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Abstract

A mechatronic approach is studied here to design the mechanical system and controller
concurrently for a robotic ¯exible manipulator. There is no coupling e�ects among these
components which exit in traditional sequential design and this concurrent development

leads to the global optimal performance. A linear quadratic regulator with output feedback
is used to compare the results obtained from the traditional approach and this mechatronic
approach. Using the mechatronic approach, optimal beam shapes as well as the associated
optimal controllers for di�erent feedback structures and for di�erent objective functions

can be achieved. Numerical results have indicated substantial improvements on
performance. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The link ¯exibility of a robotic manipulator must be considered in modeling
and control when the manipulator is of large dimension or light weight. In the last
decade, a signi®cant e�ort has been made in modeling and control of one-link
¯exible manipulators [1,6±11]. However, one must realize that real-time control
requires a dynamic model that must be computationally e�cient. Therefore,
accurate but complicated dynamic models are not proper for real-time control
applications.

Control of a ¯exible manipulator is di�cult since ¯exibility causes vibrations
[2,4] and the so-called noncolocated control problem. It has been known that the
problem of achieving stability is severe when noncolocated sensors and actuators
are used for control. Another major problem in control design is robustness
against model uncertainty and payload variations.

Two dual optimal design problems have been studied over the past few years
[12±15]. Numerical results have indicated that a substantial increment in the
fundamental frequency of vibration was obtained. But these studies were limited
for open-loop ¯exible manipulators, that is, only designing the beam shape.

Most researchers design the mechanical construction, electronic driver and
system controller for robotic ¯exible manipulators sequentially. This sequential
design would lead to a local optimal performance, since coupling e�ects of
mechanical, electronic, and control components of the manipulator system have
not, simultaneously, been considered in the process. Therefore, the performance
potential of a ¯exible manipulator could not be fully realized with the traditional
design method.

The objective of this paper is to investigate the concurrent design of the
mechanical system of a ¯exible manipulator with the controller at the beginning
Ð the mechatronic approach. The basic idea is to design a better ¯exible
manipulator such that its control problem would not be very critical for
operational conditions. The overall system is global optimal for the controller as
well as for the beam construction. Section 2 presents motion equations for ¯exible
manipulators. Section 3 gives its ®nite approximation using the ®nite di�erence
method. Section 4 presents the integrated system of link equation with DC motor
dynamics, Section 5 describes the linear quadratic regulator design procedure,
while Section 6 illustrates its mechatronic version by including link construction
into the LQR design process. Several numerical examples are carried out in
Section 7 to demonstrate the e�ectiveness of the proposed design method. Finally,
Section 8 concludes the paper.

2. Dynamic equations of ¯exible manipulators

Consider a ¯exible manipulator carrying a tip load. It consists of a ¯exible
beam of length L ®xed on a rigid hub in the horizontal plane. The motion of the
manipulator system is described by rigid rotation y of the hub, ¯exible
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displacement w and rotation c of the beam. The rotatory inertia is also
considered. In the Euler±Bernoulli theory, c � @w=@x � w 0: The total
displacement v of the manipulator is de®ned as,

v�x, t� � w�x, t� � xy�t�: �1�

After a long process of simpli®cation, the following dynamic equations are
obtained in terms of the total displacement [7],

�Dv 00 � 00ÿÿrS �v 0
� 0�r �v � 0, �2�

IH �yÿDv 00�0� � t, �3�

with boundary conditions,

x � 0, v � 0, v 0 � y; �4�

x � L, Dv 00 � Jp �v 0 � acMp �v � 0, �Dv 00 � 0ÿrS �v 0 �Mp

ÿ
�v� ac �v 0

�
: �5�

For the sake of numerical computation, the following dimensionless variables are
introduced,

x � x

L
, tnew � told

c
, c2 � M0L

3

D0
, �6�

z�x� � v

L
, a�x� � r�Lx�L

M0
, b�x� � D�Lx�

D0
, d�x� � S�Lx�

L2
�7�

m � Mp

M0
, Z � IH

M0L2
, k � Jp

M0L2
, z � ac

L
: �8�

where M0 and D0 are nominal values of beam mass and bending rigidity.
In terms of these new functions, variables, and parameters, the dynamic

equations can be rewritten as follows,ÿ
bz 00

� 00ÿ�ad �z 0 � 0�a �z � 0, �9�

Z�yÿ b�0�z�0� 00� tL
D0

; �10�

with boundary conditions,

z�0� � 0, z 0 � y; �11�
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b�1�z 00�1� � k �z 0�1� � zm �z�1� � 0,

b�z 00 � 0�1� ÿ ad �z 0�1� � m
�
�z�1� � z �z 0�1�

�
:

