2y

ke sets and systems

ELSEVIE Fuzzy Sets and Systems 126 (2002) 105-119

www.elsevier.com/locate/fss

A new fuzzy controller for stabilization of parallel-type double inverted
pendulum system

Jiangiang Yi* *, Naoyoshi Yubazaki®, Kaoru Hirota®

2 Laboratory of Complex System and Intelligent Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100080,
People’s Republic of China
bTechnology Research Center, Mycom, Inc., 12, S. Shimobano, Saga Hirosawa, Ukyo, Kyoto 616-8303, Japan
¢ Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori,
Yokohama 226-8502, Japan

Received 1 May 2000; received in revised form 14 November 2000; accepted 28 November 2000

Abstract

A new fuzzy controller with 6 input items and 1 output item for stabilizing a parallel-type double inverted pendulum
system is presented based on the single input rule modules (SIRMs) dynamically connected fuzzy inference model. Each
input item is assigned with a SIRM and a dynamic importance degree. The SIRMs and the dynamic importance degrees
are designed such that the angular control of the longer pendulum takes the highest priority over the angular control of the
shorter pendulum and the position control of the cart when the angle of the longer pendulum is big. By using the SIRMs
and the dynamic importance degrees, the priority orders of the three controls are automatically adjusted according to control
situations. The proposed fuzzy controller has a simple and intuitively understandable structure, and executes the three controls
entirely in parallel. Simulation results show that the proposed fuzzy controller can stabilize completely a parallel-type double
inverted pendulum system within 10.0 s for a wide range of the initial angles of the two pendulums. This is the first result for
a fuzzy controller to achieve successfully complete stabilization control of a parallel-type double inverted pendulum system.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction because of the simplicity of the structure. The fam-
ily of inverted pendulum systems can be classified

As typical unstable nonlinear models, inverted pen- int(? single inven§d pendulum systems [2,5,7,11],
dulum systems are often used as a benchmark for series-type double 1nver'ted pendulum systems [4,8,9],
verifying the effectiveness of a new control method parallel-type double inverted pendulum systems

[3,6,10], and so on. For a parallel-type double inverted
pendulum system, stabilization control is impossible
if the two pendulums have the same natural frequency.
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pendulum system to have different lengths. Further-
more, since the cart moving affects the two pendulums
directly, the shorter pendulum with a higher natural
frequency tends to respond intensively and is liable
to fall down. Therefore, it is said [6] that stabilization
control of a parallel-type double inverted pendulum
system is the most difficult among the family.

Till now, several approaches have been studied
for stabilization control of parallel-type double in-
verted pendulum system. Based on the singleton-type
reasoning method and genetic algorithm, Fujita and
Mizumoto [3] constructed a 4-input l-output fuzzy
controller only for balancing the two pendulums of a
parallel-type double inverted pendulum system. Since
the position control of the cart was not taken into
consideration, a limitless rail was necessary to keep
the two pendulums upright. Kawatani and Tamaguchi
[6] linearized first the nonlinear mathematical model
of a parallel-type double inverted pendulum system,
and then designed a stabilization controller by a state
feedback gain vector and full state observer. Although
the controller worked well for small initial angles,
stabilization was not guaranteed when the initial an-
gles of the two pendulums slightly increased. Sugie
and Okada [10] derived the linearized mathematical
model of a circular parallel-type double inverted pen-
dulum system, and created a stabilization controller
based on the H*° loop shaping design procedure.
Besides complicated mathematical analysis, however,
stabilization results of the controller showed a lasting
vibration with amplitude of about 3.0°.

In stabilization control of a parallel-type double in-
verted pendulum system, 6 input items are necessary
in order to cover all of the angular controls of the two
pendulums and the position control of the cart. Since
the angular controls of the two pendulums should be
done first before the position control of the cart from
intuition, the priority orders of the three controls have
to be discriminated clearly. The conventional fuzzy
inference model which puts all of the input items into
the antecedent part of each fuzzy rule, however, has
difficulty to settle fuzzy rules of 6 input items and has
poor ability to express the control priority orders. As
a result, although many fuzzy controllers [2,5,7,11]
have been proposed for stabilization of single inverted
pendulum system, only few approaches based on the
conventional fuzzy inference model are found for
stabilization of series-type double inverted pendulum

system [8] and parallel-type double inverted pendu-
lum system [3].

On the other hand, in the SIRMs dynamically con-
nected fuzzy inference model [12,14], a SIRM and a
dynamic importance degree are defined for each input
item. Since the input items can be processed dispers-
edly by the SIRMs and the control priority orders can
be represented definitely by the dynamic importance
degrees, the model has been successfully applied to
trajectory tracking control [15] and stabilization con-
trol of single inverted pendulum systems [13].

In this paper, a new fuzzy controller for stabilizing
a parallel-type double inverted pendulum system is
presented based on the SIRMs dynamically connected
fuzzy inference model. The fuzzy controller takes the
normalized angles and angular velocities of the two
pendulums, the normalized position and velocity of
the cart as the input items, and takes the normalized
driving force as the output item. Each input item is
assigned with a SIRM and a dynamic importance de-
gree. The SIRMs and the dynamic importance degrees
are set up such that the angular control of the longer
pendulum takes the highest priority over the angu-
lar control of the shorter pendulum and the position
control of the cart when the angle of the longer pen-
dulum is big. By using the SIRMs and the dynamic
importance degrees, the priority orders of the three
controls are automatically adjusted according to con-
trol situations. The fuzzy controller has a simple and
intuitively understandable structure, and executes the
three controls entirely in parallel. Simulation results
show that the fuzzy controller can stabilize completely
a parallel-type double inverted pendulum system for a
wide range of the initial angles of the two pendulums
in 10.0 s. This is the first result for a fuzzy controller
to realize complete stabilization control of a parallel-
type double inverted pendulum system.

