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Abstract

A new fuzzy controller for stabilizing series-type double inverted pendulum systems is proposed based on the SIRMs (Single Input Rule
Modules) dynamically connected fuzzy inference model. The controller deals with six input items. Each input item is provided with a SIRM
and a dynamic importance degree (DID). The SIRM and the DID are set up such that the angular control of the upper pendulum takes the
highest priority order over the angular control of the lower pendulum and the position control of the cart when the relative angle of the upper
pendulum is big. By using the SIRMs and the DIDs, the control priority orders are automatically adjusted according to control situations.
Simulation results show that the controller stabilizes series-type double inverted pendulum systems of different parameter values in about
10.0 s for a wide range of the initial angles. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In a series-type double inverted pendulum system
discussed here, two pendulums are linked and the lower
pendulum is hinged on a cart. Since the upright state of
the two pendulums is an unstable equilibrium point, the
two pendulums will fall down without control if one of
the pendulums does not stand up. Stabilization control of
series-type double inverted pendulum systems is to balance
the two pendulums upright and put the cart to a specified
position by moving the cart right and left. Because all the
angular control of the upper pendulum and the angular
control of the lower pendulum and the position control of
the cart must be done by only one manipulated variable, this
is a very difficult control problem.

To stabilize a series-type double inverted pendulum on an
inclined rail, Furuta et al. [1] designed an optimal regulator
based on state space theory. The approach had to linearize
the originally nonlinear mathematical model and the initial
angles of the two pendulums were both limited within +5°,
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which was required in linearization. Guo etc. [2] built a
Takagi—Sugeno style fuzzy controller, and the consequent
part of each fuzzy rule was a linear state feedback gain
vector which had seven parameters to determine. Because
the maximum angles of the two pendulums in transient
phase became as about four times big as their initial angles,
the initial angles of the two pendulums were limited within
+10°. Terano etc. [3] constructed a three-mode fuzzy
controller of four input items based on the behavior of a
skilled operator. The fuzzy controller only balanced the
two pendulums and did not take the position control of the
cart into consideration. Muchammad etc. [4] built a two-
stage fuzzy controller to stabilize a series-type double
inverted pendulum system. At the first stage, the force
necessary for controlling each pendulum was inferred
separately. At the second stage, the actual force to be
added to the cart was inferred from the two forces obtained
at the first stage. To realize the position control of the cart,
however, a virtual target angle had to be inferred and then
imbedded into the angles of the two pendulums. By training
a layered neural network using reinforcement learning,
Riedmiller [5] stabilized a series-type double inverted
pendulum system with some offset left in the cart position.
Because of using a neural network, the control architecture
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became a black box and explicit control knowledge
representation was impossible.

In stabilization control of a series-type double inverted
pendulum system, six state variables (input items) have to
be taken into consideration in order to cover the angular
controls of the two pendulums and the position control of
the cart. Because the angular controls of the two pendulums
should be done first and the position control of the cart
should be done after the two pendulums are almost balanced
upright, the priority orders of the three controls have to be
discriminated clearly. Although state feedback control
theory like a regulator can solve such a problem theoreti-
cally, a linear mathematical model is necessary and system
parameters must be obtained accurately. Furthermore, the
control design to determine control parameters is still a hard
task even for control experts. On the other hand, a fuzzy
controller based on fuzzy inference model can express
experts’ knowledge in fuzzy rule fashion and work even
without mathematical model. However, the conventional
non Takagi—Sugeno style fuzzy inference model, which
puts all of the input items into the antecedent part of each
fuzzy rule, needs many fuzzy rules and has poor ability to
express the control priority orders. As a new approach, the
SIRMs dynamically connected fuzzy inference model [6,7]
assigns each input item with a SIRM (Single Input Rule
Module) and a dynamic importance degree (DID). Because
the input items can be processed dispersedly by the SIRMs
and the control priority orders can be represented definitely
by the DIDs, the model has been successfully applied to
trajectory tracking control [8] and stabilization control of
single inverted pendulum systems [9].

In this paper, a new fuzzy controller for stabilizing series-
type double inverted pendulum systems is proposed based
on the SIRMs dynamically connected fuzzy inference
model. To stabilize series-type double inverted pendulum
systems, the proposed fuzzy controller handles six input
items and one output item. The SIRMs and the DIDs are
set up such that the angular control of the upper pendulum
takes the highest priority order over the angular control of
the lower pendulum and the position control of the cart. By
using the SIRMs and the DIDs, the angular controls of the
two pendulums and the position control of the cart are done
in parallel, and the priority orders of the three controls
are automatically adjusted according to control situa-
tions. The simulation results show that with a simple
and intuitively understandable structure, the proposed
fuzzy controller can completely stabilize series-type
double inverted pendulum systems of different parameter
values.

