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Abstract

A mechatronic approach is studied here to design the mechanical system and controller
concurrently for a robotic flexible manipulator. There is no coupling effects among these
components which exit in traditional sequential design and this concurrent development
leads to the global optimal performance. A linear quadratic regulator with output feedback
is used to compare the results obtained from the traditional approach and this mechatronic
approach. Using the mechatronic approach, optimal beam shapes as well as the associated
optimal controllers for different feedback structures and for different objective functions
can be achieved. Numerical results have indicated substantial improvements on
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1. Introduction

The link flexibility of a robotic manipulator must be considered in modeling
and control when the manipulator is of large dimension or light weight. In the last
decade, a significant effort has been made in modeling and control of one-link
flexible manipulators [1,6—11]. However, one must realize that real-time control
requires a dynamic model that must be computationally efficient. Therefore,
accurate but complicated dynamic models are not proper for real-time control
applications.

Control of a flexible manipulator is difficult since flexibility causes vibrations
[2,4] and the so-called noncolocated control problem. It has been known that the
problem of achieving stability is severe when noncolocated sensors and actuators
are used for control. Another major problem in control design is robustness
against model uncertainty and payload variations.

Two dual optimal design problems have been studied over the past few years
[12-15]. Numerical results have indicated that a substantial increment in the
fundamental frequency of vibration was obtained. But these studies were limited
for open-loop flexible manipulators, that is, only designing the beam shape.

Most researchers design the mechanical construction, electronic driver and
system controller for robotic flexible manipulators sequentially. This sequential
design would lead to a local optimal performance, since coupling effects of
mechanical, electronic, and control components of the manipulator system have
not, simultaneously, been considered in the process. Therefore, the performance
potential of a flexible manipulator could not be fully realized with the traditional
design method.

The objective of this paper is to investigate the concurrent design of the
mechanical system of a flexible manipulator with the controller at the beginning
— the mechatronic approach. The basic idea is to design a better flexible
manipulator such that its control problem would not be very critical for
operational conditions. The overall system is global optimal for the controller as
well as for the beam construction. Section 2 presents motion equations for flexible
manipulators. Section 3 gives its finite approximation using the finite difference
method. Section 4 presents the integrated system of link equation with DC motor
dynamics, Section 5 describes the linear quadratic regulator design procedure,
while Section 6 illustrates its mechatronic version by including link construction
into the LQR design process. Several numerical examples are carried out in
Section 7 to demonstrate the effectiveness of the proposed design method. Finally,
Section 8 concludes the paper.

2. Dynamic equations of flexible manipulators
Consider a flexible manipulator carrying a tip load. It consists of a flexible

beam of length L fixed on a rigid hub in the horizontal plane. The motion of the
manipulator system is described by rigid rotation 6 of the hub, flexible
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displacement w and rotation  of the beam. The rotatory inertia is also
considered. In the FEuler-Bernoulli theory,  =adw/dx=w’. The total
displacement v of the manipulator is defined as,

v(x, t) = w(x, t) + x0(1). (1)

After a long process of simplification, the following dynamic equations are
obtained in terms of the total displacement [7],

(Dv”)//—(pSii’)/—{—pii =0, (2)

Iy0 — Dv'(0) = 1, (3)
with boundary conditions,

x=0, v=0, v =0 “4)

x=L, DV +J,i +aM;i=0, (Dv')—pSi' = M,(V+a.i’). (5)

For the sake of numerical computation, the following dimensionless variables are
introduced,

X fold 2 _ M,L?
é_ Za Tnew = s - D() s (6)
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where M, and Dy are nominal values of beam mass and bending rigidity.
In terms of these new functions, variables, and parameters, the dynamic
equations can be rewritten as follows,

(Bz")"—~(285") oz = 0, ©)
n — p(0)z(0)"= %LO; (10)

with boundary conditions,

z2(0)=0, z' =0 (11)
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BDz"(1) + xz'(1) + {uz(1) = 0,

(12)
pz") (1) — 02'(1) = p[2(1) + /(D]

A prime denotes the derivative with respect to coordinate ¢, and a dot represents
the derivative with respect to time fpey.