2. Parallel-type double inverted pendulum system

As shown in Fig. 1, the parallel-type double inverted
pendulum system considered here consists of a straight
line rail, a cart moving on the rail, a longer pendulum 1
hinged on the right side of the cart, a shorter pendulum
2 hinged on the left side of the cart, and a driving
unit. In the same vertical plane with the rail, the two
pendulums can rotate freely around their own pivots.
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Fig. 1. Configuration of parallel-type double inverted pendulum
system.

Here, the parameters M, m;, m, (kg) are separately
the masses of the cart, the longer pendulum 1 and
the shorter pendulum 2, respectively. The parameter
g=9.8 m/s? is the gravity acceleration. Suppose the
mass of each pendulum is distributed uniformly. The
length from the gravity center of the longer pendulum
1 to its pivot is given as /; (m), which is equal to
half the length of the longer pendulum 1. The length
from the gravity center of the shorter pendulum 2 to
its pivot is given as /; (m), which equals to half the
length of the shorter pendulum 2.

The position of the cart from the rail origin is de-
noted as x, and is positive when the cart locates on the
right side of the rail origin. The angles of the longer
pendulum 1 and the shorter pendulum 2 from their
upright positions are denoted separately as o and f,
and clockwise direction is positive. The driving force
applied horizontally to the cart is denoted as F' (N),
and right direction is positive. Also, suppose no fric-
tion exists in the pendulum system. Then the dynamic
equation of such a parallel-type double inverted pen-
dulum system can be obtained by Lagrange’s equation
of motion as

anx + aind + aif = by,
ay X + apd = by,

aziX + asf = bs, (D

where the coefficients are given by
ajy =M +my + my,

a;p; = myl cos o,

a3 = myl, cos f,

az = aj,
=4m /3
azy = amjyly/s,

as = ais,
azy = 4my13/3, (2)

by = F +my1,6° sin a+mzlzﬁz sin f3,
b2 = mlllg sin o,
b3 :lezg sin ﬂ (3)

In the following control simulations, the state vari-
ables (the position x and velocity x of the cart, the
angle o and angular velocity o of the longer pendulum
1, the angle § and angular velocity f8 of the shorter
pendulum 2) are calculated based on Euler’s approx-
imation method.

3. SIRMS dynamically connected fuzzy inference
model

Before presenting the stabilization fuzzy controller,
let us describe briefly the SIRMs dynamically con-
nected fuzzy inference model [12,14] for systems of
n input items and 1 output item.

As well known, the conventional fuzzy inference
model, which puts all the input items into the an-
tecedent part of each fuzzy rule, causes the total num-
ber of possible fuzzy rules to increase exponentially
with the number of the input items and has difficulty
in setting up each rule. To solve the problems, the
SIRMs dynamically connected fuzzy inference model
first defines a SIRM separately for each input item as
SIRM-i: {R/: if x; = 4] then f; = C/}, 7 i1

4)

Here, SIRM-i denotes the SIRM of the ith input
item, and R/ is the jth rule in the SIRM-i. The ith input
item x; is the only variable in the antecedent part, and
the consequent variable f; is an intermediate variable
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corresponding to the output item f. A{ and C{ are the
membership functions of x; and f; in the jth rule of the
SIRM-i. Further, i =1,2,...,n is the index number of
the SIRMs, and j =1, 2,...,m; is the index number of
the rules in the SIRM-i.

The inference result f of the consequent variable
f; can be calculated based on the min—max-gravity
method or product—sum-gravity method or simplified
inference method. Since the consequent variables
of the SIRMs all correspond directly to the output
item, the simplest way to obtain the output value of
the output item is just summing up the inference re-
sults of all the SIRMs. But this does not work well
because each input item usually plays an unequal
role in system performance. Among the input items,
some may contribute significantly, while the contri-
bution of the others may be relatively small. Some
input items may improve system performance more if
their roles are strengthened, while the others may not
have a positive influence on system performance if
emphasized.

To express clearly the different role of each input
item in system performance, then, the SIRMs dynam-
ically connected fuzzy inference model defines a dy-
namic importance degree wP independently for each
input item x; (i=1,2,...,n) as

wP = w; + B;Aw?. %)

On the right-hand side of Eq. (5), the first term
and the second term separate the base value and the
dynamic value. The base value w; guarantees the
minimum weight of the corresponding input item for
a control process. The dynamic value, defined as the
product of the breadth B; and the inference result
Aw? of the dynamic variable Aw;, plays a role in
tuning the degree of the influence of the input item
on system performance according to control situa-
tion changes. The base value and the breadth are
control parameters, and the dynamic variable can
be described by fuzzy rules. Since the inference re-
sult of the dynamic variable is limited in [0.0,1.0],
the dynamic importance degree will vary between
[W,‘, w; + B ,'].

Suppose that each dynamic importance degree wP
and the fuzzy inference result £ of each SIRM are
already calculated. Then, the SIRMs dynamically con-
nected fuzzy inference model obtains the output value

of the output item f by
f=> wfl (6)
i=1

as the summation of the products of the fuzzy infer-
ence result of each SIRM and its dynamic importance
degree for all the input items.

