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Abstract: The time domain PID analysis includes three types of first-order plus time delay
(FOPTD) models: (a) zero or negligible time delay (b) low to medium long time delay and (c) very
long time delay. The first part of the analysis proves that the optimum PID controller for plants
having negligible time delay is a PI controller, and the corresponding PI terms based on the
actuator’s capacity and set-point overshoot are explicitly derived. For low to medium time delay
problems, a new PID tuning scheme is then developed. The proposed tuning rule is capable of
accommodating the actuator’s saturation and therefore has the ability to select an optimum PID
controller. By using a separate time response analysis, a new PI tuning scheme for large
normalised time delay is then derived. Numerical studies are made for higher-order processes
having monotonic open-loop characteristics. The performance is compared with-other commonly
available tuning rules. With new tuning rules, better performance is observed and the rules have

the capability to cover time delays ranging from zero to any higher value.

1 Introduction

As a result of extensive investigations to devise ways of
choosing optimum controller settings for the PID control-
lers, Ziegler and Nichols [1, 2] showed how they could be
estimated using open and closed-loop tests on the plant.
The method is referred to as ZN rules. The ZN settings
usually experience excessive overshoot of the plant
response and also the method cannot be used to tune
plants that have a relatively longer normalised time delay
or NTD (ratio of process time delay to time constant). With
the ease of computations, the numerical optimisation and
curve fitting techniques have later become significant in
devising formulae for PI and PID parameters. The error
integral criteria are the most common for such optimisa-
tions [3-7]. Most of these tuning schemes are valid only
for limited range of NTD problems. More recently Khan
and Lehman [8] have used extensive simulations and data
fittings to obtain PI tuning formulae, which can satisfy the
NTD ranging from 0.2 to 20. In the curve-fitting
approaches the PID parameters are arbitrarily expressed
as functions of process terms, typically in terms of NTD
and first-order time constant. Hang et a/. [9] have critically
examined the ZN settings and, by introducing an additional
variable (set-point weighting), the excessive overshoot in
the original ZN settings have been reduced while preser-
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ving the same load disturbance characteristics. In develop-
ment of the former refined ZN (RZN) rules, the ZN PI
settings have been completely revised to cope with rela-
tively long time delay problems. The set-point adjustment
has the ability to control the transient response at a desired
speed. By having a variable set-point weighting, the RZN
method has been further refined [10]. By allowing the set-
point weighting to vary during transient, the improved
RZN method has been able to recover the response
speed. Using numerical simulations, empirical formulae
have been developed for determining the adaptive set-point
values. The RZN method is quite effective and shows
excellent performance for short NTD problems. However,
it has limitations to use for processes having NTD greater
than one

Frequency domain analysis and development of PID
tuning are reported [11-14]. These methods have the
advantages of obtaining different PID parameters by select-
ing desired points in the Nyquist curve [11, 12] or by using
user specified phase and gain margins [13, 14]. The later is
called as GPM tuning. The internal model control (IMC)
approach (time-domain based study) to design PID para-
meters is shown in [15]. The IMC design simplifies the
PID settings to a single parameter, which is directly related
to the proportional gain and therefore the response speed.
Therefore, IMC design has the advantage of obtaining PID
parameters to accommodate the actuator saturation [16].
Also, the PID formula for zero time delay simplifies to a
pole zero cancellation PI controller. Due to the first-order
Pade approximation of the exponent term, the applicability
of the IMC method is also limited to relatively short time
delay problems. Hang et al. [17] have presented a compara-
tive study of the IMC and GPM approaches and concluded
the IMC design has a lower flexibility in terms of robust-
ness.

Based on this literature review, we address three main
issues, which are related to PID tuning. The first is related
to PID control of processes modelled with zero or negli-
gible time delays. The numerical optimisation in [4]
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suggests that for zero time delay processes the best selec-
tion is a PI controller. While the majority of tuning rules
such as ZN, RZN, GPM and error integral optimised
methods are not applicable, the IMC design simplifies
the PID settings to a pole zero cancellation PI controller
for zero time delay plants. However, a time domain-based
closed form mathematical analysis of PID controlled
response for zero time delay has not so far been reported
in the literature. Therefore, in this paper we first analyse
FOPTD systems with zero time delay and the PID control-
ler settings are analytically deduced. The second issue is
related to PID parameter selection to accommodate the
maximum capacity or gain of the actuator while avoiding
the hazard of integral wind-up. The applicability of tight
PID control based on NTD and the normalised process
gain was discussed in [18]. The importance of the PID
design to limit the overshoot of controller signal has been
argued at length [16, 19]. However, the optimum PID
controller selection based on the actuator limitations
hasn’t so far been adequately addressed. We extend the
analysis to deduce new PID tuning scheme applicable for
short and medium long time delay (0 < NTD < 2). The PID
controller gains are selected based on the actuator’s satura-
tion. The practical limits for PI and PID control are also
deduced. The third issue is related to plants having large
NTD (>2). To accommodate them, a new PI tuning scheme
is analytically derived and the tuning is based on user
defined two points in the transient response curve. This
scheme can be used for any higher value NTD. Therefore
this paper intends to provide a complete analysis of PID
tuning for first-order plant models covering the complete
range of NTD.