3. Approximate state space equations

For the purpose of this study, we need a standard form of state space equations
for a flexible manipulator system. The finite difference method (method of lines) is
used to approximate partial differential equations described in the previous section
with a set of ordinary differential equations. In this method, we substitute space
derivatives by finite differences. The interval (0 < ¢ < 1) is divided into » uniform
segments with A =/ = 1/n, and space derivatives are approximated by the finite
difference. Define &; =ih, and z; = z(ih, ), o; = a(ih), p; = B(h), 6; = o(ih), i=
0,1,...,n. Clearly, from the first two boundary conditions (11),

zZ0 = 0, zZ_1 = —0/1’1 (13)
Therefore, Eq. (10) can be approximated by

né+nﬁ09—n2ﬁozl = E (14)
Dy

For i =1, we have,

0
n* |:/3223 — 2(132 + ﬂl)zz + (ﬁz +4B, + ﬂo)zl - ﬁo;]
+ (o + n2(0181 + 290) |71 — n2018,%, = 0, (15)
for i = 2, we have,
n*|Byza = 2(Bs + Ba)zs + (B + 4B+ B1)z2 — 2(Ba + B )
+ [0 + n2(2305 + 0202) |72 — n2[0303%3 + 220251] = 0, (16)
and fori=3ton—2,
n' I:ﬁi+lzf+2 = 2(Bis1 + Bi)zivs + (Bisr + 4B+ By )z
—2(B;i+ Biz1)zio1 + ﬁi—lzi—z] + o + n2 (@1 811 + 287 ]
— n?[ois 1011 + 036iZ1] = 0. (17)

Since we have n+1 unknowns, Z=[0,z1,...,2z,]". We still need two more
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equations. The difference equation for (9) at i=n—1 and the last boundary
condition (12) can be written as,
2 " " " 2 .
n [ann = 2B1zp + ﬁn—22n72] + [O‘nfl + n(on—10n-1 + “11725%2)]2?171

- nz[unflénfllz.n + 06,1,25,1,2.2.,7,2] = O,
ﬁnZ/;/ + KEn + C,UZ” - 0, (19)

Vlﬁ”Z: - nﬁn—lzlg_] - I’lOCn(Sn(E” - .Z.nfl) - ,U[Zn + I’l((Zn - Eﬂ*l )] = O (20)

From Eq. (19) we have,

” . .
Wz = —KZy — Uz,

Substituting this equation into Egs. (18) and (20), we get the last two equations,

n4[ - 2ﬁn712ﬂ + (437171 + ﬁn72)zﬂ—1 - 2(ﬁn71 + 4ﬁn72)zﬂ—2 + ﬁn72zn—3]
- nz[”K + C,Lt + O‘n—lén—l ]Zn + [O(n—l + nz(an—lén—l + O‘n—25n—2 + nK)]ZH—l

- nzan—2511—22n—2 = 0, (21)

nsﬁn_l(zn — 2z, + anz) + (nZK + 2”(,“ + no,d, + ,u).Z.n
— (}’12K + no,6, + n,uC)Z'n,l =0. (22)

Eqgs. (14)—(17), (21), (22) can be written in a matrix form as,

. tL
M-Z+K-Z=—B, (23)
Dy

where

Z = [97 Z15 2250+« 5Zn—1» 2'1]'(1;1+1)’ B = [150503 e 70)0]Z+1

and M, K are mass and rigidity matrices obtained from the above equations.

Eq. (23) is the finite approximation of motion equations for flexible
manipulators. Clearly, both M and K matrices are functions of beam construction,
which provides us the basis for simultaneously optimal construction and control,
based on the mechatronic formulation to be discussed later.

4. Overall system dynamic model

The actuator dynamics is incorporated with the link state-space equation into
the overall system. A permanent magnet DC-motor is assumed to be the actuator
for this study. Its dynamics is described by
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Kme 0 :ﬁ
R " R

IO + (Bm + ve —rt, 0=rb, (24)
where J, is the actuator inertia, B, the friction coefficient, K, the torque
constant, K, the back emf constant, R the armature resistance, r the gear ratio,
and 6,, 0, v. are the rotor rotation, hub rotation, and armature voltage,
respectively. In general, all motor circuit parameters can be considered as design
variables.

For sensor specification, we assume that the optical encoder geared on hub axis
and the CCD camera clampped on hub will be used for hub rotation and tip
deflection. The output vector here can be defined as,

[0 [0
r= _w(l,t):|_ _2,1—6] (25)
The state vector of a flexible manipulator is defined as,
KZ Z]
= = . 26
7= qz} [ 7| (26)
and the corresponding state-variable equations are,
) I
qg=Agq+bu, y=Cq, “—mvc (27)
where
(0 I _ 10 | el
A= [—M_IK —klM_lBe11| b= [M“B] €= |:€20:| @8)
and
- I
M = M + kyBey, 612[100], 62:[—10...1], ko = T
r D()
(29)

L Ky Ky
ki =—5— Bn
1 r2D0( TR )

Clearly, state equation (Eq. (27)) has incorporated manipulator motion (hub
rotation and link deflection), actuator dynamics, as well as sensor specification.
The system matrix A4 is a function of link construction (mass and stiffness
distributions) and actuator design (motor parameters), while output matrix C is a
function of beam position and tip deflection.

