuzzy PID controllers is made between
the DA type and GS type. The basic linguistic representation for
each type of controllers is

DA If `` process error'' is

then `` control action'' is

GS If `` process error'' is

then `` control gain'' is

From these representations one can see that the difference be-
tween two types of controllers will be the corresponding forms
of nonlinear relationships, , from the fuzzy inference map-
ping, where is an error vector. While the nonlinear function
of DA-type fuzzy controllers benefits the property of “zero con-
trol action for zero error,” or , one cannot ex-
pect such property for the GS-type fuzzy controllers. In addi-
tion, DA-type fuzzy controllers also have the property of “max-
imum control action for maximum error” from control principle.
However, there are no such common rules for the GS-type fuzzy
controllers. All these process-independent properties will sim-
plify the design of nonlinear functions and will be helpful in
reducing some free parameters of fuzzy systems. Therefore, it
is reasonable to conclude that DA-type fuzzy controllers will
have a simpler nonlinear function than that of GS-type fuzzy
controllers. In the following sections, we will discuss DA-type
fuzzy controllers further for an optimal selection of design struc-
tures with respect to some criteria of simplicity.

IV. TWO-INPUT FUZZY PID CONTROLLERS

In this section, we analyze two-input fuzzy PID controllers.
Although this type of controllers is the most common in fuzzy
control applications, their functional behaviors and the associ-
ated weakness in controller tuning have not been well investi-
gated and recognized. For comparing with the functional behav-
iors of the conventional PID controllers, we proposed five eval-
uation criteria as follows to examine this type of controllers:

Fig. 2. Two-input fuzzy PID controllers. (a) Absolute output. (b) Incremental
output.

1) Control-Action Composition:Most fuzzy PID con-
trollers are two-input structures as shown in Fig. 2. The
linguistic representations are as follows:
incremental output

Rule If is and is

then is (3)

absolute output

Rule If is and is

then is (4)

where and are normalized error and change of error;
and are fuzzy variables. The first

fuzzy controller developed by Mamdani is a fuzzy PI-like
controller using (3), since it has the similar relation to the
incremental expression of a conventional PI controller

(5)

If an absolute output is used in (4), the system becomes a
fuzzy PD-type controller. Comparing (5) with (1), one can see
the associations of “gain-with-variable” are changed with the
form of controller output. For example, associated with in
(1) changes to associate with in (5). These associations are
one-to-one for a linear PID controller, but become invalid for
the two-input fuzzy PID controllers. The two-input fuzzy con-
trollers represented by (3) and (4) produce the composed
[Fig. 2(a)] and composed [Fig. 2(b)] outputs, respectively.
Due to a single output directly from the “two-to-one” mapping
in the fuzzy inference, one is unable to decompose the output
for the exact component of each action. This behavior is called
“control-action composition.”

According to the classical control theory, the effects of indi-
vidual P/I/D actions (or gains) of a controller has been summa-
rized by de Silva [27] as follows:

: speed up response, decrease rise time, and increase
overshoot.

: reduce the steady-state error.
: increase the system damping, decrease settling time.

The feature of independent tuning of each control action is very
useful in control engineering practice. However, the present
two-input fuzzy PID controllers do not share this feature due to
the control-action composition.

2) Input Coupling: To explain the input-coupling behavior,
we use the derivation results from Ying [3] for fuzzy PI-type
controllers. The conclusions based on this analysis are also valid
for fuzzy PD-type controllers since (3) and (4) are basically
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the same except for the form of output. Four types of infer-
ence schemes (including Mamdani’s) have been investigated by
Ying, but a uniform equation for the composed fuzzy output was
derived

(6-a)

and

(6-b)

where and are the scaling factors to error and error
change signals, respectively. Note that some notations are dif-
ferent from Ying’s, where we call and the “apparent pro-
portional gain” and “apparent integral gain,” respectively. The
term of “apparent” is used because the exact value for each con-
trol action (or equivalent gain) can never be obtained from the
composed output [13]. Equation (6-a) shows the decomposed
two terms only in an apparent sense based on (5) for approxi-
mations of two control actions. The value ofin (6-b) can be
represented by a general form of functions [3, Table III]