1.1 Controller/ process specifications

This paper aims at developing PID tuning schemes for the
class of problems that have monotonic open-loop charac-
teristics except for the initial time period when such a
process can be approximated to a FOPTD model. Let a
FOPTD with time delay (z;), time constant (7) and steady
state gain (k) is given by the transfer function

k exp(—1t;s)

GO =7 1

The experimental identification of the three terms using
many techniques are well described in [20]. The PID
controller with gain (k,), derivative time (7,) and integral
time (7}) is given by

u(t) = (e(t)+Td d;(t’) J (t)dt) (1

The feedback error e(f) =reference signal #(¢f) — response
signal y(¢). In the practical PID controller with a derivative
filter, the controller output is given by

u(t) = k ((t)~—Td y‘fi"t() TJ (t)dt)

i

(RMN)'W()—yU)—xAH @

The N is an arbitrary number associated with the derivative
filter. For N > 10 the same PID parameter values obtained
from (1) can be implemented with the derivative filter
without any significant difference [7]. The other practical
forms generally implemented in commercial controllers
can be obtained from eqn. 2 as described in [20]. For
this work, the design of a PID controller is considered as a
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process of determining three unknown gain parameters
given by

u(t) = kpe(t) + kp—— ( ) + kIJ e(t)dt 3)

where the PID gain terms are, respectively, given by:
kp=k,, ky=kp/T; and kp=k, Td The remainder of this
paper consists three parts of analysis followed by simula-
tion examples. Without loss of generality, the PID metho-
dology in this paper is described with respect to unit step
response and zero initial conditions are assumed. With a
suitable error transformation, the general step response can
be transformed to unit step case with least effort.

2 Analysis I: For zero or negligible NTD
problems

The Laplace form of eqn. 3 can be expressed with the
initial error signal e(0) by

U(s) = kpE(s) + kp(sE(s) — e(0)) + k;E(s)/s

where for closed-loop feedback control E(s)=R(s) — ¥(s).
The cascade closed-loop PID controller system with no
external disturbance, the plant output in the Laplace form
is given by

Y(s) = U(s)G(s)

For a unit step input, R(s)=1/s and e(0) = 1. Substituting
t; =0 for G(s) the output can be simplified to

_ 1 K,
’m‘&+mwmﬁm+&@“ )(“

where the normalised PID gain terms are defined as,
K, =kkp, K, =Fkk; and K;=kkp. Our objective in this
exercise is to relate the PID parameters to the closed-loop
response behaviour. Therefore, expressions for the rise
time and overshoot (or undershoot) of eqn. 4 had been
deduced and the derivation was based on the nature and
positions of the closed-loop poles in the s-plane. The final
results are shown below.

2.1 Rise time and peak overshoot in the transient
response

Case I: The closed-loop poles are real and distinct

By examining the real closed-loop poles, a general rela-
tionship between the normalised gains was established and

is given by
_ K &K -1
k=& (1 T ) ©®)

where, f is a positive real number and its range is
constrained to be within 0 <f <1 for the closed-loop
poles in eqn. 4 to be real and distinct. Also, within this
range and when K| > 1, the peak overshoot is always
positive. Case II covers f=1, which corresponds to
equal roots. Also, it can be easily proved that, when
=0, the peak overshoot of the response also becomes
Zero.

Case I-a: K1 >1and 0 < f <1
The rise time (7,) based on 0-100% response and peak
overshoot (M) are given by

T_ Ky + T) (1+\/1* > ©
& -DYT-8 V1-B
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respectively, where y = (K, + 1)/(K; — 1).

Case I-b: =0
In this case the overshoot, M =0 and 7, based on 10-90%
response is given by

T, = (K3 + 1)/(K; + 1)) In9 (8)

Case II: Closed-loop poles are real and equal
This case refers to the gain relationship of eqn. 5 with

f=1.
. Case II-a! K; > 1
The 7, based on 0-100% response and M are given by

T, =2+ 1)/(Ky = 1) ©
&= _
= mexp(—ZKl/(Kl 1) (10)

From eqn. 10 it is clear, when K, <1 the system shows
stable overdamped response.