2. SIRMS dynamically connected fuzzy inference model

For systems of # input items and 1 output item, the SIRMs
dynamically connected fuzzy inference model first defines a
Single Input Rule Module (SIRM) separately for each input

item as:

SIRM-i : {R: if x; = Al then f, = C/}"" )

=1
where SIRM-i denotes the SIRM of the ith input item, and
R’ is the jth rule in the SIRM-i. The ith input item x; is the
only variable in the antecedent part, and the consequent
variable f; is an intermediate variable corresponding to the
output item f. A} and C) are the membership functions of x;
and f; in the jth rule of the SIRM-i. Further,i = 1,2,...,nis
the index number of the SIRMs, and j = 1,2,...,m; is the
index number of the rules in the SIRM-i.

If the simplified fuzzy reasoning method [10] is used and
the consequent membership function C} is a real number,
then the inference result £ of the consequent variable f; of
the SIRM-i for x; is given by:

> Alx)C]
=
= 1"117 @)

ZA{:(XI')
j=1

To express clearly the different role of each input item in
system performance, the SIRMs dynamically connected
fuzzy inference model further defines a DID w? indepen-
dently for each input item x; as:

wP =w, + B,Aw? (3)

The base value w; guarantees the necessary function of
the corresponding input item through a control process. The
dynamic value, defined as the product of the breadth B; and
the inference result Aw? of the dynamic variable Aw;,
plays a role in tuning the degree of the influence of the
input item on system performance according to control
situations. The base value and the breadth are control
parameters, and the dynamic variable is described by
fuzzy rules.

After each DID w? and the fuzzy inference result f,»0 of
each SIRM are calculated, the SIRMs dynamically
connected fuzzy inference model then obtains the output
value of the output item f by:

f= Z wif?, )
i=1

as the summation of the products of the fuzzy inference
result of each SIRM and its DID for all the input items.

To apply the SIRMs dynamically connected fuzzy infer-
ence model, therefore, one has to set up the SIRM, the fuzzy
rules of the dynamic variable, and the control parameters for
all the input items.

3. Series-type double inverted pendulum system

The series-type double inverted pendulum system
considered here is shown in Fig. 1. The system consists of



J. Yi et al. / Artificial Intelligence in Engineering 15 (2001) 297-308 299

Upper Pendulum

1
i
i
i
i
i
i
i
i
i

Lower Pendulum

N

mg

Q Q

4

X

Fig. 1. Configuration of series-type double inverted pendulum system.

a straight-line rail, a cart moving on the rail, a lower
pendulum, which is hinged on the cart, and an upper
pendulum, which is linked with the other end of the
lower pendulum. In the same vertical plane with the rail,
the lower pendulum can rotate around the pivot and the
upper pendulum can rotate around the linkage.

Here, the parameters M, m;, m, in the unit [kg] are
separately the masses of the cart, the lower pendulum and
the upper pendulum. The parameter g = 9.8 (m/s?) is the
gravity acceleration. Suppose the mass of each pendulum
is distributed uniformly. The full length of the lower pendu-
lum and the length from the gravity center of the lower
pendulum to the pivot are denoted as L;, /; in the unit
(m), and L; = 2/;. The length of the gravity center of the
upper pendulum to the linkage is denoted as [, in the unit
(m).

The position of the cart from the rail origin is denoted as
x, and is positive when the cart locates on the right side of
the rail origin. The angle of the lower pendulum and the
angle of the upper pendulum both from upright position are
denoted as « and 3, which positive directions correspond to
clockwise direction. The driving force applied horizontally
to the cart is denoted as F in the unit (N), and is positive if
pushing the cart toward right direction.

Given that no friction exists in the pendulum system, then
the dynamic equation of such a series-type double inverted
pendulum system is obtained from Lagrange’s equation of
motion as:

a“)'c' + Cllzd + aBB = bl
021).6. + a22d + 0233 - b2 » (5)

a31)’é + a32d + a33[§ = b3

where the coefficients are given by:
’a” =M+m1 +m2
ay = 4mll%/3 + mzL%
azz = 4I7121%/3
(6)
app = dy = (m111 + mle)COSCY

ay3 = az = mylycospP

L ay3 = a3y = myLl, cos(a — B)
and

by =F + (ml + mle)o'z2 sina + m212,82 sinf3
by = (myl; + myL,)g sina — myL,l,B3% sin(a — B).  (7)

by = mylrg sinB + myLy L sin(a — B)

The position x and velocity X of the cart, the angle « and
angular velocity & of the lower pendulum, the angle 3 and
angular velocity B of the upper pendulum are the state
variables.

Note that in Egs. (5)—(7), the unit of each angle is radian,
and the unit of each angular velocity is radian per second. In
the following fuzzy inference for convenience, however, the
unit of each angle is changed to degree, and the unit of each
angular velocity is changed to degree per second.