(6-c)

Therefore, the two apparent control actions will be

(7)

These equations indicate that each control action will be a
function of both error and error-rate signals. This behavior is
called “input coupling.” In general, this coupling presents neg-
ative effects on control tuning operations as well as on con-
trol performance. First, if an input scalar of fuzzy inference
is adjusted, each control action will be changed at the same
time. This makes the independent tuning of each apparent con-
trol action quite difficult if not impossible. Second, the original
meaning of each control action is changed due to the input cou-
pling. For example, the proportional action, being proportional
to error signal, is also a function of its error-rate signal. This
controller may become more sensitive to noisy data than a con-
ventional PID controller.

3) Gain Dependency:As each P/I/D action has different
effects in the response characteristics, it is always desired to
have decoupled PID gains for independent tuning. However,
the present two-input fuzzy PID controller shows “gain depen-
dency” behavior from (6-b)

(8)

This equation suggests that the apparent integral gain is par-
tially given by the apparent proportional gain. This behavior of
gain dependency, causing decreased tuning range of the equiv-
alent gains, will limit the controller to possess a broad range of
controllability.

Gain dependency and input coupling are two different
concepts. Mathematically, input coupling can be interpreted
by using the following matrix expression for the fuzzy PI
controller

or

(9)

where is a gain matrix, and are the error and apparent
incremental control action vectors, respectively. The nondiag-
onal terms in cause the input coupling from to (9).
Note that the actual output of the controller is the sum of two
control actions, . The decomposition of the
output is made apparently. Further, the apparent gains in (6-a)
form a diagonal matrix

(10)

where we call apparent gain matrix, which shows apparently
decoupling of the control actions. Two diagonal terms in
are actually inter-related (8). From a viewpoint of control en-
gineering, a coupling effect indicates that one control action is
caused by two or more input variables. Gain dependency means
that tuning of an individual gain influences to the other gain(s).

4) Gain-Role Change:Most industrial process control sys-
tems contain transportation delay of signal and therefore it is
reasonable to expect a certain degree of time delay in the process
of control. The Mamdani’s fuzzy PI controllers may suffer a
problem due to this effect. In a set-point control process having
a time delay, the error-rate signal is always presented to be
zero or negligible during the initial time-lag pe-
riod: , where is the time delay. According to
(6-a), the output of the two-input fuzzy PI controller is then
uniquely produced by a component of the apparent integral ac-
tion, . The role of the apparent integral gain is
actually corresponding to a proportional action, but is changed
back when .

The tuning principles of a linear PID technique suggest that:
1) if the error is maximum, the component of the proportional
action requires to be great for a fast response of the process to
reach the set-point and 2) when the error is near zero, the compo-
nent of the integral action should be dominant for reducing the
steady-state error. The apparent integral action represented in
(7) is included with the proportional component, the “gain-role
change” of the apparent integral gain will result in negative ef-
fects in applications. First, it is more difficult to adjust the gain
for the compromise of performance within two periods. Second,
the overall performance of the process may be decreased from
the compromise. This functional problem, however, is related to
the incremental form of fuzzy inference output. This discussion
is also valid for a linear PID controller.

5) Rule/Parameter Growth:Suppose the rule numbers
in each input variable are the same, denoted by. The total
number of rules is “ ” for the two-input fuzzy controllers.
Since the parameters of membership functions (MFs) are
associated with rules, the parameter growth will be increased
with the rule growth.

V. THREE-INPUT FUZZY PID CONTROLLERS

Fig. 3 shows the three-input fuzzy PID controllers. Based
on the discussions in the previous section, it is understandable
that these controllers exhibit control-action composition and
coupling inference due to their “three-to-one” mapping. The
controller using absolute output [Fig. 3(a)] usually has the
difficulty in formulating the fuzzy rules for the variable . The
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Fig. 3. Three-input fuzzy PID controllers. (a) Absolute output. (b) Incremental
output.