5. Linear quadratic regulator with output feedback

In this section we will give a brief description of the linear quadratic regulator
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(LQR) with output feedback for flexible manipulators based on the approximate
state model given by Eq. (27) in the previous section. This LQR formulation will
be used as the basis for mechatronic design in the next section.

In LQR with output feedback, the controller has to be designed using output
feedback instead of state feedback since states are generally not available for the
control purpose. For the flexible manipulator system given by Eq. (27), the LQR
controller will be a linear output feedback of the form

u=—Ry (30)
where R is a matrix of constant feedback coefficients to be determined according

to the following quadratic performance index (PI):

sy = jw (4" (00q(1) + " (1) Ru(1))ds (31)

where the @, R are symmetric positive semidefinite weighting matrices.By
substituting Eq. (30) into Eq. (27), the closed loop equations are

Gg=(4—-BRC)qg=A.q (32)

Therefore, PI becomes

T
J= % J 7"()(0 + CTRTRRC)q(1)dt (33)

Now, the LQR design problem is to choose gain ‘R such that J reaches its
minimum value subject to the condition of stablizing the closed-loop system given
by Eq. (34).Since 0 + C* RT RRC is a symmetric, positive-semidefinite matrix,
under certain conditions [5], we will be able to find a symmetric, positive-
semidefinite matrix P so that,

& (¢"Pg) = 4" (0 + CTRTRRC)g (34)

Using P, then J can be rewritten as

J= %qT(O)Pq(O) - %,li“o‘o q"(1)Pq(t) 33)

Assuming that the system is asymptotically stable, the ¢(¢) vanishes with time,
that is,

[lim g (H)Pq(t) =0 (36)
This leads to,

= %qT(O)Pq(O) _ %tr(PX) 37)
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where the n x n symmetric matrix X is defined by ¢(0)q*(0), n is the dimension of

q.
Furthermore, from Egs. (32) and (34), we find that

ATP 4+ PA.+ C"TRTRRC+Q =0 (38)

This is Lyapunov equation for solving P for given R and Q.Following the
procedure described in [5], we arrive at the two additional equations for solving
the LQR problem,

AS+SAT+X=0 (39)

R =R 'BTPSCT(csCT)™ (40)

where S is a symmetric 7 X n matrix of Lagrange multipliers.

6. Concurrent design of construction and control

Traditionally, a mechanical engineer constructs the plant to be controlled first
and then gives it to a control engineer, who then has to select an optimal control
suitable to the given plant. Clearly, the plant will affect the optimal control and
consequently, the optimal performance index. However, for our applications, the
plant, i.c., the flexible beam, can be constructed differently. Therefore, one must
evaluate different plant designs to improve the performance.

To make this clear, let us assume that Q is the space of all feasible manipulator
design and A is the feasible control space from motor output. Then our objective
is to minimize the performance index with respect to link construction and control
design, i.c.,

J* = N B,ICn)fQ, uCAJ(u,A,B,C) (41)
Obviously, this approach considers the mechanical, electronic, and control
components of a robotic flexible manipulator as a whole and their developments
are carried out simultaneously. Clearly, this concurrent design approach should
lead to the global optimal performance because now the coupling effects of
different parts of the manipulators are taken into account at the very beginning of
the design process. This is the so-called mechatronic design approach.Since

J* = inf  JwA,B,C)= inf [ian(u;A, B, C)], (42)
(A, B, C)eQ, uea (A, B, C)eQ[ uea

accordingly, the global optimization can be carried out in two steps. The first step

(the inner-loop optimization) is to find the optimal control and its associated

optimal value of the performance index based on a given plant (4, B, C), which is

the traditional optimal control design problem. The second step (outer-loop
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optimization) is to find the optimal feasible plant that will further minimize the
performance index through the optimal controller. When the LQR formulation is
used, this will lead to,

* el : f ,A B — . f . f -A B
J (A, B, (ljr)IEQ, uEAJ(u’ ’ > C) (A, ];I,lc)eg[ln UGAJ(ua ) ) C)]

= inf t[P(A,B,C)X 4
(A’]glc)egr[( . B, O)X] (43)

where P is found by solving the equations given in the previous section.