4. Stabilization fuzzy controller design

In order to stabilize the series-type double inverted
pendulum system, as well known from intuition and experi-
ence, first the two pendulums should be controlled to the
same line, and then the aligned two pendulums are balanced
upright, and finally the cart is moved to a specified position.
Given the angle of the upper pendulum relative to the lower
pendulum as y(y = B — a). Then, y = 0° means that the
two pendulums are aligned and have the same angle values.
Here, the relative angle y and angular velocity y of the
upper pendulum, the angle « and angular velocity ¢ of
the lower pendulum, the position x and velocity X of the
cart are selected in this order as the input items x;
(i=1,2,...,6) after normalization by their own scaling
factors. The driving force F after normalization by its
scaling factor is chosen as the output item f.

Without losing generality, the rail origin is selected as the
desired position of the cart. Then, if the values of the six
input items all become zeros, the stabilization control of the
series-type double inverted pendulum system is achieved.
Therefore, stabilizing the series-type double inverted
pendulum system is to design a regulator to converge the
values of the six input items to zeros. Here, the fuzzy
controller with the six input items and the output item is
designed based on the SIRMs dynamically connected fuzzy
inference model.
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4.1. Setting the SIRMs

It is understood from experience that if the cart moves
positively toward right direction, the lower pendulum will
rotate counterclockwise and the upper pendulum will rotate
clockwise. Therefore in case of positive values of the angle
v and the angular velocity 7, if positive driving force is
added to move the cart right, the lower pendulum rotates
counterclockwise and the upper pendulum rotates clock-
wise, causing the angle y and the angular velocity 7y to
increase further. Since the result goes against the stabiliza-
tion control purpose, it is necessary in this case to move the
cart left by negative driving force so that the lower
pendulum rotates clockwise and the upper pendulum rotates
counterclockwise. Fig. 2 shows the relationship of the
applied driving force and the resultant rotation directions
of the two pendulums. The solid line to the cart denotes
the applied force, and the dotted lines on the pendulums
denote the resultant rotation directions. In the same way, in
case of negative values of the angle vy and the angular velocity
v, positive driving force is necessary to move the cart toward
right direction such that the lower pendulum rotates counter-
clockwise and the upper pendulum rotates clockwise. By this
setting, the angle y and the angular velocity y tend to become
zeros, and the two pendulums are controlled to the same line.

Suppose the two pendulums are already aligned. In case
of positive values of the angle « and the angular velocity &
of the lower pendulum, if positive driving force is applied to
move the cart right, the lower pendulum will rotate counter-
clockwise toward upright position. At the same time,
however, the upper pendulum will rotate clockwise, making
its angle from upright position increase furthermore. As
well known intuitively, the stabilization control will become
more difficult if the two pendulums incline to the same side

Fig. 2. Relationship between positive relative angle, negative driving force,
and resultant pendulum rotations.

and the upper pendulum has a bigger angle than the lower
pendulum. In this case as shown in Fig. 3, therefore, it is
important to add negative driving force to the cart so that the
upper pendulum rotates counterclockwise toward upright
position while the lower pendulum falls down clockwise a
little more. If the angle « and the angular velocity ¢ of the
lower pendulum are negative, positive driving force has to
be applied to the cart in the same reason. As the result, the
angle y and the angular velocity 7 will have different signs
from the angle o and the angular velocity & of the lower
pendulum. Then through the control of the angle y and the
angular velocity 7y, the two pendulums will rotate toward
upright position from opposite directions, and both the angle
v and the angle « will get smaller. Consequently, the two
pendulums tend to be balanced upright.

Further suppose the two pendulums already stand up
upright. When the position x and the velocity x of the cart
are positive, adding negative driving force to the cart toward
left direction will make the lower pendulum rotate clock-
wise and the upper pendulum rotate counterclockwise.
Because the angle y and the angular velocity y become
negative, the control of the angle y and the angular velocity
v generates positive driving force to move the cart toward
right direction. Then the lower pendulum rotates counter-
clockwise and the upper pendulum rotates clockwise.
Because the cart moving directly affects the lower pendu-
lum, the lower pendulum rotates faster than the upper
pendulum. As the result, the angle of the lower pendulum
becomes negative, and the angle vy and the angular velocity
v become positive. Therefore, the control of the angle y and
the angular velocity 7 outputs negative driving force to put
the cart back to the rail origin and at the same time balance
the two pendulums upright. This is also true for negative
position x and negative velocity x of the cart.

Q Q

Fig. 3. Relationship between positive lower pendulum angle, negative driv-
ing force, and resultant pendulum rotations.
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Table 1
SIRM setting for each of the six input items

Antecedent variable x; Consequent variable f;

NB 1.0
Z0 0.0
PB —1.0

Therefore, the SIRMs of the six input items can all be set
up in Table 1. Here, the membership functions of each
antecedent variable are defined in Fig. 4 as triangle or
trapezoids. The consequent variable f; (i = 1,2,...,6) of
each SIRM is an intermediate variable all corresponding
to the output item f of the fuzzy controller. Because the
simplified reasoning method is adopted here, real numbers
are assigned as singleton-type membership functions to the
consequent variable of each SIRM.