Fig. 4. One-input fuzzy PID controller with a “one-to-one” inference
mapping.

incremental-form controller [Fig. 3(b)] presents a functional
problem of gain-role change for time-delayed processes. Using
the closed-form solution derived in [13], we find the controller
in Fig. 3(a) also possesses gain dependency. The rule growth
for three-input controllers is “ .”

VI. ONE-INPUT FUZZY PID CONTROLLERS

We have developed a one-input fuzzy PID controller [19],
which used a “one-to-one” fuzzy inference mapping (Fig. 4).
The output of the inference is the fuzzy proportional action,.
The other two actions, the integral and derivative, are deducted
from . This controller is more analogous to a conventional
PID controller

(11)

where and are the normalized gains. The three con-
trol actions are calculated individually, and as a result the prob-
lems of control-action composition and input coupling are elim-
inated. The equivalent gains of the fuzzy PID controller can be
obtained by comparing (4) and (11):

(12)

The association of “gain-with-variable” in the conventional PID
controllers is remained for this controller in a general sense.

Examining (12), we can obtain the following relationship:

(13)

This equation indicates that the equivalent derivative gain is
dependent on the equivalent proportional gain. Actually, three
equivalent gains are calculated from the same fuzzy propor-
tional action (12). Therefore, all the equivalent gains are depen-

Fig. 5. One-input fuzzy PID controller with a “one-to-three” inference
mapping.

dent [13]. In order to achieve an independent tuning property of
the gains, we proposed a “one-to-three” mapping structure [13]
for the single-input fuzzy controller (Fig. 5). Three independent
fuzzy proportional actions are generated. Substituting three in-
dividual into three terms of (11), respectively,
this controller will produce three independent equivalent gains.
Using this fuzzy mapping strategy, the rule growth is “” for
this controller. The absolute form of the fuzzy inference output
will keep the PID principles even in a time-delayed process.

VII. L INGUISTIC REPRESENTATIONS ANDFUCTIONAL

BEHAVIORS

The five-functional behaviors proposed above are determined
by the linguistic representations of fuzzy knowledge. The pio-
neer work on the relationship between linguistic representations
and functional behaviors was discussed by de Silva [28]. The
Mamdani form for fuzzy rules is represented by

Rule if is and and if is

then is and and is (14)

where is the input variable vector, and

is the output variable vector. This equation
represents a “-to- ” mapping of fuzzy reasoning. We suggest
a simple criterion for examining coupled rules of the conven-
tional fuzzy system

In this case, the controller generally exhibits behaviors of
control-action composition and input coupling. This criterion
is very useful when constructing a fuzzy-knowledge base.
Although knowledge rules are usually extracted from the
experts of controllers, it is suggested to apply uncoupled rules
if possible. When the convenient tuning features, like the
conventional PID controller’s, are the most concern in the de-
sign, a single-input fuzzy PID controller with a “one-to-three”
mapping is considered to be the optimal structure (Table II).
The rules for this controller are

Rule if is then, is

and is and is (15)

VIII. N ONLINEARITY EVALUATIONS

The function-based evaluation presents the most importance
in fuzzy control designs due to the nonlinearity characterized
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TABLE II
COMPARISONSBETWEEN LINEAR AND FUZZY PID CONTROLLERSFROM THE TUNING ASPECTS. (N = THE TOTAL NUMBER OF FUZZY

SETS IN EACH INPUT VARIABLE)

by the controllers. For this reason, a nonlinearity evaluation of
fuzzy PID controllers is taken as the second issue concerned
in this work. Considering fuzzy systems as universal approxi-
mators, we believe nonlinear approximation capability will be
a basic content in the nonlinearity evaluation. Three concepts
have been applied in the study of nonlinear approximation ca-
pability:

1) function-estimation-basedapproximation;
2) generalization-capability-basedapproximation [29];
3) nonlinearity-variation-basedapproximation [30], [31].