Cuase II-b: K| =1

The critically damped response has zero overshoot and the
rise time based on 10-90% is given by

T, = (K; + T)In9 (1)

Case III: The closed-loop poles are complex with negative
real parts

This case is realised when the relative damping factor { of
the closed-loop system is chosen within 0 < { <1, while
satisfying the normalised gain relationship given by

K + 1)
43K +T)

The peak overshoot of the under damped response can be
shown as

. —{(0+ ¢)
M=/ +P)1 -1 EXP(_J/_—?) (13)

(12)

2:

where

V1=
4

__t &=
\/ CZ(K1+1)

¢ = tan~!

and
. {tan"(l/P) forkK; > 1
~|a—tan~'(1/|P]) fork, <1

It can also be shown that M is always positive when { is
within 0 and 1. Therefore, the rise time based on 0-100%
can be shown as

(K +T)0

e 14
BRGCESV/ S “
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2.2 Optimal tuning law for processes having zero
time delay

By observing the rise time given for all the cases above, we
can see that the addition of the derivative term, which
cortesponds to K; in eqns. 6, 8, 9, 11, and 14 slows down
the transient response. Also the overshoot in all cases can
be controlled by the normalised proportional gain while
choosing the integral gain satisfying the gain relation, eqn.
5 or 12, corrésponds to. each case. Thetefore, we can
conclude that, for optimum design of PID conttoller for
any FOPTD system with zero lag-time, the derivative gain
should be zero. The theoretical model with the PI control-
ler has an infinite gain margin and the system can be
operated with any value of a controller gain. The upper
saturation level of the actuator gain can determine the
maximum gain of the controller. For unit step response
the maximuim controller signal u,,,, is given as follows.

Case A: when closed-loop poles are real or are complex
with K, — 1) > 1

Unae = w(0) = kp

Case B: closed-loop poles are complex with
K2t -1<1
The peak controller signal corresponding to time

; 1 2T

»= (K1 )w/l — 7

m+w(Mﬁ 1-¢
4K -y - (K, - 1)?) ¢

an

Y
Uppax = kpe(tp) + k] JO e(t)dt

This can be simplified to as

17K+ 1 2K, ¢ &K +1 1
¥max _k( X K+ 1) e"p( nT ’P) 3
The above conditions hold only if K| > 1. With 5% or less
overshoot, case B occurs when the normalised proportional
gain is closer to 1 and also u,,, in this case is not
significantly greater than kp. Therefore, in most cases the
proportional gain k, can have any value as high as the
actuator’s upper limit of saturation. This condition is
implicitly stated in the IMC design [15]. The remaining
integral gain can be selected by choosing a desired level of
overshoot of response. Let M, denote the desired peak
overshoot level. The optimal tuning law can be stated as
follows.

(a) With zero time delay, PI controller is optimum where
K; =0, and therefore kp =0.

(b) Select the proportional gain based on the actuator
saturation. If the actuator’s upper limit of saturation is
U,, select (kp)u,; by assigning u,,,, = U,. This allows the
fastest rise time.

(c) If the K| <1, select the necessary relative damping for
the given M, from eqn. 13 and thus compute K, using eqn.
12,

(d) IfK; > 1, compute the peak overshoot using eqn. 10 by
assuming closed-loop poles are real and equal. If the
computed value is greater than M, select 8 for the given
M; from eqn. 7 and then compute K, using eqn. 5.
Otherwise, choose relative damping and compute as ifi (¢).
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3 Analysis Ii: For short and medium NTD
problems

The second part of the analysis considers FOPTD systems
satisfying the range 0 < NTD < 2. The exact time-domain
analysis of G(s) with the time exponent is a complex
mathematical task, owing to the nonlinear exponential
term in the transfer function. The Padé approximation
[15] or truncated time series approximation [21] of the
exponent term results in losing significant poles that exist
at distances from the imaginary axis of the s-plane.

3.1 Ultimate gain and ultimate frequency

The definition of ultimate gain and ultimate period refers to
the continuous oscillation of the closed-loop response with
constant amplitude when the process is controlled only
through a proportional controller. The closed-loop char-
acteristic equation of a proportional controlled FOPTD
system with zero derivative and integral actions is given by

Ts+ 1+ K, exp(—st;) =0

where the normalised gain K, = kk,. The ultimate normal-
ised gain (K,,) and frequency at which the inner locus cuts
the imaginary axis are given by

K,=/1+T?w2 and w,t; —sin"'(1/K,) = n/2

By simplifying above, the FOPTD terms can be expressed
in terms of ultimate terms as

¢
=t /PR

t =l E+sin_1 1
47 am\2 kk,

where k, and ¢, are the ultimate gain and ultimate period of
the FOPTD system, respectively. The method of obtaining
approximate estimates k, and ¢, through closed-loop relay
experiment is described [20]. By estimating the process
gain k by an open-loop test and by using eqn. 15, estimates
for T and ¢, can be made.

(15)

3.2 Pl and PID tuning analysis

The limiting values of the gain terms very much depend on
the actuator’s upper level of saturation. Also, the allowable
overshoot of the controller signal is limited in most
industrial problems [19]. Therefore, in this exercise over-
shoot is selected as the main performance criterion.