4.2. Control priorities and the DIDs

As can be seen from Table 1, all the SIRMs have the same
rule setting and infer directly the output item of the fuzzy
controller. Based on Table 1, the angular control of the
upper pendulum decreases the relative angle of the upper
pendulum, while the angular control of the lower pendulum
and the position control of the cart both serve to make the
angular control of the upper pendulum feasible. This implies
that balancing the lower pendulum and moving the cart to
the rail origin have to be realized through the angular
control of the upper pendulum. In order to achieve the
stabilization control, then the priority orders of the three
controls are considered.

If the absolute value of the angle 7 is big, it should be
reduced by immediate control action. Otherwise because of
the influence of the pendulum weight, the upper pendulum
will rotate further toward the same direction, causing the
angle 7y to get even bigger. If the absolute value of the angle
v is big enough, it will become impossible to stand up the
upper pendulum again.

If the lower pendulum takes control priority over the
upper pendulum, the angular control of the upper pendulum
will become difficult because the two pendulums rotate
toward opposite directions and the relative angle vy

NB Z0 PB

I [ I
-1.0 0.0 1.0

Fig. 4. Membership functions for each SIRM.

increases. Moreover, emphasizing the angular control of
the lower pendulum based on Table 1 will lead the lower
pendulum to fall down because the two SIRMs correspond-
ing to the angle a and the angular velocity ¢ of the lower
pendulum enlarge the absolute value of the angle a.

If the cart is controlled first before the two pendulums are
stood up, the two pendulums will fall down because the
lower pendulum rotates toward the opposite direction to
the cart moving and the upper pendulum rotates toward
the same direction with the cart moving. Therefore, the
position control of the cart is permitted only after the two
pendulums are almost balanced upright. To keep the
balanced state of the two pendulums, it is also necessary
to move the cart rather slowly.

In the stabilization control of the series-type double
inverted pendulum system, therefore, the angular control
of the upper pendulum is the most important. When the
angle v is big, the angular control of the upper pendulum
should have the highest priority and the position control of
the cart should have the lowest priority. Furthermore, the
control priority orders should change with control situations
in order to make the angular control of the lower pendulum
and the position control of the cart possible.

On the other hand, the DIDs indicate the influence
strengths of the input items on system performance and
can express explicitly the priority orders. Since the upper
pendulum, the lower pendulum, and the cart have two input
items each, the control priority orders of the upper
pendulum, the lower pendulum, and the cart are represented
by the DIDs of its own two input items. The bigger the value
of a DID is, the higher the priority order of the correspond-
ing input item becomes.

4.3. Setting the dynamic variables of the DIDs

The fuzzy rules for the dynamic variables Aw; and Aw,
of the DIDs w? and w? of the input items x; and x,
corresponding to the angle vy and the angular velocity y of
the upper pendulum are established in Table 2 by selecting
the absolute value of the input item x; as the only antecedent
variable. Here, the membership functions DS, DM, DB are
defined in Fig. 5. In this way, the dynamic variables Aw, and
Aw, always have the same value and adjust separately the
DIDs w and w5 of the upper pendulum in the same
direction. When the absolute value of the angle vy is big,
the inference results of the dynamic variables Aw; and
Aw, will become big. Therefore, the two DIDs w? and w?
increase so that the angular control of the upper pendulum is

Table 2
Fuzzy rules for the two dynamic variables of the upper pendulum

Antecedent variable | x| Consequent variable Aw,, Aw,

DS 0.0
DM 0.5
DB 1.0
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DS DM DB

[ I
0.0 0.5 1.0

Fig. 5. Membership functions for each dynamic variable.

strengthened. If the absolute value of the angle vy is near
zero, the inference results of the dynamic variables Aw; and
Aw, will also become almost zero, and the two DIDs w} and
sz will decrease nearly to their base values. As the result,
the influence strength of the angular control of the upper
pendulum is weakened.

Because the angular control of the upper pendulum has to
be done first when the absolute value of the angle v is big,
the fuzzy rules for the dynamic variables Aw; and Aw, of
the DIDs w? and w4D of the input items x3 and x4 correspond-
ing to the angle o and angular velocity & of the lower
pendulum are set up in Table 3. Here, the absolute values
of the input items x; and x5 corresponding separately to the
angle vy and the angle « are chosen as the antecedent
variables. In this way, the dynamic variables Aw; and
Aw, always have the same value and adjust separately the
DIDs w5 and w} of the lower pendulum in the same
direction. In Table 3, the real number outputs of the
consequent part are set up to 0.0 in those fuzzy rules of
|x;| = DB. By this setting, if the absolute value of the
angle vy is not big, then the inference results of the dynamic
variables Aw; and Aw, will increase when the absolute
value of the angle « gets big. As the result, the correspond-
ing two DIDs both become large so that the angular control
of the lower pendulum is emphasized. When the absolute
value of the angle o becomes small, the inference results of
the dynamic variables Aw; and Aw, will decrease. There-
fore, the corresponding two DIDs both get small such that
the angular control of the lower pendulum has lower priority
order.