�12�

A prime denotes the derivative with respect to coordinate x, and a dot represents
the derivative with respect to time tnew:

3. Approximate state space equations

For the purpose of this study, we need a standard form of state space equations
for a ¯exible manipulator system. The ®nite di�erence method (method of lines) is
used to approximate partial di�erential equations described in the previous section
with a set of ordinary di�erential equations. In this method, we substitute space
derivatives by ®nite di�erences. The interval �0 < x < 1� is divided into n uniform
segments with Dx � h � 1=n, and space derivatives are approximated by the ®nite
di�erence. De®ne xi � ih, and zi � z�ih, t�, ai � a�ih�, bi � b�ih�, di � d�ih�, i �
0,1, . . . ,n: Clearly, from the ®rst two boundary conditions (11),

z0 � 0, zÿ1 � ÿy=n: �13�
Therefore, Eq. (10) can be approximated by

Z�y� nb0yÿ n2b0z1 �
tL
D0

�14�

For i � 1, we have,

n4
�
b2z3 ÿ 2

ÿ
b2 � b1

�
z2 �

ÿ
b2 � 4b1 � b0

�
z1 ÿ b0

y
n

�
�
�
a1 � n2�a1d1 � a0d0�

�
�z1 ÿ n2a1d1 �z2 � 0, �15�

for i � 2, we have,

n4
h
b3z4 ÿ 2

ÿ
b3 � b2

�
z3 �

ÿ
b3 � 4b2 � b1

�
z2 ÿ 2

ÿ
b2 � b1

�
z1

i
�
�
a2 � n2�a3d3 � a2d2�

�
�z2 ÿ n2�a3d3 �z3 � a2d2 �z1 � � 0, �16�

and for i � 3 to nÿ 2,

n4
h
bi�1zi�2 ÿ 2

ÿ
bi�1 � bi

�
zi�1 �

ÿ
bi�1 � 4bi � biÿ1

�
zi

ÿ 2
ÿ
bi � biÿ1

�
ziÿ1 � biÿ1ziÿ2

i
�
�
ai � n2�ai�1di�1 � aidi �

�
�zi

ÿ n2
�
ai�1di�1 �zi�1 � aidi �ziÿ1

� � 0: �17�
Since we have n� 1 unknowns, Z � �y,z1, . . . ,zn�T: We still need two more
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equations. The di�erence equation for (9) at i � nÿ 1 and the last boundary
condition (12) can be written as,

n2
�
bnz
00
n ÿ 2bnÿ1z

00
nÿ1 � bnÿ2z

00
nÿ2
�� �anÿ1 � n2�anÿ1dnÿ1 � anÿ2dnÿ2�

�
�znÿ1

ÿ n2�anÿ1dnÿ1 �zn � anÿ2dnÿ2 �znÿ2 � � 0,

bnz
00
n � k �zn � zm �zn � 0, �19�

nbnz
00
n ÿ nbnÿ1z

00
nÿ1 ÿ nandn� �zn ÿ �znÿ1� ÿ m

�
�zn � nz� �zn ÿ �znÿ1 �

� � 0: �20�
From Eq. (19) we have,

bnz
00
n � ÿk �zn 0 ÿ zm �zn:

Substituting this equation into Eqs. (18) and (20), we get the last two equations,

n4
�ÿ 2bnÿ1zn �

ÿ
4bnÿ1 � bnÿ2

�
znÿ1 ÿ 2

ÿ
bnÿ1 � 4bnÿ2

�
znÿ2 � bnÿ2znÿ3

�
ÿ n2

�
nk� zm� anÿ1dnÿ1

�
�zn �

�
anÿ1 � n2�anÿ1dnÿ1 � anÿ2dnÿ2 � nk�

�
�znÿ1

ÿ n2anÿ2dnÿ2 �znÿ2 � 0, �21�

n3bnÿ1�zn ÿ 2znÿ1 � znÿ2� �
ÿ
n2k� 2nzm� nandn � m

�
�zn

ÿ
ÿ
n2k� nandn � nmz

�
�znÿ1 � 0: �22�

Eqs. (14)±(17), (21), (22) can be written in a matrix form as,

M � �Z� K � Z � tL
D0

B, �23�

where

Z � �y, z1, z2, . . . ,znÿ1, zn �T�n�1�, B � �1,0,0, . . . ,0,0�Tn�1
and M, K are mass and rigidity matrices obtained from the above equations.