To simplify the analysis, we assume some of the results
given in Section 2.1. It has been observed that, when
overshoot control parameter f is set to zero, the response
of a zero NTD process has zero overshoot. Therefore we
force f =0 and the gain relationship of eqn. 5 is simplified
to

K, =K /K +T) (16)

3.2.1 Pl tuning: For PI controller set K; =0. Eqn. 16
further simplified to K, =K, /T. The closed-loop character-
istic equation with the PI controller then simplifies to

(Ts + 1)<s + ng«exp(—std)) =0
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The roots of the inner root locus are at —1/7 and ~1/¢;.
The first root corresponds to cancellation of the dominant
process pole by the PI controller. With this PI setting it can
be seen that the theoretical response during the second
delay period would be a straight line. The second root
corresponds to the break point gain (K;,), and is given by

Ky = (T/1;)exp(—1) = 0.368(T /)

The break point gain exhibits the critical damping condi-
tion of the closed-loop system. From this analysis we have
seen that the normalised proportional gain is always a
function of the scaled time constant (77/¢;). Therefore, it
is now reasonable to write a general expression for K as

Ky = pry

where the scaled time constant is defined as the reciprocal
of NTD, 1, =T/1,.

The coefficient p is termed as proportional weighting. A
value for p can be selected to generate the required
performance characteristics. In the ZN step response
method, this term is fixed and assigned 0.9 for PI controller
and 1.2 for the PID controller. With the above PI settings,
the plant response for unit step input has been further
analysed. For convenience we define a dimensionless
scaled time as 7 =1¢/t,;. For three initial scaled time periods
the response expressions are shown below and to avoid the
overshoot during each period, the limiting values for p are
also shown.

() 0<t<1 yr)=0 (17a)

(i) 1=722 y)=pr—1). Fory2)=<l,p=<l
(17b)

({25753 §O)=p—1) -39 2P,
Fory(3) < 1,p <0.586 (17¢)

Fig. 1 shows responses for three PI settings that correspond
to three values of p. From this analysis it is clear now that,
if the closed-loop gain is less than the break point gain or
p <0.368, the PI controller would be sufficient. The addi-
tion of derivative controller within this range makes the
response more sluggish and will take a longer duration to
reach the set-point value. Practical control problem can
allow a small overshoot to ensure faster rise time and also a

1 ]

10 15

scaled time, ©
Fig. 1 Effect of proportional weighting in unit-step PI control
D p=1
(i) p=0.586
(iii) p=0.368
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faster settling time within an allowable error tolerance. The
simulation results showed when p <0.51, the overshoot
M < 5%. This corresponds to about 50% of the set-point
response within second time delay period.

In summary, the pole zero cancellation PI controller is

T
ke=pe-

¢ (18)
o
1_pktd

3.2.2 PID tuning: The tight PID controller can be
allowed only when the actuator gain allows the propor-
tional weighting to exceed 0.51 (refer to the next Section).
The derivative action is imposed to minimise the undesir-
able overshoot while achieving a faster rise, which is
limited in the above PI design. During the first unit of
scaled time period, 0 <7 <1, error is uniform and its
derivatives are zero. Therefore, only proportional and
integral control actions are active. With the above PI
settings and when p =1, the response reaches its target
value during this period and overshoot is inevitable
(Fig. 1). Hence the maximum limit for proportional
weighting is set as p,,,, = 1. Next, assume the normalised
derivative gain can be represented by, K3 =aT and o is
termed as derivative weighting. Using the same gain
relationship in eqn. 16, the first-order differential equation
showing the time response within the scaled time
n<1<n-+1 can be expressed as

d
Tdﬂ + (1) = prae(c —m) +azy

dz
)
+(a+1)[

The time response is therefore, y(t)=f(t;, p, «). This
suggests that, when the proportional weighting, p is fixed,
the response pattern can now be controlled by « alone. The
over-weighting of damping through o lowers the gain
margin and at the maximum limit of o the system may
become unstable. As an example, when a =1, the gain
margin drops below 1 dB. For these PID settings, we can
define a safety range for « as, 0 <o < 1. Also, from the
above equation we can infer that, for optimum control
based on a given cost function, o is a function of p only.
Using time-response simulations when p=1, o is set at
0.4, Similarly, for the other limit, when p =0.50, « is set at
0.1. The PID settings derived by [5], which corresponds to
optimum integral of the absolute value of the error (IAE)
have been carefully analysed. The equivalent o and p
computed for the PID values in [5] have shown an
approximately linear relation to each other. Therefore,
within the range of 0.50 < p <1, the relationship between
two weightings is assumed to be linear and fixed as

B=0.6p—02 (19)

The analysis up to now has simplified the PID settings to a
single unknown variable (p). This term can be adjusted
until a desirable overshoot is achieved. Since with the
simplified PID settings the response is only a function of
7, and p, a single relationship for proportional weighting
can be obtained in terms of the scaled time constant 7;. A
simulation experiment was performed for different 7,
values and the proportional weighting was adjusted in
each simulation to retain 5% or less overshoot. The plot
of p against 7, is shown in Fig. 2. Since the derivative

de(t — n)
dz

T n—1 (J+!
J e(t —n)dr+ Y J e(t —j)dril

n j=0J;
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proportional weighting, p

1 1 ] 1 J
2 4 6 8 10
scaled time constant, 14

Fig. 2 Proportional weighting for 5% or less overshoot

weighting has been set proportional to the proportional
weighting, a low value of p means that the amount of
damping needed by PID is also low. From this variation we
can conclude that, when the normalised time delay is very
small (or ;> 1) the PI control is sufficient. This is in
agreement with our previous results on Analysis I. Also,
when the normalised dead time is sufficiently large (or
74 < 1), the amount of damping requirement reduces. This
is mainly due to the existence of many closed-loop poles
near the imaginary axis, where the effect of zero addition
by the derivative term is insignificant to change the
response characteristics. To derive a PID tuning formula,
least square curves have been fitted to the curve shown in
Fig. 2 and the expressions for the proportional weighting to
provide 5% or less overshoot are obtained.