To do the position control of the cart, the two pendulums
should already be almost balanced upright. Therefore, the

Table 3
Fuzzy rules for the two dynamic variables of the lower pendulum

dynamic variables Aws and Awg of the DIDs wt and wg of
the input items x5 and x4 corresponding to the position x and
velocity x of the cart can be described by the fuzzy rules in
Table 4. Here, the absolute values of the input items x; and
x3 are used as the antecedent variables. In this way, the
dynamic variables Aws and Awg always have the same
value and adjust separately the DIDs ws and wg of the
cart in the same direction. In Table 4, the real number
outputs of the consequent part are set up to 0.0 in those
fuzzy rules of |x;|=DB or |rx3) = DB. By this setting,
when the two pendulums are almost stood up, the inference
results of the dynamic variables Aws and Awg will become
big. Resultantly, the two DIDs of the cart will increase
relatively, making the position control of the cart become
possible. When one of the two pendulums is still not stood
up, the inference results of the dynamic variables Aws and
Awg will be small. As the result, the DIDs of the cart
decrease so that the position control of the cart loses its
control priority.

4.4. Setting the control parameters of the DIDs

Till now, the rule settings of the SIRMs and the dynamic
variables of the DIDs have been made clear. As stated
above, each DID also has two control parameters, i.e. the
base value and the breadth. The rule setting of the dynamic
variables only does not guarantee the necessary control
priority orders. The control parameters have also to be
adequately set up. In order for the angular control of the
upper pendulum to take the highest priority order, the sum
of the base value and the breadth of each DID of the upper
pendulum apparently has to be larger than that of the other
DIDs. Further, the sum of the base value and the breadth of
each DID of the cart must be the smallest so that the position
control of the cart has the lowest priority order.

Here, the system parameters are given in Table 5. The
scaling factors of the input items are set up to 15.0°, 100.0°%/
s, 15.0° 100.0%s, 2.4 m, 1.0 m/s, respectively. The scaling
factor of the output item is defined as 10 times the total mass
of the two pendulums and the cart. Compared with the
single inverted pendulum systems [9], the scaling factors
of the two pendulum angles are reduced half while the
others keep unchanged just because the controllable ranges
of the two pendulum angles are narrower.

To tune automatically the control parameters, the random
optimization search method [11] is adopted. In each trial,
sampling period and total control time are separately fixed

Table 4
Fuzzy rules for the two dynamic variables of the cart

Aws, Aw, i | Aws, Awg x|
DS DM DB DS DM DB
x| DS 0.0 0.0 0.0 x| DS 1.0 0.5 0.0
DM 0.5 0.0 0.0 DM 0.5 0.0 0.0
DB 1.0 0.5 0.0 DB 0.0 0.0 0.0
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Table 5
System parameters

System parameter Value
Lower pendulum mass 0.2 kg
Lower pendulum half-length 0.4 m
Upper pendulum mass 0.1 kg
Upper pendulum half-length 0.2m
Cart mass 1.0kg

t0 0.01 and 25.0 s. The initial angle of the upper pendulum is
set up to 10.0°, while the initial values of the other state
variables are all set up to zeros. The base values and the
breadths of the DIDs are initially set up to zeros. The
random optimization search is run for 7500 trials along
such a direction that the total summation of the absolute
values of all the state variables and the driving force at
each sampling step from the control beginning to the end
of the total control time is reduced. If the maximum driving
force is given beforehand, the maximum driving force
should be reflected in the performance function so that the
constraint condition is kept. The base values and the
breadths after the random optimization search are shown
in Table 6.

As can be seen from Table 6, the control parameters
reflect the control priority orders very well although
obtained through the random optimization search. For
example, the base values and the breadths of the input
items x; and x, of the upper pendulum are separately larger
than the base values and the breadths of all the other input
items. And the sum of the base value and the breadth of
either of the input items x; and x,, i.e. the maximum of the
DID, is much larger than that of any of the other input items.
Although the breadths of the input items x3 and x4 of the
lower pendulum are almost as large as the breadths of the
input items x5 and xg of the cart, the base values of the input
items x3 and x4 are much larger than the base values of the
input items x5 and xg. As the result, the sum of the base
value and the breadth of either of the input items x5 and x, is
about or more than twice that of either of the input items x5
and xg.