Eq. (23) is the ®nite approximation of motion equations for ¯exible
manipulators. Clearly, both M and K matrices are functions of beam construction,
which provides us the basis for simultaneously optimal construction and control,
based on the mechatronic formulation to be discussed later.

4. Overall system dynamic model

The actuator dynamics is incorporated with the link state-space equation into
the overall system. A permanent magnet DC-motor is assumed to be the actuator
for this study. Its dynamics is described by
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Jm �ym �
�
Bm � KbKm

R

�
_ym � Km

R
vc ÿ rt, y � rym �24�

where Jm is the actuator inertia, Bm the friction coe�cient, Km the torque
constant, Kb the back emf constant, R the armature resistance, r the gear ratio,
and ym, y, vc are the rotor rotation, hub rotation, and armature voltage,
respectively. In general, all motor circuit parameters can be considered as design
variables.

For sensor speci®cation, we assume that the optical encoder geared on hub axis
and the CCD camera clampped on hub will be used for hub rotation and tip
de¯ection. The output vector here can be de®ned as,

y �
�
y
w�1, t�

�
�
�
y
zn ÿ y

�
�25�

The state vector of a ¯exible manipulator is de®ned as,

q �
�
q1
q2

�
�
�
Z
_Z

�
�26�

and the corresponding state-variable equations are,

_q � Aq� bu, y � Cq, u � JmL

r2RD0
vc �27�

where

A �
�
0 I
ÿ �M

ÿ1
K ÿk1 �M

ÿ1
Be1

�
b �

�
0
�M
ÿ1
B

�
C �

�
e10
e20

�
�28�

and

�M �M� k0Be1, e1 � �10 . . . 0�, e2 � � ÿ 10 . . . 1�, k0 � JmL

r2D0
,

k1 � L

r2D0

�
Bm � KbKm

R

� �29�

Clearly, state equation (Eq. (27)) has incorporated manipulator motion (hub
rotation and link de¯ection), actuator dynamics, as well as sensor speci®cation.
The system matrix A is a function of link construction (mass and sti�ness
distributions) and actuator design (motor parameters), while output matrix C is a
function of beam position and tip de¯ection.

5. Linear quadratic regulator with output feedback

In this section we will give a brief description of the linear quadratic regulator
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(LQR) with output feedback for ¯exible manipulators based on the approximate
state model given by Eq. (27) in the previous section. This LQR formulation will
be used as the basis for mechatronic design in the next section.

In LQR with output feedback, the controller has to be designed using output
feedback instead of state feedback since states are generally not available for the
control purpose. For the ¯exible manipulator system given by Eq. (27), the LQR
controller will be a linear output feedback of the form

u � ÿRy �30�
where R is a matrix of constant feedback coe�cients to be determined according
to the following quadratic performance index (PI):

J�u� � 1

2

�1
t0

ÿ
qT�t�Qq�t� � uT�t�Ru�t�

�
dt �31�

where the Q, R are symmetric positive semide®nite weighting matrices.By
substituting Eq. (30) into Eq. (27), the closed loop equations are

_q � �Aÿ BRC�q � Acq �32�
Therefore, PI becomes

J � 1

2

�T

t0

qT�t�
ÿ
Q� C TRTRRC

�
q�t�dt �33�

Now, the LQR design problem is to choose gain R such that J reaches its
minimum value subject to the condition of stablizing the closed-loop system given
by Eq. (34).Since Q + C T R T RRC is a symmetric, positive-semide®nite matrix,
under certain conditions [5], we will be able to ®nd a symmetric, positive-
semide®nite matrix P so that,

d

dt

ÿ
qTPq

�
� ÿqT

ÿ
Q� C TRTRRC

�
q �34�

Using P, then J can be rewritten as

J � 1

2
qT�0�Pq�0� ÿ 1

2
lim
t41q

T�t�Pq�t� �35�

Assuming that the system is asymptotically stable, the q(t ) vanishes with time,
that is,

lim
t41q

T�t�Pq�t� � 0 �36�

This leads to,

J � 1

2
qT�0�Pq�0� � 1

2
tr�PX� �37�
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where the n� n symmetric matrix X is de®ned by q(0)qT(0), n is the dimension of
q.