Based on our experience with the open-loop optimal design, the conventional
optimization methods, such as gradient-based method, are not effective in solving
the outer-loop optimization problem. Therefore, as for the open-loop design
problems, here we will use the Improving Hit and Run (IHR) adaptive random
search algorithm [3] for the outer-loop optimization. However, some modification
must be made to THR to ensure a constant volume during the optimization
process since we assume that the total weight is a constraint.

For the sake of simplicity, we will only consider the situations where the area of
cross-sections determines both the mass and stiffness distributions of the flexible
beam (such as circular cross-sections or rectangular cross-sections with fixed
width/height or fixed ratio of width and height). Our algorithm will be modified
easily to other situations. Now the combined iterative procedure of the modified
IHR and the LQR with output feedback can be specified as:

OLO — Outer-Loop Optimization

1. Set design vector E =[ly, M, a., Jo, L, B, H, y, p, E], and number of
segments, N. Set step multiplier MUL to 1 and FACTOR to an appropriate
constant. Set R, Q. Calculate X.

2. Calculate Ay (uniform shape radius or width), set initial index = 0, call ILO to
get the corresponding J.

3. Set minimum and maximum area constraints, A, and A, according to the
beam strength requirement. Set j = 1.

4. Randomly select N/2 of the N segments and mark them with a 1 in vector D; of
length N. Mark the remaining N/2 segments with a —1. If N is odd, one
randomly selected area will remain constant and will be marked by a 0.

5. Get N/2 samples from a N(0,1) normal distribution and place them in each
position of D; where there is a 1. Place the negatives of this same sample in
each position of D; where there is a —1. This arrangement will ensure a
constant volume during optimization. Here, D; is called the direction vector.

6. Generate a step size, S, uniformly from L;, the set of feasible step sizes in the
direction D;, where,

Dj = {S S ‘R:Amm < Aj + SD] < Amax}

If L; = &, go to Step 4.
7. Set S =S x MUL, while 0 < MUL < 1.
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8. Update the area vector, A, set index = 1, call ILO to find J, if J is improved:

4. A+ SD;if J(4;+ SDy) > Jj
tl A; otherwise

Set Jj+1 == J(A]+1) T,

9.If Jiuy > Jj. set TRIM = -l x FACTOR and MUL = MUL — MUL x
TRIM.

10. If the criteria is met, stop running. Otherwise, increase j and go to Step 4.

11. Stop: optimal feedback matrix R*, and optimal performance index J*; optimal

flexible link structure 4*.

ILO — Inner-Loop Optimization
1. Initialization: i = 0, calculate 8, J, « based on 4; from OLO, construct 4, B.
Select an R, so that A4, is asymptotically stable
2. i-th iteration:
Set A; = A — BR;C
Solve the equations

ATP 4+ PA;+ CTRTRR,C+Q =0, A;S+SAT+X=0

for P; and S;
Set J = Ltr(PiX)

3. Updation:
Gain update direction: AR=R'BTP;S,CT(CS,CT) ' — R,
Update gain: R;y; = R, + TAR
where o is chosen so that 4 — BR,|C is asymptotically stable

4. Criteria:
Jis1 = (P X)<J;
If (Jiy1 — Ji) <¢, the given criteria, go to step 5. Otherwise set i =i+ 1 and
go to step 2

5. Return to OLO
Set R=R;py, J=Jip
if index =0, go to step 2; otherwise go to step 8.

Some numerical examples of using this algorithm will be given in the next section.

7. Numerical results

To verify the mechatronic method presented in Section 6, a rectangular
aluminium flexible link with constant height is used for simulation. The beam
weight keeps constant, this means the beam volume is constant. The mechatronic
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0.5 4

aF i

Fig. 1. Optimal shape for ({0}, 4, 100).

algorithm is to find the beam geometric shape, or the width distribution with the
controller. This resultant shape is the optimal shape and the controller is optimal
for the beam so that the performance index reaches the global minimum. The
physical parameters of uniform beam which appear in the state dynamical model
are given in Table 1.