Significant differences exist among the three concepts. The
first approximation is the conventional concept in nonlinear
function approximation. The estimation error, say, in regres-
sion, will be a measure in the evaluation. The second concept
has been adopted mostly in the study of neural networks or
statistical learning theory. While an approximator is constructed
based on a set of training data, its approximation evaluation will
be made based on a set of testing data. The performance of the
approximator in obtaining the correct estimation for testing data
is called generalization capability. While a generalization error
was given as a measure in evaluation of neural networks [29],
Vapnik presented a more generalized form for the approximator
evaluation, called risk function in statistical learning [32]. On
the contrary, the concept of nonlinearity variation [30], [31]
is used to evaluate a controller according to its capability of
generating a group of nonlinear functions, rather than to its
approximation accuracy to a specific function. This concept is
appropriate in control applications since the nonlinear func-
tions for approximation are usually unknown. In addition, the
space of nonlinear functions spanned by an approximator for a
given number of free parameters corresponds to the nonlinear
adaptation, or optimization, space in control processes. In this
sense, the larger the space of nonlinearity variations, the greater
the possibility of a high performance controller.

We consider that the nonlinearity-variation-based approxima-
tion will be proper in evaluation of fuzzy PID controllers. The
concept of the nonlinearity variations can be used as a measure
to evaluate “the ‘goodness’ of the transformation from knowl-
edge base to nonlinear mapping” as stated by Wang in [33 pp.
204] for fuzzy systems. The analysis based on nonlinearity vari-
ations can provide the process-independent design guidelines
for selection of fuzzy inference schemes, defuzzifications, or

Fig. 6. Four types of simple nonlinear curves.

even membership functions. The study of nonlinearity varia-
tions is quite novel at present. In this work, we adopt two quanti-
tative indices in the previous study [30], [31] for demonstrating
how to implement a systematic design in this regard. For a com-
plete understanding of the analysis procedures, we rewrite two
indices below with a minor modification.

1) Nonlinearity Variation Index (NVI):Suppose any design
parameters related to fuzzy structures are callednonlinear
tuning parameters. We can understand that increasing the
number of these parameters will increase the nonlinearity vari-
ations, but this will make the nonlinearity evaluation difficult.
For simplicity and without losing generality, we consider the
simplest rules (say, two or three in this work) and two nonlinear
tuning parameters for the comparative study.

Since a one-input fuzzy controller only involves a control
curve design, the nonlinearity analysis will be based on a two-di-
mensional space. In the previous study [31], we have found that
the four types of simple nonlinear curves (Fig. 6) are basic for
such nonlinearity analysis. For this reason, a quantitative mea-
sure is proposed. Let and be the angles in radians cor-
responding to the curve slops at and
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(Fig. 6), respectively. The change of nonlinear tuning parame-
ters result in different types of curves with differentand .

To examine the nonlinearity variations approximately, we de-
fine the admissible area (or curve) of the nonlinearity diagram
on the “ and ” plane. Fig. 9 shows the admissible area for a
controller called MMG-I, which we will introduce later. Here
we call and nonlinearity examination parameters. The
point within the admissible area (or on the admissible curve)
means that a control curve associated with theseand can
be produced by the controller. The larger the admissible area,
the greater the flexibility of the system in generating the non-
linear functions. The NVI is defined in a dimensionless form

NVI
admissible region in dimensional space

whole region in dimensional space
(16)

where are the total numbers of input variables, non-
linear tuning parameters and nonlinear examination parameters,
respectively. In this work, is calculated for the con-
trollers.