For relatively short time delay problems t; > 1
ppip = 0.770 + 0.245(z,) 8% (20a)

For relatively long time delay problems t, <1
ppip = 0.603 + 0.275(z,)>* (200)

Using eqn. 19 the PID parameters are finally expressed -
using process terms and proportional weighting as shown
below. Recommended range: 0.51 <p <1

_r(T
kp_k<td)

ol _(0.6p—02),

- A 21

o=t p 1
T Mep+ T~ k(0.6p +0.8) \z,

A suitable value for p is obtained from eqn. 20. The phase
and gain margins drawn for this PID tuning law are shown
in Fig. 3 and observed they are, respectively, above 2 and
60°. This is in agreement with most of existing tuning
techniques as described in [13].

3.2.3 Optimum controller selection for short and
medium long NTD problems: In set-point control of
any FOPTD system, the integral action causes the control
signal to rise monotonically during the initial period. The
wind-up problem can be avoided only if the actuator has a
higher capacity than the maximum PID controller signal
required for the desired settings. With the above PI or PID
settings, the maximum controller signal during the transient
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Fig. 3 Gain and phase margin under new PID settings against normal-
ised time delay

response of long time delay processes (NTD > 1) always
shows less than 10% overshoot and has an extremely low
bandwidth. In such circumstances an actuator with little
extra capacity can drive a system with no danger of integral
wind-up. Thus we only consider short time delay processes.
From the above analysis we have seen that tight PID control
can be allowed only when the proportional weighting is
chosen at a higher level. Therefore, by knowing the maxi-
mum permissible proportional weighting, we can determine
whether tight PID control can be allowed or not.

With the PI settings in eqn. 18 and using time response
eqn. 17, the maximum controller signal can be determined.
There are two cases.

Case A: When pty>1 7, =1
Case B: When pr; <1 T, =14+ = pty)/p

where 7, is the time at which the PI controllers signal
reaches its maximum. By equating the maximum controller
signal to the uppet saturation margin of the actuator (i.e.
Upax = U,,) the maximum allowable proportional weighting
(p,) is obtained as follows.

When pty €1, p, =kU,/(141,) (22a)

‘When pTy > 1, Py = [(1 +Td(2U _ 1))1/2 . ]/Tczz'
(226)

For no integral wind-up in PI settings, choose p < p, . If the
optimum proportional weighting is pp;, select p =min(p,,,
ppp)- Based on 5% or less overshoot criterion, pp;=0.51.

With the new PID settings it can be shown that the
maximum controller signal always occurs at the end of the
first dead time period (i.e. 1, =1). If there is no saturation
limit, the controller signal reaches the maximum value when
¢t =1, and then falls down due to the addition of derivative
action. Using the new PID tuning rules, a condition for the
maximum PID signal can be expressed by

pta/k+p/k(0.6p +0.8) < U, (23)
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To find the limit, consider the equal condition of the above
equation and solve the quadratic expression given by

0.61,0% + (0.87; — 0.6kU, + 1)p, — 0.8kU, =0  (24)

As k> 0and U, > 0, eqn. 24 has only one positive solution
for p,. To avoid any integral wind-up during PID control,
select p =min(p,, pprp). The analysis above shows that the
requirement of a PID controller arises only when the
system can allow higher gain, which is governed by
the saturation limits. To select the controller, we propose
the following rule.

If (ps<ppp)s the optimum selection is a PI controller.
Otherwise, the selection should be a PID controller.

For very small NTD problems, the limiting proportional
weighting (p,) is always small (eqn. 22a) and PI controller
would be the optimum. This agrees with our results of
Section 2.

4 Analysis lll: For large NTD problems (two-
point Pl design)

In the previous analysis it was observed that, when the
normalised time delay becomes larger, the required propor-
tional weighting to retain 3% or less overshoot is reduced
to the minimum and the derivative action becomes ineffec-
tive. The process response with PI and PID controller
becomes almost identical. This phenomenon has been
observed in the IMC-PID design [15]. The process
dynamic differs, mainly due to the existence of closed-
loop poles closer to the imaginary axis of the s-plane.
Therefore, we cah conclude that, for larger NTD processes,
the PI controller is sufficient. The pole zero cancellation PI
controller shows an extremely low bandwidth. Therefore,
in this Section we derive separate PI tuning formulas for
such processes where T« ¢, (or 7, < 1).