4.5. Block diagram of the fuzzy controller

The block diagram of the fuzzy control system for the
stabilization control of the series-type double inverted

Table 6
Control parameters of the DIDs

Input item Base value Breadth
X 2.9277 1.9227
X 2.1918 1.0117
X3 0.4186 0.2543
X4 2.1629 0.0663
X5 0.0590 0.2930
X6 0.1711 0.1154

pendulum system is depicted in Fig. 6. The variables
Y, ¥, a, &, x, X from the pendulum system is fed back
and compared with the desired values. Because the desired
values are all zeros in the stabilization control, the variables
are reversely inputted into the normalizer block. The
normalizer block normalizes the variables by their scaling
factors each and forms the input items x; (i = 1,2,...,6).
Each input item x; is then guided to the SIRM-i block,
where the fuzzy inference of the SIRM corresponding to
the input item x; is done. The DID-1 block and DID-2
block take the absolute value of the input item x; as their
antecedent variable, while the other DID blocks take both
the absolute values of the input items x; and x5 as their
antecedent variables. The DID-i block calculates the value
of the DID of the input item x;. After the output of each
SIRM-i block is multiplied by the output of the DID-i block,
summing them for all the input items gives the output value
of the output item f of the fuzzy controller. The Output
Scaling Factor (OSF) block finally multiplies the output of
the fuzzy controller by the scaling factor of the output item
to determine the actual driving force F to the cart.

Although there are six SIRM blocks and six DID blocks
in the fuzzy controller, each block executes simple proces-
sing only. Furthermore, each SIRM-i block infers an inter-
mediate variable related with the output item of the fuzzy
controller, and each DID-i block tunes a DID according to
control situations. The product of each SIRM-i block and its
corresponding DID-i block is actually a part of the output
item of the fuzzy controller. Therefore, the angular control
of the upper pendulum, the angular control of the lower
pendulum, and the position control of the cart are performed
completely in parallel. The three controls cooperate and
compete with each other in determining the output of the
fuzzy controller. Which plays the leading role then depends
on control situations besides the proposed structure and the
control parameters.

If the absolute value of the relative angle vy is big, the
angular control of the upper pendulum will take the highest
priority because the two DIDs of the upper pendulum
become the biggest. Resultantly, the upper pendulum will
rotate toward such a direction that the angle vy gets small. If
the absolute value of the angle 7y is small and the absolute
value of the angle « of the lower pendulum is big, the two
DIDs of the lower pendulum increase while the two DIDs of
the upper pendulum decrease. At the same time, the infer-
ence result of the SIRM corresponding to the angle «
becomes large, while the inference result of the SIRM corre-
sponding to the angle y becomes small. As the result, the
contribution of the input items x3 and x4 in Eq. (4) will
exceed that of the input items x; and x, so that the angular
control of the lower pendulum becomes the main. If both the
absolute values of the angles y and « are small, the infer-
ence results of the two SIRMs corresponding to the angles y
and a will get small. At the same time, the two DIDs of the
cart increase, while the DIDs of the two pendulums
decrease. Consequently, the contribution of the input



304 J. Yi et al. / Artificial Intelligence in Engineering 15 (2001) 297-308

Desired

Input /
Y

Double
f F | Inverted
OSF Pendulum "
System
Y5 ¥, @, 0, X, X

Fig. 6. Block diagram of the fuzzy control system.

items x5 and x4 in Eq. (4) increases relatively, making it
possible to start the position control of the cart. By using
the SIRMs and adjusting the DIDs according to control
situations, therefore, the angular control of the upper
pendulum, the angular control of the lower pendulum, and
the position control of the cart are switched automatically.
In this way, the stabilization control of the series-type
double inverted pendulum system is achieved.

5. Stabilization control simulations

To verify the effectiveness of the proposed stabiliza-
tion fuzzy controller, control simulation is done first for the
series-type double inverted pendulum system used in the
random optimization search. In the simulations, the scaling
factors of the input items and the control parameters are all
fixed.

Fig. 7 shows the control results in order when the initial
angles « and S of the two pendulums are separately set up to
15.0 and 10.0, 15.0 and 15.0, 15.0 and 20.0°, while the initial
values of the other state variables are all reset to zeros. The
left axis and the right axis separately represent the angle of
the pendulums in degree and the position of the cart in
meter. The values in P (0.20, 0.40, 0.10, 0.20, 1.00, 0.01)
mean in this order the mass and half-length of the lower
pendulum, the mass and half-length of the upper pendulum,
the cart mass, and the sampling period. The values in S
(15.0, 0.0, 10.0, 0.0, 0.0, 0.0) denote the initial values of
the angle and angular velocity of the lower pendulum, the

angle and angular velocity of the upper pendulum, the
position and velocity of the cart, respectively.

In Fig. 7(a), the relative angle y (= —5.0°) of the upper
pendulum has a different sign from that of the lower pendu-
lum at control beginning. Since the absolute value of the
angle « is three times as large as the absolute value of the
angle v, the inference result of the SIRM of the input item x;
is also three times as large as that of the SIRM of the input
item x; from the SIRM setting. Because the DID of the input
item x is about six times as large as that of the input item x5
at control beginning, however, the input item x; totally
contributes more to the output item in Eq. (4). Therefore,
the angular control of the upper pendulum is started first by
moving the cart right. As the result, the lower pendulum
rotates counterclockwise and the upper pendulum rotates
clockwise. When the relative angle y becomes almost
zero, the angular control of the lower pendulum becomes
the main part in Eq. (4). Since the angle of the lower pendu-
lum is positive then, negative driving force is added to the
cart. However, the cart still moves toward right direction
because of inertia. When the relative angle +y gets positive
enough, the angular control of the upper pendulum takes
priority again and negative driving force is continuously
applied to the cart. Then the cart begins to move back
toward the rail origin and two pendulums are aligned to
the same line. Finally, the two pendulums are balanced
upright and the cart is put back to the rail origin by fine
switching of the three controls.