2) Linearity Approximation Index (LAI):We propose a con-
servative design strategy for a fuzzy PID controller [31]: “A
fuzzy PID controller should be able to perform a linear, or ap-
proximately linear, PID function such that the system perfor-
mance is no worse than its conventional counterpart.” If the
controller is able to generate a perfect linear function, ,
we call it a guaranteed-PID-performance (GPP) system. Along
the line of this strategy, a safe performance bound is produced
for the fuzzy PID system from the performance analysis of its
counterpart that has the same PID connective structure. For ex-
amining the system on this aspect, an LAI is given

LAI (17)

where is a linear function which is imposed to pass through
the origin point, and the ending point

. This index, representing the most linearity approximation
that can be produced by the controller, is normalized within a
range of . When “ ,” it corresponds to a perfect
linear PID controller. The larger the value of LAI, the higher de-
gree of linear approximation the fuzzy PID controller produces.
This index is a quantitative measure of confidence in using a
GPP bound calculated from the linear PID controller.

IX. EVALUATION EXAMPLES

In this work, eight differently designed controllers are studied
as evaluation examples to demonstrate how to conduct an in-
depth analysis of the nonlinear systems. Four design schemes,
including the three commonly-used fuzzy reasoning schemes,
are selected and given in details as follows. Some schemes have
been investigated in either numerical [2] or analytical [3] ways.
We will show the nonlinearity analysis from a different view-
point. In the present evaluations, the one-input fuzzy controllers
with two nonlinear tuning parameters are considered. All con-
trollers are designed to be compatible with the heuristic proper-
ties proposed in [30].

Fig. 7. Membership functions for “MMG-I,” “MMG-IV,” and “PSG-I”
controllers.

Fig. 8. Membership functions for “MMG-II ” “MMG-III,” and “PSG-II”
controllers.

A. Zadeh-Mamdani’s “Max-Min-Gravity (MMG)” Scheme

This scheme uses the standard Zadeh-Mamdani “max-min”
reasoning mechanism and “center of area” for the defuzzifi-
cation. A term of max-min-gravity (MMG) is used to denote
this type of controllers. Four controllers are designed using this
scheme. They all use triangular membership functions with
three rules as

Rule If is NB then is NB

Rule If is PB then is PB

Rule If is AZ then is AZ (18)

where “NB,” “PB” and “AZ” stand for “negative big,” “positive
big” and “approximate zero,” respectively. The main differences
of each controller are presented below.

1) “MMG-I” Controller: Fig. 7 shows the membership
functions of this controller. Two nonlinear tuning parameters,

and , are used to change the nonlinearity
of the control curves. And the membership functions ofare
distributed within the range of . The closed form solution
of was derived in [31], but is also given in Appendix A,
since some results are used later by other controllers. The
output of this controller is not fully normalized since it has

.
2) “MMG-II” Controller: This controller is designed to be

the same as “MMG-I” except that the range of the membership
functions of are extended to (Fig. 8).
The controller has the symmetrical membership functions for
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Fig. 9. Admissible area of nonlinearity diagram for “MMG-I” controller.
Hatched area: for nonoverlapping case. Grey area: for overlapping case. E:
point for approximation of a linear PID.

Fig. 10. Admissible area/curve of nonlinearity diagram for “MMG-II”
controller. Curve A-D-B: admissible curve for nonoverlapping case. Grey area:
admissible area for overlapping case. E: point for approximation of a linear
PID.

the fuzzy consequent sets. This change leads theto be
fully normalized, or . Appendix B presents the
closed-form solution of this fuzzy inference.

3) “MMG-III” Controller: Based on the design guidelines
in the previous work [30], we find the parameter,, can be
extended to a larger range but also satisfies the property of

. This modification is able to enlarge the NVI value
of the “MMG-II” controller. A new controller, named “MMG-
III”, is designed in which the parameter,, is changed to a new
range of , while the others are kept the same as
the “MMG-II” controller. The closed-form solution of of
this controller is discussed in Appendix C.