From Eqgs. (6)—(8)), we obtain the dimensionless constants which are used for
the normalized link dynamics in Eqgs. (9)—(12)). They are n = 0.022, x = 0.000214,
{=0.035, ¢ =1.09. The coefficients of DC motor in Eq. (24) are R=0.2,
J,.=02, B,=0.03, K, =0.1, K,,, =0.1, r =1/47. For the requirement of the
beam strength, we set the maximum width Hy.x =2 % H =0.003175 m, and

Table 1

Rectangular uniform beam physical parameters

M,  Beam weight 0.5 kg I Hub inertia 0.0174 kgm>

Dy Nominal bending rigidity 0.44 y Beam density 2.713¢ + 3 kg/m®
B Beam width 1.587¢e —3 m Jp Tip inertia moment 1.5e—4 kgm?

L Beam length 1.098 m M, Tip mass 0.2 kg

a, x-coordinate of tip mass 0.035 m E Young’s modulus 6.63¢ + 9 kg/m?
o mass per unit length 0.4436 kg/m H beam height 0.103 m
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2 1 1 1 I 1 1 1 1 I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 2. Optimal shape for ({60}, 6, 100).

Fig. 3. Optimal shape for ({6}, 12, 100).
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1.5

0.5F 4

-2 1 1 1 1 1 1 1 1 I

Fig. 4. Optimal shape for ({0, w}, 4, 100).

minimum width H;, = %H: 0.003965 m. For the IHR algorithm, MUL = 1,
FACTOR = 1, all other criteria are set to 0.000001.

The different output feedback strategies, combined with various number of
segments n and state weighting matrix Q in Eq. (31) but R =1 are tested. The
notation ({feedbacks}, number of segment, Q) is used here. Two feedbacks are
considered, which are the hub angle 6 feedback and the 6 with the net tip
displacement w = z, — 0. These feedbacks have very clear physical meanings and
they are detectable as described in Section 4. The initial state is set to g =
[1,0,...,0]". We set Q=100 1, n =4, 6, 12, with these two feedbacks. The best
performance index are listed in Table 2, and the associated optimal controllers are

Table 2
Performance index (Q = 100 x I)

n=4 n==~6 n=12
{0} feedback — uniform shape 65704 65704 65704
{0} feedback — optimal shape 45957 45964 45956
{0, z,, — 0} feedback — uniform shape 65424 65426 65423

{0, z, — 0} feedback — optimal shape 45862 45865 45863
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Fig. 6. Optimal shape for ({0, w}, 12, 100).
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0.51

Fig. 8. Optimal shape for ({0, w}, 4, 50).
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Table 3
Optimal feedback matrix (Q = 100 x /)

n=4 n==6 n=12
{6} — uniform shape 3.674 3.674 3.674
{0} — optimal shape 3.686 3.677 3.675
{0, z,, — 0} — uniform shape (2.7599, —422.398) (2.7599, —422.398) (2.7599, —422.398)
{0, z, — 0} — optimal shape (2.498, —337.071) (2.539, —380.396) (2.423, —378.554)

listed in Table 3. The performance index for Q = 50, Q = 10 are illustrated in
Table 4, and their controllers are in Table 5. Figs. 1-3 and 7 are the optimal
shapes for {0} feedback with different Q and segment number. But the shapes
have one commom feature, that is, with a larger size at the hub end and smaller
at the tip end. Figs. 4-6 and 8 are the optimal shapes for {0, w} feedback. Their
common feature is smaller dimensions at the ends. Step input responses of hub
angle and tip deflection for {6, w} feedback are as in Figs. 9 and 10. In all figures,
the solid outline is for optimal shape or response, and the broken one is for those
of uniform shape.

As shown in the above tables, the performance index is improved significantly,
e.g., with {0} feedback, n =4, Q = 100, the performance index for uniform beam

1.4 T T T T T T T T T

Hub Angle (radian)

(=}
'S
T

0 | 1 1 1 1 1 1 1 1

Time (s)

Fig. 9. Hub angle step input response for ({0, w}, 4, 100).
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Tip Deflection (cm)

-10 1 L 1 L 1 L
0

EN

Time (s)

Fig. 10. Tip deflection step input response for ({0, w}, 4, 100).

is 65704 with its optimal controller ‘R = 3.674. For its optimal shape, the
performance index is 45957, which is decreased by 30% of that for the uniform
beam, and the optimal controller is R = 3.686. It is also noticed that the
performance index does not depend on the number of segments, because the final
shape converges to its optimal shape. System with two variable feedbacks has
lower performance index than those with one output variable feedback, since the
former has more degrees of freedom to utilize. The improvement in performance
is related to performance functions. For example, different Qs have different
performance results. The step input of hub angle for the optimal shape has
smaller rising time and tip deflection converges to stable much faster than for
those of uniform shapes.