Furthermore, from Eqs. (32) and (34), we ®nd that

AT
c P� PAc � C TRTRRC�Q � 0 �38�

This is Lyapunov equation for solving P for given R and Q.Following the
procedure described in [5], we arrive at the two additional equations for solving
the LQR problem,

AcS� SAT
c � X � 0 �39�

R � Rÿ1BTPSC T�CSC T �ÿ1 �40�
where S is a symmetric n� n matrix of Lagrange multipliers.

6. Concurrent design of construction and control

Traditionally, a mechanical engineer constructs the plant to be controlled ®rst
and then gives it to a control engineer, who then has to select an optimal control
suitable to the given plant. Clearly, the plant will a�ect the optimal control and
consequently, the optimal performance index. However, for our applications, the
plant, i.e., the ¯exible beam, can be constructed di�erently. Therefore, one must
evaluate di�erent plant designs to improve the performance.

To make this clear, let us assume that O is the space of all feasible manipulator
design and L is the feasible control space from motor output. Then our objective
is to minimize the performance index with respect to link construction and control
design, i.e.,

J � � inf
�A, B, C�EO, uEL

J�u;A, B, C� �41�

Obviously, this approach considers the mechanical, electronic, and control
components of a robotic ¯exible manipulator as a whole and their developments
are carried out simultaneously. Clearly, this concurrent design approach should
lead to the global optimal performance because now the coupling e�ects of
di�erent parts of the manipulators are taken into account at the very beginning of
the design process. This is the so-called mechatronic design approach.Since

J � � inf
�A, B, C�EO, uEL

J�u;A, B, C� � inf
�A, B, C�EO

h
inf
uEL

J�u;A, B, C�
i
, �42�

accordingly, the global optimization can be carried out in two steps. The ®rst step
(the inner-loop optimization) is to ®nd the optimal control and its associated
optimal value of the performance index based on a given plant (A, B, C ), which is
the traditional optimal control design problem. The second step (outer-loop
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optimization) is to ®nd the optimal feasible plant that will further minimize the
performance index through the optimal controller. When the LQR formulation is
used, this will lead to,

J � � inf
�A, B, C�2O, u2L

J�u;A, B, C� � inf
�A, B, C�2O

�
infu2LJ�u;A, B, C��

� inf
�A, B, C�2O

tr
�
P�A, B, C�X� �43�

where P is found by solving the equations given in the previous section.
Based on our experience with the open-loop optimal design, the conventional

optimization methods, such as gradient-based method, are not e�ective in solving
the outer-loop optimization problem. Therefore, as for the open-loop design
problems, here we will use the Improving Hit and Run (IHR) adaptive random
search algorithm [3] for the outer-loop optimization. However, some modi®cation
must be made to IHR to ensure a constant volume during the optimization
process since we assume that the total weight is a constraint.

For the sake of simplicity, we will only consider the situations where the area of
cross-sections determines both the mass and sti�ness distributions of the ¯exible
beam (such as circular cross-sections or rectangular cross-sections with ®xed
width/height or ®xed ratio of width and height). Our algorithm will be modi®ed
easily to other situations. Now the combined iterative procedure of the modi®ed
IHR and the LQR with output feedback can be speci®ed as:

OLO Ð Outer-Loop Optimization
1. Set design vector X � �IH, Mp, ac, Jp, L, B, H, g, r, E �, and number of

segments, N. Set step multiplier MUL to 1 and FACTOR to an appropriate
constant. Set R, Q. Calculate X.

2. Calculate A0 (uniform shape radius or width), set initial index = 0, call ILO to
get the corresponding J.

3. Set minimum and maximum area constraints, Amin and Amax according to the
beam strength requirement. Set j � 1:

4. Randomly select N/2 of the N segments and mark them with a 1 in vector Dj of
length N. Mark the remaining N/2 segments with a ÿ1. If N is odd, one
randomly selected area will remain constant and will be marked by a 0.