As shown in Eq. (6), the model output is linear to
the inference result of each SIRM. If the inference re-
sult of each SIRM is identical, then the contribution
of one input item to the model output is controlled
by its dynamic importance degree. Therefore, the in-
put items with larger importance degrees will con-
tribute more to the model output, while the input items
with smaller importance degrees contribute less to the
model output.

4. Stabilization fuzzy controller

Without losing generality, the rail origin is selected
as the desired position of the cart. Then, the stabiliza-
tion control of the parallel-type double inverted pen-
dulum system is to balance the two pendulums upright
and move the cart to the rail origin in short time.

The angle o and angular velocity o of the longer
pendulum 1, the angle f§ and angular velocity f of the
shorter pendulum 2, the position x and velocity x of
the cart normalized by their own scaling factors are se-
lected in this order as the input items x; (i = 1,2,...,6).
The driving force F' normalized by its scaling factor is
chosen as the output item f. If the six input items all
converge to zero, then the stabilization control is ap-
parently achieved. Here, a new fuzzy controller with
the six input items and the output item for stabiliz-
ing the parallel-type double inverted pendulum system
is constructed based on the SIRMs dynamically con-
nected fuzzy inference model. By using the SIRMs,
the total number of fuzzy rules can be reduced signif-
icantly and the fuzzy rules can be easily established.
By using the dynamic importance degrees, the control
priority orders of the two pendulums and the cart can
be represented definitely. As a result, stabilizing the
parallel-type double inverted pendulum system includ-
ing the position control of the cart becomes possible.
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4.1. Setting the SIRMs

As stated in Section 3, each input item is given
with a SIRM and a dynamic importance degree in the
SIRMs dynamically connected fuzzy inference model.
The SIRMs of the input items in the stabilization con-
trol of the parallel-type double inverted pendulum sys-
tem are considered here first.

In case of positive big values of the angle and an-
gular velocity of the longer pendulum 1, if positive
driving force is added to move the cart toward right
direction, the longer pendulum 1 will rotate counter-
clockwise toward upright position. Due to its higher
natural frequency, however, the shorter pendulum 2
will rotate counterclockwise quickly, causing the an-
gle and angular velocity of the shorter pendulum 2 to
become negative. If the angle of the shorter pendulum
2 is negative, the cart has to be moved toward left di-
rection by negative driving force as will be discussed
below. If negative driving force is applied, however,
the longer pendulum 1 will change its rotation direc-
tion to clockwise and its angle and angular velocity
will become positive again. As a result, the longer
pendulum 1 will repeat rotating clockwise and coun-
terclockwise. To stand up the longer pendulum 1 ef-
fectively in this case, therefore, it is necessary to move
the cart toward left direction first by negative driv-
ing force. Although the longer pendulum 1 will then
fall down clockwise further, the shorter pendulum 2
will also rotate clockwise faster enough for its angle
and angular velocity to become positively larger than
those of the longer pendulum 1. Then by moving the
cart toward right direction, the two pendulums rotate
counterclockwise with synchronization kept and are
balanced both to their upright positions. Similarly, if
the angle and angular velocity of the longer pendulum
1 are negative big, the cart has to be moved toward
right position first by positive driving force. There-
fore, the SIRMs of the two input items x; and x, cor-
responding to the angle and angular velocity of the
longer pendulum 1 can be set up as in Table 1.

When the angle and angular velocity of the shorter
pendulum 2 are positive big, the shorter pendulum 2
will fall down clockwise increasingly at its angular
velocity if no control action is done at once. If the cart
is moved toward left direction, the shorter pendulum
2 will rotate acceleratingly clockwise so that the an-
gle of the shorter pendulum 2 gets even bigger and

Table 1
SIRM setting for the longer pendulum 1

Antecedent variable Consequent variable

xi (i=1,2) fi (i=1,2)
NB 1.0

Z0 0.0

PB —1.0

Table 2

SIRM setting for the shorter pendulum 2

Antecedent variable Consequent variable

xi (i=3.4) fi (i=3.4)
NB —1.0
Z0 0.0
PB 1.0

standing up the shorter pendulum 2 becomes impossi-
ble. To balance the shorter pendulum 2 upright in this
case, therefore, it is necessary to move the cart toward
right direction by positive driving force so as to rotate
the shorter pendulum 2 counterclockwise. In the same
way, if the angle and angular velocity of the shorter
pendulum 2 are negative big, the cart has to be moved
toward left direction by negative driving force. Since
the longer pendulum 1 has a lower natural frequency,
it will rotate at an angular velocity basically smaller
than that of the shorter pendulum 2 during this period.
The shorter pendulum 2 rotates faster because of its
higher natural frequency and becomes synchronized
with the longer pendulum 1. Then the two pendulums
rotate toward the same direction and get balanced up-
right. Therefore, the SIRMs of the two input items x;3
and x4 corresponding to the angle and angular veloc-
ity of the shorter pendulum 2 are established as shown
in Table 2.