It is observed from simulations that, for larger NTD
processes, the PI tuning described in Section 3.2.1 over-
estimates the integral action and gives a lower estimate of
proportional weighting, Larger dead time processes require
a slower rate of integration to avoid any integral wind-up.
Therefore, the normalised integral gain can be assumed to
be inversely proportional to the dead time. For this class of
problemis, the PI gains are redefined as

Ky =prg

Y1
Ky, =~
2 td

25)

whete p; and y; are the redefined proportional and integral
weightings, respectively, allocated for the PI gains. In the pole
zero cancellation PI controller the two weightings are equal to
each other and the maximum value permitted for the propor-
tional weighting is one. Since the time delay is sufficiently
greater than the process time constant, we cansety; < p, and p;
can be allowed to be greater than one. The first-order differ-
ential equation showing the time response within the scaled
time n <t <n+ 1 can now be described as

dy(r)

a7 prtqae(t = n)

+y,|:J e(t — n)dr + ZJ

The step response solution for the first three delay periods
has been obtained and the final expressions are given
below. The equal conditions of the tresponse equations

—=+y() =

j+1

et — j)d‘t]
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correspond to boundary conditions of the past and future
responses.

H0=<t=1 yr)=0
M1=t=2 yoy=pra+yz—1)—1,)
~ralor - exn( =) 20
T4

()2 <713 p0)=y(1) +1(v) (26b)
where
7@ = [ = 10)a(e = 2) + 14Galor = 23)
— exp(—1/7a)](p; — y1) exp (_(17;22)
»a() = (o = v)(rg — pr + 2D+,

+ 7’1(1 = 2o =)= G ; 2))(T ~2)

When 7,< 1, the exponent terms in eqn. 26 can be
assumed to be negligible and the responses can be approxi-
mately expressed as,

forl<t<2,

Y@ = pg+y(r— 1) — 1)
272)

andfor2 <t <3, ()R y(1) (27b)

It can be observed from the above expressions that the
response during the second period of scaled time given by
eqn. 27a has a monotonically increasing function during
the valid period of time. This implies that it is impossible
for the PI controlled response to reach its steady state
before the time t=2. This is the clear limitation of PI
controller performance when it is used for long dead time
process [22]. With this limitation, we can allow the system
to accelerate as much as possible during the second delay
period and control the overshoot in the third period.
Therefore, two target points are first defined corresponding
to the two response periods. Let us assume the response
level to be reached at the end of second time duration
¥(2)=y,. We set y, < 1 to avoid any excessive overshoot of
response. By substituting this condition to eqn. 27a we can
obtain

1= W, =71 —2))/74 (28)

To achieve fast settling of the response, we can allow the
response during the third delay period to reach the peak of
the overall response. Let the expected maximum response
height of the unit step response be y,,( > 1). By substituting
the time given by dy,(t)/d7 =0 to eqn. 27b, we can obtain
an approximate estimate of y,,

Y =1/2+ v+ talp; — vyt — 1)
By simplifying the above, the integral weighting can now
be expressed as

1
Y= =< 20, — 1) = yuta

(g (Rg — 4ya +2) +2 =40 — ) "] (29)

Using predefined two target points and using eqns. 28 and
29 we can now determine the two weightings p; and y, to
estimate the PI terms. The etror of the approximation is
dominant only when the NTD is medium long in which
case y, will be an overestimate and y,, will be an under-
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Fig. 4 Gain and phase margins under new two-point PI design against
normalised time delay, y, = 0.8 and y, = 1.02

estimate. For larger time delay problems (NTD > 6), the
above estimations can very accurately be used. The numer-
ical simulations provide the following safe limits for the
target points assuming the allowable overshoot is about
5%. Valid range for normalised delay: 1, <1 or#;>7T

1<,/ <2 y,=06,y,=102
2<ty/T)<4  y,=07y,=102
4<(t;/T)<6 y,=038,y,=102
6 <(;/T) Accuracy is sufficient to predict the

two points.

The proposed PI setting is easy to understand. Irrespec-
tive of the magnitude of time delay, the user can select two
points by relating to the desired set-point response, Sincé
the response is slow for long time delays, the integral wind-
up with the above settings would not be a serious problem,
With about 10% extra capacity of an actuator, the response
with 5% or less overshoot can be easily accommodated
with no integral wind-up. The gain and phase margins
computed for these settings while seeking y,=0.8 and
Y =1.02 is shown in Fig. 4, If a higher gain or phase
margin is sought, the two target points can be changed
appropriately.

5 Simulation examples

In this Section some simulation results are demonstrated,
All the simulations were carried out using PID controller
architecture with the derivative filter as given in eqn. 2 and
without loss of generality N= 10 is used throughout. The
approximated process parameters are evalnated either by
using a relay experiment or from a plant open-loop step
test. The critical gain evaluation by the relay experiment
for negligible time delay or very long time delay gives
rather an erroneous estimate. Therefore, those types are
estimated by using the open-loop step response method as
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shown [23]. During each simulation a constant 50% load
disturbance is added.