5. Get N/2 samples from a N(0,1) normal distribution and place them in each
position of Dj where there is a 1. Place the negatives of this same sample in
each position of Dj where there is a ÿ1. This arrangement will ensure a
constant volume during optimization. Here, Dj is called the direction vector.

6. Generate a step size, S, uniformly from Lj, the set of feasible step sizes in the
direction Dj, where,

Dj �
�
S 2 R:Amin < Aj � SDj < Amax

	
If Lj �b, go to Step 4.

7. Set S � S�MUL, while 0<MUL R 1.
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8. Update the area vector, Aj, set index = 1, call ILO to ®nd J, if J is improved:

Aj�1 �
�
Aj � SDj if J

ÿ
Aj � SDj

�
> Jj

Aj otherwise

�
Set Jj�1 � J�Aj�1�:

9. If Jj�1 > Jj, set TRIM � jJj�1ÿJj jJj
� FACTOR and MUL = MUL ÿ MUL �

TRIM.
10. If the criteria is met, stop running. Otherwise, increase j and go to Step 4.
11. Stop: optimal feedback matrix R�, and optimal performance index J �; optimal

¯exible link structure A�:

ILO Ð Inner-Loop Optimization
1. Initialization: i � 0, calculate b, d, a based on Aj from OLO, construct A, B.

Select an R0 so that Ac is asymptotically stable
2. i-th iteration:

Set Ai � Aÿ BRiC
Solve the equations

AT
i P� PAi � C TRT

i RRiC�Q � 0, AiS� SAT
i � X � 0

for Pi and Si

Set J � 1
2 tr�PiX �

3. Updation:
Gain update direction: DR�Rÿ1BTPiSiC

T�CSiC
T�ÿ1ÿRi

Update gain: Ri�1 � Ri � GDR
where a is chosen so that Aÿ BRi�1C is asymptotically stable

4. Criteria:
Ji�1 � 1

2 tr�Pi�1X �RJi
If �Ji�1 ÿ Ji �RE, the given criteria, go to step 5. Otherwise set i � i� 1 and
go to step 2

5. Return to OLO
Set R � Ri�1, J � Ji�1
if index =0, go to step 2; otherwise go to step 8.

Some numerical examples of using this algorithm will be given in the next section.

7. Numerical results

To verify the mechatronic method presented in Section 6, a rectangular
aluminium ¯exible link with constant height is used for simulation. The beam
weight keeps constant, this means the beam volume is constant. The mechatronic
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algorithm is to ®nd the beam geometric shape, or the width distribution with the
controller. This resultant shape is the optimal shape and the controller is optimal
for the beam so that the performance index reaches the global minimum. The
physical parameters of uniform beam which appear in the state dynamical model
are given in Table 1.

From Eqs. (6)±(8)), we obtain the dimensionless constants which are used for
the normalized link dynamics in Eqs. (9)±(12)). They are Z � 0:022, k � 0:000214,
z � 0:035, c � 1:09: The coe�cients of DC motor in Eq. (24) are R � 0:2,
Jm � 0:2, Bm � 0:03, Kb � 0:1, Km � 0:1, r � 1=47: For the requirement of the
beam strength, we set the maximum width Hmax � 2 �H � 0:003175 m, and

Fig. 1. Optimal shape for �fyg, 4, 100�:

Table 1

Rectangular uniform beam physical parameters

M0 Beam weight 0.5 kg Ih Hub inertia 0.0174 kgm2

D0 Nominal bending rigidity 0.44 g Beam density 2.713e + 3 kg/m3

B Beam width 1.587e ÿ3 m Jp Tip inertia moment 1.5eÿ4 kgm2

L Beam length 1.098 m Mp Tip mass 0.2 kg

ac x-coordinate of tip mass 0.035 m E Young's modulus 6.63e + 9 kg/m2

r mass per unit length 0.4436 kg/m H beam height 0.103 m
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Fig. 3. Optimal shape for �fyg, 12, 100�:

Fig. 2. Optimal shape for �fyg, 6, 100�:
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minimum width Hmin � 1
4H � 0:003965 m. For the IHR algorithm, MUL = 1,