Suppose the two pendulums are already balanced
upright. In case of positive values of the position and
velocity of the cart, if the cart is moved toward right
direction by positive driving force, the shorter pendu-
lum 2 will rotate counterclockwise faster because of
its higher natural frequency. Consequently, the angle
and angular velocity of the shorter pendulum 2 be-
come negative and are bigger than those of the longer
pendulum 1 in magnitude. For negative values of the
angle and angular velocity of the shorter pendulum 2,
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Table 3
SIRM setting for the cart

Antecedent variable Consequent variable

xi (i=5,6) Ji (i=5,6)
NB 1.0
Z0 0.0
PB —1.0
NB Z0 PB
| [ |
-1.0 0.0 1.0

Fig. 2. Membership functions for each SIRM.

the two SIRMs of Table 2 generate negative driving
force to move the cart toward left direction so that
the two pendulums are rotated clockwise. When the
angle and the angular velocity of the shorter pendu-
lum 2 become positively bigger than those of the long
pendulum 1, the two SIRMs of Table 2 output positive
driving force to move the cart toward right direction.
As a result, the cart moves right and left alternately,
and is likely to move outside gradually. Therefore, if
the position and velocity of the cart are positive, neg-
ative driving force should first be added to the cart.
After the angle and angular velocity of the short pen-
dulum 2 become positive, positive driving force from
the two SIRMs of Table 2 makes the shorter pendu-
lum 2 rotate counterclockwise. When the angle and
angular velocity of the short pendulum 2 turn nega-
tive, negative driving force from the two SIRMs of
Table 2 balances the two pendulums toward their up-
right positions and puts the cart back to the rail origin.
On the contrary, if the position and velocity of the cart
are negative, positive driving force should be applied
first to the cart. Therefore, the SIRMs of the two in-
put items x5 and x¢ corresponding to the position and
velocity of the cart can be given in Table 3.

Here, the membership functions NB, ZO, PB
of each antecedent variable are defined in Fig. 2

as triangle or trapezoids. The consequent variables
fi(i=1,2,...,6) are intermediate variables, all corre-
sponding to the output item f of the fuzzy controller.
Since the simplified reasoning method is adopted
here, real numbers are assigned as singleton-type
membership functions to the consequent variable of
each SIRM.

4.2. Control priorities and the dynamic importance
degrees

As it is shown in Tables 1-3, all SIRMs infer the
output item of the fuzzy controller. The angular con-
trol of the shorter pendulum 2 by Table 2 rotates the
shorter pendulum 2 directly toward upright position.
However, the angular control of the longer pendulum
1 by Table 1 makes the longer pendulum 1 fall down
further and the position control of the cart by Table 3
moves the cart away from the rail origin. By this set-
ting of Tables 1 and 3, the shorter pendulum 2 as a
result inclines to the same side with the longer pendu-
lum 1 and has a larger angle because of its higher nat-
ural frequency. As the shorter pendulum 2 is balanced
upright by using Table 2 then, the longer pendulum 1
is also balanced upright and the cart is moved to the
rail origin. From this point of view, the angular con-
trol of the longer pendulum 1 and the position control
of the cart are realized indirectly.

To make the indirect control of the longer pendulum
1 and the cart is also feasible, the angular control of
the longer pendulum 1 and the position control of the
cart should be discriminated from the angular control
of the shorter pendulum 2. As well known, the longer
pendulum 1 has a bigger momentum, while the shorter
pendulum 2 has a higher natural frequency. When the
angle of the longer pendulum 1 is big, the longer pen-
dulum 1 will fall down further and make it more dif-
ficult to balance the long pendulum 1 upright because
of its bigger momentum if the angular control of the
longer pendulum 1 is not done immediately. When the
angle of the shorter pendulum 2 is big, because of its
higher response characteristic, it is relatively easy to
stand up the shorter pendulum 2 again if relevant con-
trol action is executed. Therefore, if the angle of the
longer pendulum 1 is big, the angular control of the
longer pendulum 1 should be done first with the high-
est priority so that the shorter pendulum 2 inclines to
the same side with the longer pendulum 1. If the angle
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of the shorter pendulum 2 is big and the two pendu-
lums are located on different sides, then the angular
control of the shorter pendulum 2 should be executed
so that the two pendulums get inclined to the same
side. By performing the angular control of the shorter
pendulum 2 then, the two pendulums are balanced up-
right. After the two pendulums are almost stood up,
the position control of the cart can be started.

In the stabilization control of the parallel-type dou-
ble inverted pendulum system, therefore, the angular
control of the longer pendulum 1 should take the high-
est priority when its angle is big. When the angle of
the shorter pendulum 2 becomes big, the angular con-
trol of the shorter pendulum 2 should have the highest
priority. The position control of the cart should have
the lowest priority before the two pendulums are bal-
anced upright. To make the stabilization control effec-
tive, the priority orders of the angular control of the
longer pendulum 1, the angular control of the shorter
pendulum 2, and the position control of the cart should
be reflected in calculation of the output value of the
output item. Equal control priorities will apparently
cause contradictions among the angular control of the
longer pendulum 1, the angular control of the shorter
pendulum 2, and the position control of the cart.

On the other hand, the dynamic importance degrees
indicate the influence strengths of the input items on
system performance and can then express definitely
the priority orders. The bigger the value of a dynamic
importance degree is, the higher the priority order of
the corresponding input item becomes. In the stabi-
lization control, the longer pendulum 1, the shorter
pendulum 2, and the cart have two input items each.
Therefore, the control priority orders of the angular
control of the longer pendulum 1, the angular control
of the shorter pendulum 2, and the position control of
the cart are represented by the two dynamic impor-
tance degrees of their own two input items.

4.3. Setting the dynamic variables of the dynamic
importance degrees

As defined in Eq. (5), each dynamic importance de-
gree has two control parameters and one dynamic vari-
able. In this section, the fuzzy rules for the dynamic
variables of the six dynamic importance degrees are
discussed first.

Table 4
Fuzzy rules for the two dynamic variables of the longer pen-
dulum 1

Antecedent variable Consequent variable

|xl | AW] N AWZ
DS 0.0
DM 0.5
DB 1.0
DS DM DB
| I
0.0 0.5 1.0

Fig. 3. Membership functions for each dynamic variable.