4) “MMG-IV” Controller: Using the improving strategy
of the enlarged on the “MMG-I” controller, we design the
“MMG-IV” where the parameter, , is changed to a new range
of . The other parts of design are kept the same
as the “MMG-I” controller. The closed-form solution of
is discussed in Appendix C.

Fig. 11. Admissible area/curve of nonlinearity diagram for “MMG-III”
controller. Curve A-D-B: admissible curve for nonoverlapping case. Gray area:
admissible area for overlapping case. E: point for approximation of a linear
PID.

Fig. 12. Admissible area of nonlinearity diagram for “MMG-IV” controller.
Hatched area: for nonoverlapping case. Gray area: for overlapping case. C: point
for approximation of a linear PID.

Figs. 9–12 shows the admissible areas/curves of nonlinearity
diagrams for four controllers, respectively. These diagrams pro-
vide the valuable information to guide the design. Note that all
diagrams are based on a normalized sense, , to
derive and . This normalization will eliminate nonlinearity
redundancy if the is directly used for the nonlinearity di-
agrams [31]. In addition, Point C, corresponding to the most
approximately linear function, will always locate at

. Four regions are divided in the diagram which correspond
to the four types of curves in Fig. 6 accordingly. Table III lists
the comparisons of four fuzzy PID controllers using the MMG
scheme. It is interesting to see that, while a minor change is
made to each controller, its associated NVI and LAI are changed
significantly. The best design is considered the “MMG-IV” con-
troller due to its largest NVI and LAI values. The admissible
areas of other controllers are fully covered by the area of this
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TABLE III
COMPARISONS OFFUZZY PID CONTROLLERSUSING MAX-MIN-GRAVITY SCHEME

controller. Moreover, this controller is able to generate all four
types of simple nonlinear curves.

B. Mizumoto’s “Product-Sum-Gravity (PSG)” Scheme

This scheme is proposed by Mizumoto [2] and has also been
accepted by many researchers due to its simpler inference re-
sults than Zadeh-Mamdani’s reasoning scheme. Two controllers
are designed using this scheme. They all use triangular member-
ship functions with three rules as (18). The main differences of
each controller are on the membership functions of the.

1) “PSG-I” Controller: This controller applies the mem-
bership functions of in a range of (Fig. 7). The
controller does not have the normalized output. The closed-form
solution of is given in Appendix D.

2) “PSG-II” Controller: This controller has the member-
ship functions shown as Fig. 8. A normalized output is realized
by this change. The closed-form solution of the inference results
is discussed in Appendix D.

We observe from Fig. 13 that both controllers receive the
identical admissible line for the NVI analysis. This is attributed
to that the inference engine is actually governed by a single
independent parameter, , even though the
controllers are designed with two tuning parameters. Both
controllers can realize a perfect linear function, or
(Table IV). This means that the controllers are considered to be
the GPP systems. .

C. “Takagi-Sugeno-Kang (TSK)” Scheme

A fuzzy PID controller can be realized by using the TSK
model [11], [12] for the consequent parts. For this scheme, only
two rules are used

Rule If is BG then

Rule If is AZ then (19)

where “BG” stands for “big,” and and are the given
functions. We apply the membership functions in the positive
domain of error in Fig. 7 for . The total number of two tuning
parameters is used for the functions. The “gravity” defuzzifica-
tion is used. Two controllers are designed below.

Fig. 13. Admissible line of nonlinearity diagram for “PSG-I” and “PSG-II”
controllers. Line A–B: admissible line. C: point of a linear PID, wherez =
(1 � x )=2x = 1.

1) “TSK-I” Controller: This controller is designed using
the following functions in (19):

(20)

The closed-form solution of , (E-1, Appendix E), shows a
two-term second-order polynomial function. However, a single-
independent-parameter is deduced to the two an-
gles. For this reason, an admissible curve is generated which
also includes a perfect linear function on point C (Fig. 14).