FACTOR = 1, all other criteria are set to 0.000001.
The di�erent output feedback strategies, combined with various number of

segments n and state weighting matrix Q in Eq. (31) but R � I are tested. The
notation ({feedbacks}, number of segment, Q ) is used here. Two feedbacks are
considered, which are the hub angle y feedback and the y with the net tip
displacement w � zn ÿ y: These feedbacks have very clear physical meanings and
they are detectable as described in Section 4. The initial state is set to q �
�1,0, . . . ,0�T: We set Q � 100 � I, n � 4, 6, 12, with these two feedbacks. The best
performance index are listed in Table 2, and the associated optimal controllers are

Fig. 4. Optimal shape for �fy, og, 4, 100�:

Table 2

Performance index �Q � 100 � I)

n � 4 n � 6 n � 12

fyg feedback Ð uniform shape 65704 65704 65704

fyg feedback Ð optimal shape 45957 45964 45956

fy, zn ÿ yg feedback Ð uniform shape 65424 65426 65423

fy, zn ÿ yg feedback Ð optimal shape 45862 45865 45863
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Fig. 5. Optimal shape for �fy, og, 6, 100�:

Fig. 6. Optimal shape for �fy, og, 12, 100�:
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Fig. 7. Optimal shape for �fyg, 4, 50�:

Fig. 8. Optimal shape for �fy, og, 4, 50�:
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listed in Table 3. The performance index for Q � 50, Q � 10 are illustrated in
Table 4, and their controllers are in Table 5. Figs. 1±3 and 7 are the optimal
shapes for fyg feedback with di�erent Q and segment number. But the shapes
have one commom feature, that is, with a larger size at the hub end and smaller
at the tip end. Figs. 4±6 and 8 are the optimal shapes for fy, wg feedback. Their
common feature is smaller dimensions at the ends. Step input responses of hub
angle and tip de¯ection for fy, wg feedback are as in Figs. 9 and 10. In all ®gures,
the solid outline is for optimal shape or response, and the broken one is for those
of uniform shape.

As shown in the above tables, the performance index is improved signi®cantly,
e.g., with fyg feedback, n � 4, Q = 100, the performance index for uniform beam

Fig. 9. Hub angle step input response for �fy, og, 4, 100�:

Table 3

Optimal feedback matrix �Q � 100 � I)

n � 4 n � 6 n � 12

fyg Ð uniform shape 3.674 3.674 3.674

fyg Ð optimal shape 3.686 3.677 3.675

fy, zn ÿ yg Ð uniform shape (2.7599, ÿ422.398) (2.7599, ÿ422.398) (2.7599, ÿ422.398)
fy, zn ÿ yg Ð optimal shape (2.498, ÿ337.071) (2.539, ÿ380.396) (2.423, ÿ378.554)
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is 65704 with its optimal controller R = 3.674. For its optimal shape, the
performance index is 45957, which is decreased by 30% of that for the uniform
beam, and the optimal controller is R = 3.686. It is also noticed that the
performance index does not depend on the number of segments, because the ®nal
shape converges to its optimal shape. System with two variable feedbacks has
lower performance index than those with one output variable feedback, since the
former has more degrees of freedom to utilize. The improvement in performance
is related to performance functions. For example, di�erent Qs have di�erent
performance results. The step input of hub angle for the optimal shape has
smaller rising time and tip de¯ection converges to stable much faster than for
those of uniform shapes.

Fig. 10. Tip de¯ection step input response for �fy, og, 4, 100�:

Table 4

Performance index with (Q = 100 � I, 50 � I, 10 � I )

fyg fy, zn ÿ yg

Q = 50 � I Ð uniform shape 2611.373 2174.499

Q = 50 � I Ð optimal shape 2540.470 2098.374

Q = 10 � I Ð uniform shape 679.856 630.266

Q = 10 � I Ð optimal shape 663.834 621.442
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8. Conclusions

In this paper, the mechatronic design for both ¯exible beam linkage and
controller are presented. The global optimized beam shape and controller
parameters are obtained using an adaptive iterative algorithm with the
accommodation of various geometrical constraints. Di�erent output feedback
strategies are investigated to evalute the impacts of various controller structures.
The numerical results show that the ¯exible link can signi®cantly improve upon
the performance. The index can be chosen accordingly from system related
functions depending on di�erent applications, for instance, hub speed rising time,
damping time, link tip de¯ection. Simulations for di�erent optimizing variables,
including motor parameters are further investigated. An experimental prototype is
under construction for the veri®cation of these simulation results. This method
can be applied to other control system designs.
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