For the longer pendulum 1, the fuzzy rules for the
dynamic variables Aw; and Aw, of the dynamic im-
portance degrees wP and w? of the input items x; and
x, can be established as in Table 4 by selecting the
absolute value of the input item x; as the only an-
tecedent variable. Here, the membership functions DS,
DM, DB are defined in Fig. 3. By this setting, when
the absolute value of the input item x; corresponding
to the angle of the longer pendulum 1 is big, the in-
ference results of the two dynamic variables will both
become big. Therefore, the values of the two dynamic
importance degrees increase so much that the angular
control of the longer pendulum 1 is emphasized. If the
absolute value of the angle of the longer pendulum 1
is near zero, the inference results of the two dynamic
variables will both become almost zero, and the two
dynamic importance degrees will approach their base
values. As a result, the influence strength of the angu-
lar control of the longer pendulum 1 is weakened.

Similarly for the shorter pendulum 2, the fuzzy rules
for the dynamic variables Aws; and Awy of the dy-
namic importance degrees wD and w? of the input
items x3 and x4 can be set as in Table 5 by select-
ing the absolute value of the input item x3 as the sole
antecedent variable. When the absolute value of the
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Table 5
Fuzzy rules for the two dynamic variables of the shorter
pendulum 2

Antecedent variable Consequent variable

|X3| AW3, AW4
DS 0.0

DM 0.5

DB 1.0

Table 6

Fuzzy rules for the two dynamic variables of the cart

Aws, Awg [x1]
DS DM DB
Jx3] DS 1.0 0.5 0.0
DM 0.5 0.0 0.0
DB 0.0 0.0 0.0

input item x3 corresponding to the angle of the shorter
pendulum 2 is big, the inference results of the two dy-
namic variables will also get big so that the two dy-
namic importance degrees of the shorter pendulum 2
increase much. When the absolute value of the angle
of the shorter pendulum 2 is small, the inference re-
sults of the two dynamic variables will also get small
so that the two dynamic importance degrees of the
shorter pendulum 2 decrease much. Consequently, the
control priority order of the shorter pendulum 2 is ad-
justed according to the situation of its angle.

If the position control of the cart is started before
the two pendulums are not stood up yet, the state of
the two pendulums may be destroyed. Therefore, the
dynamic variables Aws and Awg of the dynamic im-
portance degrees w2 and wp of the input items x5 and
x¢ corresponding to the position and velocity of the
cart can be described by the fuzzy rules in Table 6.
Here, the absolute values of the input items x; and x;
are used as the antecedent variables. In Table 6, the
real number output of the consequent part is set up
to 0.0 in those fuzzy rules of |x;| =DB or |x;| =DB.
By this setting, when the two pendulums are almost
stood up, both inference results of the two dynamic
variables will become big. As a result, the values of
the two dynamic importance degrees of the cart will
increase relatively, making the position control of the

cart become possible. If one of the two pendulums is
still not balanced upright, both the inference results of
the dynamic variables will be small. As a result, the
values of the two dynamic importance degrees of the
cart decrease so that the position control of the cart
has low priority order.

4.4. Setting the control parameters of the dynamic
importance degrees

Since the SIRMs and the dynamic variables of the
dynamic importance degrees all have been set up, the
structure of the proposed fuzzy controller becomes
clear. As stated above, however, each dynamic im-
portance degree also has two control parameters, i.e.,
the base value and the breadth. The rule setting of the
dynamic variables only does not guarantee the nec-
essary control priority orders. The control parameters
also have to be adequately set up.

Since the natural frequencies of the two pendulums
have a strong influence on the stabilization control
performance, the pendulum system with different pen-
dulum lengths should have different set of the control
parameters. Since proposing the structure of the fuzzy
controller for the stabilization control of the parallel-
type double inverted pendulum system is the princi-
pal objective of this paper, how to set up the control
parameters in a systematic manner will be a future
subject.

However, some relations among the control param-
eters of the dynamic importance degrees can be ob-
tained from the control priority orders. For the sake of
the longer pendulum 1 to take the highest control pri-
ority order when its angle is big, the sum of the base
value and the breadth of each dynamic importance de-
gree of the longer pendulum 1 should be larger than
that of the other dynamic importance degrees. For the
sake of the shorter pendulum 2 to take the highest con-
trol priority order when its angle is big, the sum of
the base value and the breadth of each dynamic im-
portance degree of the shorter pendulum 2 should be
larger than that of the dynamic importance degrees of
the cart. To start the position control of the cart with-
out disturbing the upright state of the two pendulums,
the sum of the base value and the breadth of either dy-
namic importance degree of the cart should be rather
smaller.
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Table 7
Control parameters of the dynamic importance degrees

Input item Base value Breadth
X 2.3694 0.5278
X2 3.5874 0.0578
X3 1.9398 0.5298
X4 1.4012 1.2148
Xs 0.3281 0.0000
X6 0.0328 0.2690

Here, the mass and half-length of the longer pen-
dulum 1, the mass and half-length of the shorter
pendulum 2, and the car mass are selected separately
as m;=03kg, /;,=06m, my=0.1kg, [,=02m,
and M =1.0 kg. The scaling factors of the input
items are set up to 15.0°, 100.0°/s, 15.0°,100.0°/s,
2.4 m, 1.0 m/s, respectively. The scaling factor of the
output item is defined as 10.0 times the total mass of
the two pendulums and the cart. Compared with the
single inverted pendulum systems [13], the scaling
factors of the two angles are reduced to half while the
others keep unchanged just because the controllable
ranges of the two angles are narrower.