2) “TSK-II” Controller: In order to preserve the feature of
two-independent-parameter inference, we applies the following
functions to (19):

(21)

The closed-form solution of , (F–1, Appendix F), shows a
three-term third-order polynomial function. The nonlinearity di-
agram is shown in Fig. 15. The admissible area of this controller
fully covers the admissible curve produced by “TSK-I” con-
troller. This example shows the significance of proper selections



708 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 5, OCTOBER 2001

TABLE IV
COMPARISONS OFFUZZY PID CONTROLLERSUSING OTHER SCHEMES. (*R –R ARE BOUNDARIES FORx )

Fig. 14. Admissible curve of nonlinearity diagram for “TSK-I”
controller. Curve A-C-B: admissible curve. C: point of a linear PID,
wherez = x =x = 1.

of the given functions in the TSK scheme. Table IV shows the
comparison results when using “PSG” and “TSK” schemes.

X. SUMMARY AND DISCUSSIONS

Although fuzzy control lies to its strength to deal with high-
level, task-orient problems, further development has shown that
another perspective of fuzzy control technique is for fuzzy PID
controllers to evolve into general control elements [34], like the
conventional PID regulators applicable for various processes.
In this work, we addressed a systematic study of fuzzy PID
controllers by using a function-based evaluation approach. Two
basic issues,simplicityandnonlinearity, related to the selection
of fuzzy inference structures, reasoning schemes and member-
ship functions, are investigated to demonstrate the applicability
of the function-based evaluation approach. For the first issue,
we have discussed the basic difference between direct-action
type and gain-scheduling type of fuzzy PID controllers in de-
sign of nonlinear functions. Due to the simpler features of non-
linear properties of DA-type controllers, we suggest this type
of controllers will be a better selection than GS type. Next,

Fig. 15. Admissible area of nonlinearity diagram for “TSK-II” controller.
Gray area: admissible area. C: point of a linear PID, wherex = x = 0.

five process-independent evaluation criteria are proposed for ex-
amining the functional behaviors of DA-type fuzzy PID con-
trollers from the viewpoints of simple operations of gain tuning.
These criteria include control-action composition, input cou-
pling, gain dependency, gain-role change, and rule/parameter
growth. Using the criteria, we find that the Mamdani’s two-input
fuzzy PID controllers have lack of many preferred features that
usually exist in linear PID controllers. A one-input fuzzy con-
troller which consists of a “one-to-three mapping” fuzzy infer-
ence to generate three independent (proportional, integral and
derivative) control actions, has shown to be the optimal struc-
ture with respect to the five criteria in comparison with two-
and three-input fuzzy controllers.

For the second issue, we summarize three concepts in
nonlinear approximator evaluation, namely, function-estima-
tion-based approximation; generalization-capability-based
approximation; and nonlinearity-variation-based approxima-
tion. Comparing with the two former evaluation approaches,
we consider the last approach is the most proper to evaluate
fuzzy inference schemes, defuzzifications and membership
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functions. An indepth, nonlinearity evaluation is made on
the one-input fuzzy controllers. The NVI and LAI are the
basic measures for such evaluations. While the NVI aims to
assess a controller in regards to its nonlinearity freedom or
limitation, the LAI is used to examine the controller’s ability
of realizing a perfect linear function which, we consider, is an
important property for a controller to achieve a GPP system.
Eight controllers are studied when using different inference
schemes or membership functions. From the given examples, it
is found that the Zadeh-Mamdani’s MMG is the best reasoning
scheme compared with Mizumoto’s PSG and TSK schemes
if the nonlinearity variation is a main concern. The advantage
in using the NVI and LAI is well demonstrated from the
evaluation examples of the controllers. Without requiring any
computer simulation or controller testing to a specific process,
a designer is able to select or improve the design from the
nonlinearity analysis of the controllers.