Example 1: A third-order system with zero time delay
A third-order transfer function model is chosen.

2
(5s + 1)(0.5s + 1)(0.2s +°1)

The open-loop step response test yields #=2 and
T=5.72s and the time delay component is negligible.
For unit step response, the steady-state controller gain
required is 0.5. Let the actuator saturation limits be given
by [0 4] units. Using the results of Section 2.1, the
optimum PID controller is PI. Using the tuning law in
section 2.2, u,,,, <4. Select kp =3 or K| = 6. By assuming
the maximum expected overshoot to be 2% (44, =0.02),
we obtain k; =0.6086. Therefore, the PID parameters are
k,=3 and T;=4.93. The response curve for this PI setting
is shown in Fig. 5. The response has achieved its fastest
rise without exceeding the saturation limits, but has shown
somewhat poor load disturbance characteristics. By suffi-
ciently increasing the integral gain, it is possible to obtain
better load disturbance, but at the expense of poor transient
response.

G(s) =

- Example 2: A second-order system with a relatively short
time delay

This example is taken from the reference [7]. The transfer
function is given by

exp(—0.5s)
G(s) = ———
s+ 1)
12
1.0 -
08
>
5
=
3 06[
0.4 ]
0.2
0 1 1 L 1 L 1 1 ]
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e
£ 15
8
1.0
05
0 1 L Il 1 ! 1 1 J
0 10 20 30 40
time, s
b

Fig. 5 Step-response of Example 1
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The closed-loop relay experiment yields k,=3.45 and
t,=3.32s. Using eqn. 24 the process estimates are
T=1.746s and ¢, =0.985s. The process gain k=1. The
design is related to a short normalised time delay problem
(t4/T<1 or 1;>1). According to our design criteria, the
optimum selection is either a PI or PID controller, which
depends on the actuator saturation. The proportional
weighting from eqn. 20a is 0.92 and the estimated PID
parameters using eqn. 21 are kp =1.631, k; =0.691, and
kp=0.615 (or k,=1.631, T;=1.77, and T,=0.377).
Next, the actuator saturation limits of [0 1.6] are imposed
where U, = 1.6. This corresponds to 60% extra capacity at
steady-state values. With this limit, the above proportional
weighting value violates eqn. 23 where there is a possibi-
lity of integral wind-up. Using eqn. 22 the limiting propor-
tional weighting for PI design is 0.58. Since this value is
higher than the limiting value corresponding to a PI
controller, we can allow tight control through a PID
controller. The limiting proportional weighting calculated
from eqn. 24 implies p <0.608. Using the PID formula
given in eqn. 32, the new PID terms are given by,
kp=1.078, k;=0.530, and k,=0.288 (or k,=1.078,
T;=2.034, and T,=0.267). For comparison, the RZN
PID settings and Zhung and Atherton’s ITSE PID (ZA-
PID) settings are also tested. With the estimated process
terms above, the RZN-PID terms or k, =2.071, T;=1.66,
and T7;=0.415 and the set-point weighting=0.626 and
ZA-PID terms; kp=1.76, T;=2.01, and T; =0.415 have
been obtained.

The simulation results are shown in Fig. 6. The proposed
method shows acceptable step response performance and
similar to ZA performance. The RZN tuning generally
shows better transient response as well as better load
disturbance properties for short time delay problems.
This is mainly due to the fact that RZN is a four-parameter
controller and the method is specifically designed for short
time delay problems. However, the transient response
characteristics of the proposed method has shown accep-
table performance. With actuator saturation, the method
requires lowering the gains to accommodate the limiting
requirements and therefore shows poor load disturbance
characteristics compared to other two methods. It can be
seen from Fig. 6 that the proposed method has satisfied the
limiting conditions of the actuator gain and therefore the
response has not been affected by the integral wind-up.
However, by having a low set-point weighting, it is
possible to avoid saturation with RZN settings as well.
The controller signals based on the other two designs have
reached the upper saturation. This example illustrates the
flexibility of the PID design for accommodating the actua-
tor saturation. The IMC-PID design has shown similar
results as proposed design and- therefore, it has been
excluded from the diagram.

Example 3: Second-order plant having a normalised time
delay closer to one
This example was chosen from the reference [14] and the
transfer function is

exp(—1.0s)
(s+ 1)(0.55 + 1)

The closed-loop relay experiment yields k,=2.137 and
t,=4.1s. The estimates are k=1, 7=1.232s and
t;=1.343 s. The normalised time delay is therefore, 1.09.
Using the proposed PID formula, p = 0.827, the gain terms
are: kp=10.759, k;=0.475 and kp =0.365 (or £, =0.759,
T;=1.60, and T, = 0.481). For comparison, the Zhung and
Atherton ITSE PID settings and the PID settings based on

G(s) =
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gain and phase margin specifications (GPM-PID) are also
used. The ZA-PID settings are: k,=1.07, 7;=2.06, and
T;=0.46. The GPM-PID settings corresponding to a gain
margin of 3 and a phase margin of 60° are k.,=0.78,
T,=1.50, and T, =0.33. The response curves are shown
in Fig. 7. The proposed PID setting shows minimum set-
point overshoot and satisfactory load disturbance character-
istics compared with both ZA-PID and GPM-PID meth-
ods. The RZN PID setting is inadequate to cover the
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particular example, and with the closed estimated values
the response has shown quite an oscillatory response.