To tune automatically the control parameters, the
random optimization search method [1] is adopted. In
each step, the sampling period and total control time
are separately fixed to 0.01 and 25.0 s. The initial an-
gle of the longer pendulum 1 is set up to 5.0°, while
the initial values of the other state variables are set
up to zeros. All of the base values and the breadths of
the dynamic importance degrees are initially set up to
zeros. The random optimization search is run for
40,000 steps along such direction, that the total sum-
mation of the absolute values of all state variables
and the driving force at each sampling time from
the beginning to the end of the total control time is
reduced. The base values and the breadths after the
random optimization search are shown in Table 7.

As it can be seen from Table 7, the sum of the base
value and the breadth of either input item of the longer
pendulum 1 is larger than that of any other input items.
The sum of the base value and the breadth of either
input item of the shorter pendulum 2 is much larger
than that of either input item of the cart. Apparently,
the control parameters reflect the necessary control
priority orders very well.

4.5. Features of the fuzzy controller

Fig. 4 shows the block diagram of the fuzzy control
system for the stabilization control of the parallel-type
double inverted pendulum system. The state variables
o, d, f, f,x,x from the pendulum system are fed back
and compared with the reference inputs. Since the de-
sired values of the reference inputs are all zeros in
the stabilization control, the variables are reversely in-
putted into the normalizer block. The normalizer block
normalizes the state variables by their scaling factors
and creates the input items x; (i=1,2,...,6). Each in-
put item x; is then fed to the SIRM-i block, where the
fuzzy inference of the SIRM corresponding to the in-
put item x; is done. The two dynamic importance de-
gree (DID) blocks of the longer pendulum 1 take the
absolute value of the input item x as their antecedent
variable, and the two DID blocks of the shorter pen-
dulum 2 take the absolute value of the input item x3 as
their antecedent variable. The two DID blocks of the
cart use both the absolute values of the input items x;
and x3 as their antecedent variables. The DID-i block
calculates the value of the dynamic importance degree
of the input item x;. After the output of each SIRM-i
block is multiplied by the output of the DID-i block,
summing them for all the input items gives the out-
put value of the output item f of the fuzzy controller.
The output scaling factor (OSF) block finally multi-
plies the output value of the output item of the fuzzy
controller by its scaling factor to generate the actual
driving force F to the cart.

Although there are six blocks for the SIRMs and
six blocks for the dynamic importance degrees in the
fuzzy controller, each block performs simple process-
ing only. Further, each SIRM block infers an inter-
mediate variable directly related with the output item
of the fuzzy controller, and each DID block adjusts
the value of its dynamic importance degree according
to control situations. The output of each SIRM block
multiplied by the output of the corresponding DID
block is actually a part of the output value of the out-
put item of the fuzzy controller. Therefore, the angular
control of the longer pendulum 1, the angular control
of the shorter pendulum 2, and the position control of
the cart are performed completely in parallel.

If the absolute value of the angle of the longer pen-
dulum 1 is bigger, the angular control of the longer
pendulum 1 will take the highest priority because the
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Fig. 4. Block diagram of the stabilization fuzzy control system.

two dynamic importance degrees of the longer pen-
dulum 1 become the biggest. If the absolute value of
the angle of the longer pendulum 1 is smaller and the
absolute value of the angle of the shorter pendulum
2 is bigger, the two dynamic importance degrees of
the shorter pendulum 2 increase and the inference
result of the SIRM corresponding to the angle of the
shorter pendulum 2 becomes larger. Although the two
dynamic importance degrees of the longer pendulum
1 are still larger because of its larger base values,
the inference result of the SIRM corresponding to
the angle of the longer pendulum 1 becomes smaller.
As a result, the contribution of the input items x;
and x4 in Eq. (6) will exceed that of the input items
x1 and x, so that the angular control of the shorter

pendulum 2 becomes the main. If both the absolute
values of the angles of the two pendulums are small,
the inference results of the two SIRMs corresponding
to the two angles will become small. At the same
time, the two dynamic importance degrees of the
cart increase, while the dynamic importance degrees
of the two pendulums decrease. Consequently, the
contribution of the input items xs and x¢ in Eq. (6)
will increase relatively, making it possible to start
the position control of the cart. By using the SIRMs
and adjusting the value of each dynamic importance
degree according to control situations, therefore,
smooth switching among the three controls is real-
ized automatically and makes the stabilization control
effective.
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Fig. 5. Control result for initial angles 5.0° and 0.0°.
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Fig. 6. Control result for initial angles 5.0° and 5.0°.

5. Stabilization control simulations

To verify the effectiveness of the proposed stabi-
lization fuzzy controller, several control simulations
are done. Figs. 5, 6, 7 show the control results in or-
der when the initial angles o and f of the two pendu-
lums are separately set up to 5.0° and 0.0°, 5.0° and
5.0°, 5.0°, and 10.0°, while the initial values of the
other state variables are all fixed to zeros. By the way,

ANGLE (deg) POSITION (m)
20.0 1.00

P(0.30, 0.60, 0.10, 0.20, 1.00, 0.01)
5(5.0, 0.0, 10.0, 0.0, 0.0, 0.0)

Cart Position L
b S 0.00
Pendulum 1 Angle
| Pendulum 2 Angle

0.0

-20.0 ] —— ~1.00
0 pA 4 B 8 10
TIME [s]

Fig. 7. Control result for initial angles 5.0° and 10.0°.

the initial state in Fig. 5 corresponds to that used in
the random optimization search. The left axis and the
right axis separately represent the angle of the pen-
dulums and the position of the cart. The values in
P(0.30,0.60,0.10,0.20,1.00,0.01) in this order, stand
for, the mass and half-length of the longer pendulum
1, the mass and half-length of the shorter pendulum 2,
the cart mass, and the sampling period, respectively.
The values in §(5.0,0.0,10.0,0.0,0.0,0.0) denote the
initial values of the angle and angular velocity of the
longer pendulum 1, the angle and angular velocity of
the shorter pendulum 2, the position and velocity of
the cart, respectively.