It has been a great concern of fuzzy control versus conven-
tional control within both control communities [35]–[37]. One
of the arguments is related to the performance issue: “which
control technique is better?” The challenge posed from the con-
ventional control community to the statement that “fuzzy con-
trol outperformances over the conventional control” does make
a good, but critical, point. Control engineering practice seeks
the answers to these questions:Is the statement true for any
process? If not, what is the condition of realizing the state-
ment? Although the questions are performance related, a rig-
orous proof using a performance-based approach will be diffi-
cult, if not impossible. However, a function-based evaluation ap-
proach may provide an effective solution, since the functionality
gap between the two control techniques may explain the reasons
of the performance differences. While fuzzy control is success-
fully used as “an addition to conventional control” as stated by
Zadeh [37], this technique is also necessarily to be enhanced
by augmenting the preferred functionality of conventional con-
trol. In this perspective, much work needs to be addressed on
the integration of the functionality between the different control
techniques.

Finally, we recognize that the present function-based eval-
uation is not complete for a systematic study of fuzzy con-
trollers. A final selection of the inference structure and rea-
soning schemes should also be based on a performance-based
evaluation. For example, a two-input fuzzy controller may show
a sliding-mode controller for robust control [38]. Sometimes,
a compromise between function and performance criteria may
have to be considered for the final design. The main point raised
by authors in this work is to stress the significance of the func-
tion-based evaluation for a systematic study of fuzzy controllers.

However, much work remains in this regard. For example, a rig-
orous analysis is needed for an evaluation of nonlinearity vari-
ations of fuzzy controllers with any inference structures.

APPENDIX A
CLOSED-FORM SOLUTION OF “MMG-I” C ONTROLLER

Case 1 (Nonoverlapping):

(A-1)

Case 2 (Overlapping):

Range A:

(A-2)

Range B:
[see (A-3) at the bottom of page].

Range C:
[see (A-4) at the bottom of page].

in which the intermediate variables are defined as

The two specific angles, and , are calculated by
[see (A-5) and (A-6), at the bottom of the next page]

APPENDIX B
CLOSED-FORM SOLUTION OF “MMG-II” C ONTROLLER

Case 1 (Nonoverlapping):

(B-1)

Case 2 (Overlapping):

Range A:

(B-2)

Range B:
[see (B-3) at the bottom of the next page]

Range C:
[see (B-4), at the bottom of the next page].

(A-3)

(A-4)
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The intermediate variables are the same as those in Appendix A.
The two specific angles, and , are calculated by

(B-5)

and

(B-6)

APPENDIX C
CLOSED-FORM SOLUTIONS OF“MMG-III” AND “MMG-IV”

CONTROLLERS

The closed-form solutions of “MMG-III” and “MMG-IV”
controllers [see (C-1) and (C-2), at the bottom of page] are given
respectively by where the extended ranges for using (B-2) to
(B-4) and (A-2) to (A-4) are given by

Range A: AND OR
AND

Range B: AND
Range C: AND OR

AND

APPENDIX D
CLOSED-FORM SOLUTIONS OF “PSG-I” AND “PSG-II”

CONTROLLERS

The fuzzy proportional actions of “PSG-I” and “PSG-II” con-
trollers are

`` PSG-I" (D-1)

and

`` PSG-II'' (D-2)

Both controllers have the same equations forand

(D-3)

and

(D-4)

(A-5)

and

(A-6)

(B-3)

(B-4)

`` MMG-III'' (B-1) to (B-6), subject to the extended ranges (C-1)

and

`` MMG-IV'' (A-1) to (A-6), subject to the extended ranges (C-2)
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APPENDIX E
CLOSED-FORM SOLUTION OF “TSK-I” C ONTROLLER

The fuzzy proportional actions of this controllers is

(E-1)

Two angles, and , are calculated by

(E-2)

and

(E-3)

APPENDIX F
CLOSED-FORM SOLUTION OF “TSK-II” C ONTROLLER

The fuzzy proportional actions of this controllers is:

(F-1)

Two angles, and , are calculated by:

(F-2)

and

(F-3)
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