Table 4
Performance index with (Q = 100 x 7, 50 x 1, 10 * I)

{H} {9, Zn — H}
Q = 50 % I — uniform shape 2611.373 2174.499
Q = 50 x I — optimal shape 2540.470 2098.374
Q = 10 % I — uniform shape 679.856 630.266

Q = 10 x I — optimal shape 663.834 621.442
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Table 5
Optimal feedback matrix with (Q = 100 % 7, 50 = I, 10 % I)

{0} {6> Zn — 0}
Q = 50 % I — uniform shape 2.7599 (2.279, —395.458)
Q = 50 x I — optimal shape 2.7303 (2.096, —335.370)
Q = 10 x I — uniform shape 1.659 (1.604, —167.576)
Q = 10 % I — optimal shape 1.653 (1.386, —166.142)

8. Conclusions

In this paper, the mechatronic design for both flexible beam linkage and
controller are presented. The global optimized beam shape and controller
parameters are obtained using an adaptive iterative algorithm with the
accommodation of various geometrical constraints. Different output feedback
strategies are investigated to evalute the impacts of various controller structures.
The numerical results show that the flexible link can significantly improve upon
the performance. The index can be chosen accordingly from system related
functions depending on different applications, for instance, hub speed rising time,
damping time, link tip deflection. Simulations for different optimizing variables,
including motor parameters are further investigated. An experimental prototype is
under construction for the verification of these simulation results. This method
can be applied to other control system designs.

Acknowledgement

This work was supported in part by the Chinese National Natural Science
Foundation and the University of Arizona Foundation.

References

[1] Cannon Jr. RH, Schmitz E. Precise control of flexible manipulators. In: Robotics Research: The
First Intl. Symposium. Cambridge, MA: MIT Press, 1984. p. 841-61.

[2] Timoshenko S, Young DH, Weaver Jr. W. Vibration problems in engineering. 3rd ed. New York:
Van Nostrand, 1957.

[3] Zabinsky ZB, Smith RL, McDonald JF, Romeigh HE, Kaufman DE. Improving hit-and-run for
global optimization. Journal of global optimization 1993;3:171-92.

[4] Nguyen PK, Ravindran R, Carr R, Gossain DM, Doetsch KH. Structural flexibility of the shuttle
remote manipulator system mechanical arm, SPAR Aero-Space Ltd., Tech. Info. ATAA, 1982.

[5] Lewis FL, Syrmos VL. Optimal control. New York: Wiley, 1995.

[6] Wang FY. Finding the maximum bandwidth of a flexible arm. In: Proc. of 32nd IEEE Conf. on
Decision and Control, San Antonio, TX, USA, vol. 1. 1993. p. 619-25.

[71 Zhou PX, Williams MS, Wang FY. On closed-loop design of flexible robotic links. In: Proc. of
IEEE International Conf. on Systems, Man, and Cybernetics, Beijing, China, Oct. 1996. p. 1712-7.



P. Zhou et al. | Mechatronics 11 (2001) 59-77 77

[8] Asada H, Park J-H, Rai S. A control-configured flexible arm: integrated structure/control design.
In: IEEE Conf. on Robotics and Automation, Sacramento, CA, Vol. 3. 1991. p. 2356-62.

[9] Sakawa T, Matsuno F, Fukushima F. Modeling and feedback control of a flexible arm. Journal of
Robotic Systems 1985;2:453-72.

[10] Yang GB, Donath M. Dynamic model of a one-link manipulator with both structural and joint
flexibility. In: IEEE 1988 International Conference on Robotics and Automation, vol. 6, No. 3.
1988. p. 476-81.

[11] Wang F-Y. Optimum design of vibrating cantilevers: a classical problem revisited. J of
Optimization Theory and Applications 1995;84(3):615-52.

[12] Wang FY. On the extremal fundamental frequencies of one-link flexible manipulators. Int J of
Robotics Research 1994;13(2):162-72.

[13] Wang FY, Russell JL. Minimax optimum shape construction of flexible manipulators. In: Proc. of
IEEE Int. Conf. on Decision and Control, Tucson, AZ. 1992. p. 311-6.

[14] Wang FY, Russell JL. Minimum-weight robot arm for a specified fundamental frequency. In:
Proc. of IEEE Conference on Robotics and Automation, Atlanta, GA. 1993. p. 490-5.

[15] Wang FY. Optimum design of lightweight and flexible robot arms: a mechatronic approach. In:
Proc. of the Ist Chinese World Congress on ICIA. 1993. p. 1160-5.