In Fig. 7(b), since at control beginning the relative angle
v of the upper pendulum is just 0.0° and the angle « of the
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Fig. 7. Control results of pendulum lengths 0.8 and 0.4 m. (a) Initial angles 15.0 and 10.0°; (b) Initial angles 15.0 and 15.0° (c) Initial angles 15.0 and 20.0°.

lower pendulum is 15.0°, the angular control of the lower
pendulum is done first by moving the cart to about —0.01 m
although it is hard to read directly from the graph.
Resultantly, the lower pendulum falls down further to
about 17.0° and the upper pendulum rotates counterclock-
wise to about 12.0°. The situation from then resembles the
start state of Fig. 7(a), and the pendulum system is stabilized
in the similar way.

In Fig. 7(c), since the relative angle y (= 5.0°) of the
upper pendulum has the same sign with that of the lower
pendulum at control beginning, the angular control of the
upper pendulum and the angular control of the lower pendu-
lum both take negative driving force at first. After the cart is
moved to about —0.05 m, the angle « of the lower pendulum
increases to about 22.0°, while the angle B of the upper
pendulum decreases to about 15.0°. Then the pendulum
system is stabilized in the way similar to Fig. 7(a).

Although the three sets of the initial state are different
from that learnt in the random optimization search, the
pendulum system is stabilized smoothly by using the
proposed fuzzy controller. Defining complete stabilization
time as the time interval from control beginning to such a
state that all the state variables just converge separately to
0.1°, 0.1°%s, 0.1°, 0.1%s, 0.01 m, 0.01 m/s, the complete
stabilization time for the three sets of the initial state are
about 7.19, 8.46, 9.27s, respectively. Moreover, the
maximum driving forces in the three examples are

separately about 8.0, 12.0,25.0 N, although the time response
of the driving force is not depicted for lack of space.

Fig. 8 shows the stabilization domain of the initial angles
of the two pendulums, for which the proposed fuzzy controller

UZEEH PENDULUM ANGLE (deg)

20 |

-20 0 20 40
LOWER PENDULUM ANGLE (deg)

Fig. 8. Stabilization domain of pendulum lengths 0.8 and 0.4 m.
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can stabilize the pendulum system. Here, the horizontal axis
and the vertical axis stand separately for the initial angles of
the lower pendulum and the upper pendulum in degree. The
initial angles of the two pendulums both are selected every
5.0° from —40.0 to +40.0°, and the initial values of the
other state variables are all fixed to zeros. For such a
selected angle of the lower pendulum, the maximum angle
of the upper pendulum that can be stabilized is also plotted.
The symbols @, O, B, [] mean that the complete stabiliza-
tion time is within 5.0, 10.0, 15.0s, or exceeds 15.0s,
respectively. Further, the failure limits of the angle of the
lower pendulum, the angle of the upper pendulum, the
position of the cart are set up to [—40.0, +40.0°], [—40.0,
+40.0°], [—5.0, +5.0 m], respectively. If any of the failure
limits is broken off during a simulation, the simulation is
regarded as a failure.

As can be seen from Fig. 8, if the initial angle of the lower
pendulum is chosen from [—30.0, +30.0°] and the initial
angle of the upper pendulum is selected in a range of about
30.0° around the lower pendulum, the pendulum system can
be stabilized by the fuzzy controller. For the initial angle of
the lower pendulum beyond *+30.0° if the initial angle of
the upper pendulum is selected in a range of more than 15.0°
around the lower pendulum, the stabilization control is
possible. For most of the controllable sets of the initial
angles, the complete stabilization time is within 10.0 s. As
the initial angle of the lower pendulum increases, the
maximum of the initial angle of the upper pendulum,
which can be stabilized, increases slowly. This agrees
well with the fact that the stabilization control is difficult
or even impossible if the two pendulums incline largely to
the same side and the upper pendulum inclines more than
the lower pendulum.

Fig. 9 draws a simulation result stabilizing a shorter
series-type double inverted pendulum system of m; =
0.1kg, [, =01m, my=0.1kg, L =01m, M=10kg
for the initial angles 15.0 and 10.0° of the two pendulums.
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P(0.10, 0.10, 0.10, 0.10, 1.00, 001)
5(15.0, 0.0)

0.0, 10.0, 0.0, 0.0,

Cart Position

Upper Pendulum Angle

0.00

Lower Pendulum Angle

-25.0 ——— T -2.50
0 4 6 8 10
TIME [s]

Fig. 9. Control results of pendulum lengths 0.2 and 0.2 m.