Example 4: Higher-order plant with long normalised time
delay

This example was chosen from the reference [22]. The
transfer function of the model is given by

exp(=2;5)

G(s) = (s + 1)(0.55 + 1)(0.55 + 1)(0.125s + 1)

and for simulations two cases are considered.

Case I: t;=4s.

The closed-loop relay experiment yields, &, =1.302 and
t,=11.46s. The estimates are k=1, I'=1.521s and
t;=4.462s. The normalised time delay is therefore
2.934. Using the proposed PID rules, p =0.6238 and the
gain terms are: kp =0.213, k;=0.119 and k, =0.265 (or
k,=0.213, T;=1.79, and T, = 1.244). Next, we have used
the two-point PI design (TP-PI). Using the recommended
values given in Section 3.3, the two points are decided as
v.=0.7, y,,=1.02. Using the expressions (eqns. 28 and
29) the PI weightings are p;=0.9058 and y;=0.133.
Using eqn. 25 the PI terms are kp=0.3088 and
k;=0.133 (or k,=0.309 and T;=2.32). For comparison,
the IMC—PI and PI settings developed for large normalised
time delay processes by Khan and Lehman, (KL-PI) [8]
are also simulated. The IMC-PI terms corresponding to
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(e/ty=1.7 are k,=0.495 and T;=3.76, The KL-PI para-
meters are k, = 0,319 and 7; =2.56: The unit step response
curves and the variation of the manipulated signal are
shown in Fig. 8.

Case II: t;=10s

For better approximation, the parameters are estimated by
the open-loop step response. The estimates are k=1,
T=15s and #,=10.5s. Based on the new two-point PI
design, two designs are evaluated. With y,=0.75, y, =1
the PI gains are kp =0.2281 and k; =0.0580 (or £, = 0,228
and T, =3.93) and with y, = 0.8, ,, = 1.02 the PI gains are
kp=0.2516 and k; =0.0609. Again, the KL-PI setting is
compared and the corresponding PI gains are k,=0.266
and 7, =4.59, The unit step response curves are shown in
Fig. 9.

It can be seen from Example 4-1 that the proportional
weighting allowed for PID settings is low. As a result, the
performance based on the proposed two-point PI setting is
superior to the proposed PID controller. This proves that
the PI controller is sufficient for controlling larger normal-
ized time delay processes. Figs. 8 and 9 show that, when
the normalised time delay is large, the signal overshoot is
minimal and therefore, a proper PID design giving no
excessive overshoot of response automatically satisfies
the actuator limitations. The IMC-PI design employed

=
o

controller signal u
od
©

o
o

o
'S

time, s
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Fig. 8 Step-response of Example 4-1
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Fig. 9 Step-response of Example 411
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the Padé approximation, which resulted in poor PI settings
and therefore exhibited the poorest response characteris-
tics. Though KL-PI settings have shown satisfactory
performance with zero overshoot, the proposed method
has more flexibility to select PI parameters for user
specified response behaviour. The two designs in Example
4-11 show how one could adjust the overshoot by simply
lowering the anticipated two points in the response curve,
The results show better performance of TP—PI settings in
both step response and disturbance rejection. The two-
point PI design analysis in Section 3.3 has shown the best
that a PID controller can achieve. Further improvement to
the transient response requires employment of different
control algorithms, such as the predictive PI controller
(PI(P) controller) in [22]. Any increase in the rise time by
raising the first expected point y, would produce rather-an
excessive overshoot of the response. The other tuning
methods, such as RZN-PI, ZA-PI and GPM-PI are
unable to provide solutions to very long time delay
problems.

6 Summary

This paper has presented a new time response based design
methodology for PID controllers. Based on the magnitude
of NTD, three types of tuning rules have been developed to
cover the time delay ranging from zero to any higher value.
The PID tuning rules for zero dead time processes have
been analytically obtained. It has been shown that the
derivative action is detrimental to those plants having
negligible or large normalised time delay. The tight PID
control can be applied for plants having low to medium
normalised time delay. The new design technique has the
flexibility to accommodate the actuator saturation to avoid
the danger of integral wind-up in the transient response.
Based on the actuator’s upper limit of saturation, a selec-
tion of PI or PID controllers for such plants have been
described. For large normalised time delay plants, a new PI
tuning scheme based on user defined two-points of the time
response curve has been derived. The analysis has also
shown the existing limitations of PI control with respect to
performance of transient response.
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