In Fig. 5, the angular control of the longer pendu-
lum 1 takes the priority over the other two controls at
control action beginning because the initial angle of
the longer pendulum 1 is bigger than the initial an-
gle of the shorter pendulum 2. Negative driving force
is first generated based on the SIRM of the angle of
the longer pendulum 1, and moves the cart left. Al-
though the longer pendulum 1 resultantly falls down
from 5.0° to 11.0° further, the shorter pendulum 2 be-
comes inclined to about 17.0°. Since the contribution
of the shorter pendulum 2 exceeds that of the longer
pendulum 1 in the driving force from then, the angular
control of the shorter pendulum 2 becomes the main.
Consequently, the cart is moved right by positive driv-
ing force of a maximum of about 25.0 N, so that the
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two pendulums get synchronized to rotate toward the
same direction. Finally, the two pendulums are grad-
ually balanced to their upright positions and the cart
is returned to the rail origin. If the time interval from
control action beginning to such a condition that all
the state variables just converge to 0.1°, 0.1°/s, 0.1°,
0.1°/s, 0.01 m, 0.01 m/s each is defined as complete
stabilization time, the complete stabilization time of
Fig. 5 is about 6.23 s.

In Fig. 6, although the initial angles of the two pen-
dulums are the same, the angular control of the longer
pendulum 1 is done first at control action beginning
because the two dynamic importance degrees of the
longer pendulum 1 are larger. Since negative driv-
ing force is generated for positive angle of the longer
pendulum 1, the cart is moved a little left (although
the moving distance is too short to read from Fig.
6). Consequently, the angle of the longer pendulum 1
increases to about 6.0°, and the angle of the shorter
pendulum 2 increases to about 8.0°. From then, the
angular control of the shorter pendulum 2 comes to
take the highest priority because the shorter pendu-
lum 2 contributes more to the driving force than the
longer pendulum 1. Therefore, positive driving force
is applied to move the cart right, and the two pendu-
lums begin to rotate with synchronization. By switch-
ing the three controls with control situations smoothly,
the pendulum system is finally completely stabilized
in about 6.12 s. The maximum driving force is only
about 3.0 N in this case.

As the initial state in Fig. 7, the two pendulums
incline to the same side and the initial angle of the
shorter pendulum 2 is twice as large as that of the
longer pendulum 1. According to the SIRM setting of
the two angles, the inference result of the SIRM cor-
responding to the initial angle of the shorter pendulum
2 also becomes twice as large as that corresponding
to the initial angle of the longer pendulum 1. From
Tables 4, 5 and 7, the value of the dynamic importance
degree corresponding to the initial angle of the shorter
pendulum 2 is almost equal to that corresponding to
the initial angle of the longer pendulum 1. Therefore,
at control action beginning at the angular control of
the shorter pendulum 2 is strengthened first so that the
cart is moved right by positive driving force. As a re-
sult, the two pendulums keep synchronized from con-
trol action beginning and converge gradually to their
upright positions. In this case, the complete stabiliza-

PE%DULUM 2 AHGLE (deg)

10
RECOOcERAD
L]
0
10
204 :
-20 -10 0 10 20

PENDULUM | ANGLE (deg)
Fig. 8. Stabilization domain of the two pendulums 1.2 and 0.4 m.

tion time is about 5.29 s and the maximum driving
force is less than 10.0 N.

Fig. 8 shows the stabilization domain of the initial
angles of the two pendulums, for which the proposed
fuzzy controller can stabilize the pendulum system.
Here, the horizontal axis and the vertical axis stand
separately for the initial angles of the longer pendu-
lum 1 and the shorter pendulum 2. The initial angles
of the two pendulums both are selected every 1.0°
from —20.0° to +20.0°, and the initial values of the
other state variables are all fixed to zeros. The sym-
bols (@), (O), (M), (J) mean that the complete
stabilization time is within 4.0, or 6.0, or 8.0, or 10.0s,
respectively. Further, the failure limits of the angles
of the two pendulums and the position of the cart
are set up to [—20.0°, +20.0°], [—20.0°, +20.0°],
[-2.4 m, +2.4 m], respectively. If any of the failure
limits is broken off during a simulation, then it is
regarded as a failure.

As it can be seen from Fig. 8, for all sets of the
initial angles of the two pendulums in the stabiliza-
tion domain, the proposed fuzzy controller can com-
pletely stabilize the pendulum system in 10.0 s. For
several sets of the initial angles, the fuzzy controller
can even stabilize the pendulum system in 4.0 s. For
the longer pendulum 1 with an initial angle between
[—5.0°,45.0°], if the shorter pendulum 2 initially
inclines further for up to 5.0° outside the longer
pendulum 1, the pendulum system can be stabilized
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completely in 6.0 s. For the longer pendulum 1 with
an initial angle between [—10.0°, +10.0°], if the ini-
tial angle of the shorter pendulum 2 is selected in a
range of totally about 10.0° around the initial angle
of the longer pendulum 1, the stabilization control of
the pendulum system is possible.