UPPER PENDULUM ANGLE (deg)

40
( i
! ......
o
20 -
8o
B
G
0 Q@
& « p ®
s o
g
..20_(9) >
L
...... .
@
'40 T
-40 -20 0 20 40

LOWER PERDULUM AHGLE (deg)

Fig. 10. Stabilization domain of pendulum lengths 0.2 and 0.2 m.

Since the cart moving does not directly affect the angular
control of the upper pendulum, the upper pendulum rotates
smoothly. On the other hand, because the lower pendulum
has high frequency characteristic and undergoes directly the
influence of the cart moving, it is liable to vibrate. As the
result, in the time response of the lower pendulum, vibration
is observed during a period from control beginning to about
3.0 s. After that, the lower pendulum gets almost synchro-
nized with the upper pendulum, and is controlled toward
upright position. In this example, the complete stabilization
time is about 8.22 s and the maximum driving force is about
9.0N.

The stabilization domain of the shorter series-type double
inverted pendulum system is plotted in Fig. 10. Compared
with that of Fig. 8, it is found that the stabilization domain
becomes a bit narrow because of the influence of the high
frequency characteristic of the lower pendulum. If the lower
pendulum initially inclines within [—30.0, +30.0°] and the
initial angle of the upper pendulum is chosen in a range of
about 20.0° around the lower pendulum, however, the
pendulum system can be stabilized by the fuzzy controller.
Moreover, for almost all the marked initial states in Fig. 10,
the pendulum system can be completely stabilized in 10.0 s.

Figs. 11 and 12 show a stabilization control result and the
stabilization domain of a longer series-type double inverted
pendulum system, where m; = 0.1kg, [; =0.5m, m, =
0.1 kg, l, = 0.5 m, M = 1.0 kg. In Fig. 11, the initial angles
of the two pendulums are both set up to 15.0°. In this
example, the pendulum system is completely stabilized in
about 10.13 s without vibration, and the maximum driving
force is about 17.0 N. From Fig. 12, if the initial angle of the
lower pendulum is set up within [—30.0, +30.0°], the initial
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Fig. 11. Control results of pendulum lengths 1.0 and 1.0 m.

angle of the upper pendulum can be selected in a range of
more than 25.0° around the lower pendulum. Further, for
almost all the initial states plotted in Fig. 12, the pendulum
system can be completely stabilized in 15.0 s. By the way,
Muchammad etc. [4] stabilized the same pendulum system
in more than 40.0 s even for the initial angles 4.0 and 3.0° of
the two pendulums, and showed a stabilization domain,
which was about 5.0° narrow compared with Fig. 12.

It is found through control simulations that by using the
proposed fuzzy controller, most of the series-type double
inverted pendulum systems, where the full lengths of the
two pendulums are limited between 0.2 and 1.2 m, can be
stabilized for a wide range of the initial angles. If the lower

UEEER PENDULUM AHGLE (deg)

A 0 20 40
LOWER PENDULUM AHGLE (deg)

Fig. 12. Stabilization domain of pendulum lengths 1.0 and 1.0 m.

pendulum is rather short, the lower pendulum tends to swing
left and right at controlling beginning. In this case, if the
sampling period is big, the lower pendulum may fall down
because of delay of control action. To weaken the vibration
of the lower pendulum, small sampling period is effective.
On the other hand, if the lower pendulum is long enough,
almost similar stabilization results can be obtained even
though the sampling period is set up to 0.02 s. Since the
proposed fuzzy controller can stabilize in short time interval
the series-type double inverted pendulum systems of
different parameter values for a wide range of the initial
angles of the two pendulums, the controller can be said to
have a high generalization ability.

6. Conclusions

A new fuzzy controller is proposed based on the SIRMs
dynamically connected fuzzy inference model for the stabi-
lization control of series-type double inverted pendulum
cart systems. The fuzzy controller takes the relative angle
and angular velocity of the upper pendulum, the angle and
angular velocity of the lower pendulum, and the position
and velocity of the cart as the input items, and the driving
force as the output item. Each input item is assigned with a
SIRM and a DID. The SIRMs and the DIDs are established
such that the upper pendulum takes the highest priority
order over the angular control of the lower pendulum and
the position control of the cart. The fuzzy controller has a
simple and intuitively understandable structure, and
performs the angular control of the upper pendulum, the
angular control of the lower pendulum, the position control
of the cart in parallel. By using the SIRMs and the DIDs, the
control priority orders are automatically switched according
to control situations. Simulation results show that the fuzzy
controller has a high generalization ability to completely
stabilize series-type double inverted pendulum systems of
different parameter values in about 10.0 s for a wide range
of the initial angles of the two pendulums. Based on the
proposed approach, stabilization control of series-type triple
inverted pendulum system is even possible.
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