It is also found that the stabilization domain in Fig.
8 as a whole leans a little upon the 45° line, i.e., to-
ward the vertical axis of the angle of the shorter pen-
dulum 2. The domain under the 45° line means that
the initial angle of the longer pendulum 1 is larger than
the initial angle of the shorter pendulum 2. For a set
of the initial angles in the domain under the 45° line,
the proposed fuzzy controller will first do the angu-
lar control of the longer pendulum 1. Resultantly, the
shorter pendulum 2 gets synchronized with the longer
pendulum 1 and the angle of the shorter pendulum 2
becomes bigger than that of the longer pendulum 1. In
this case, since the driving force becomes larger with
the increase in the difference between the initial angles
of the two pendulums, the shorter pendulum 2 will
swing intensively and fall down because of its higher
response characteristic. On the other hand, the domain
upon the 45° line means that the initial angle of the
shorter pendulum 2 is larger than the initial angle of
the longer pendulum 1. For a set of the initial angles
in the domain upon the 45° line, if the initial angle of
the shorter pendulum 2 is rather near that of the longer
pendulum 1, the fuzzy controller will still give the
highest priority to the angle control of the longer pen-
dulum 1. Since the driving force is small in this case,
however, the angle of the shorter pendulum 2 will not
increase much. If the initial angle of the shorter pen-
dulum 2 is rather larger than that of the longer pen-
dulum 1, the fuzzy controller will first do the angular
control of the shorter pendulum 2 directly at control
action beginning. Consequently, the shorter pendulum
2 will rotate toward its upright position rather than
rotating outside, and the two pendulums are kept syn-
chronized from control action beginning. In this case,
the stabilization control is relatively easy to be real-
ized. Therefore, the stabilization domain concentrates
mainly in the part upon the 45° line.

In the above simulations, the length ratio of the
longer pendulum 1 to the shorter pendulum 2 is 3.0. In
fact, control simulations are also done for the parallel-
type double inverted pendulum system with differ-
ent lengths of the two pendulums. It is found that
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............ 0.00
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Pendulum 2 Angle

-20.0 NN ——— " -1.00
4 B B8 10
TIME [s]

Fig. 9. Control example of the two pendulums 1.0 and 0.5 m.

if the length ratio of the longer pendulum 1 to the
shorter pendulum 2 is between 2.0 and 5.0, the control
parameters can be obtained through the random opti-
mization search and the pendulum system can be com-
pletely stabilized by the proposed fuzzy controller. If
the length ratio of the two pendulums is smaller than
2.0, the stabilization control becomes difficult because
the difference in the natural frequencies of the two
pendulums is too small for the two pendulums to get
synchronized. On the other hand, if the length ratio of
the two pendulum is larger than 5.0, the natural fre-
quency of the shorter pendulum 2 is much larger than
that of the longer pendulum 1. In this case, stabiliz-
ing the pendulum system is also difficult because the
shorter pendulum 2 responds intensively even if the
cart moves a little.

Fig. 9 indicates a control example of the length ratio
2.0, where the two pendulums are separately 1.0 and
0.5m long. The initial angles of the two pendulums are
both set up to 5.0°. The two pendulums are balanced
smoothly, and the pendulum system is completely sta-
bilized in 7.24 s. Fig. 10 depicts a control example of
the length ratio 5.0, where the lengths of the two pen-
dulums are 2.0 and 0.4 m. The initial angles of the two
pendulums are set up to 3.0° and —3.0°, respectively.
This is a difficult situation. The angle of the shorter
pendulum 2 increases from —3.0° to nearly 15.0°
from control action beginning and then becomes
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Fig. 10. Control example of the two pendulums 2.0 and 0.4 m.

synchronized with the longer pendulum 1. It takes
10.55 s to stabilize the pendulum system completely.

6. Conclusions

A stabilization fuzzy controller for the parallel-type
double inverted pendulum system is proposed based
on the SIRMs dynamically connected fuzzy inference
model. The fuzzy controller takes the angle and angu-
lar velocity of the longer pendulum 1, the angle and
angular velocity of the shorter pendulum 2, and the
position and velocity of the cart as the input items,
and takes the driving force as the output item. Each
input item is assigned with a SIRM and a dynamic
importance degree. The SIRMs and the dynamic im-
portance degrees are designed such that the angular
control of the longer pendulum takes the highest pri-
ority over the angular control of the shorter pendulum
and the position control of the cart when the angle of
the longer pendulum is big. By using the SIRMs and
the dynamic importance degrees, the priority orders of
the three controls are automatically adjusted accord-
ing to control situations and the three controls are exe-
cuted entirely in parallel. Simulation results show that
the fuzzy controller completely stabilizes the parallel-
type double inverted pendulum system in 10.0 s.

Since the conventional fuzzy inference model has
difficulty to set up all fuzzy rules of 6 input items

and expresses clearly the difference of the input items,
the complete stabilization control of the parallel-type
double inverted pendulum system based on the con-
ventional fuzzy inference model is not yet found. It
is verified in this paper, however, that based on the
SIRMs dynamically connected fuzzy inference model,
the proposed fuzzy controller has a simple and in-
tuitively understandable structure, and can stabilize
completely a parallel-type double inverted pendulum
system in relatively short time. This is the first result
for a fuzzy controller to achieve complete stabilization
control of the parallel-type double inverted pendulum
system.
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