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Abstract

Absolute quantification of cerebral blood flow (CBF), cerebral blood volume (CBV), and mean transit time (MTT) are of great relevance
for clinical applications. One of the widely used methods for quantification of these parameters is �-variate fitting. Traditional nonlinear
regression methods for �-variate fitting are inaccurate and computationally demanding. In this study, we developed an adaptive total least
square method (ATSSL) to fit a �-variate function to the delayed concentration-time course. For each concentration-time curve, the
beginning and ending time point of the curve are adaptively determined online. After the curves were fitted, a robust method for
automatically determination of arterial input function (AIF) from whole and region of interest (ROI) was developed. Using the obtained AIF
and fitted �-variate concentration-time curve, the MTT, CBV, and CBF were calculated by utilizing singular value decomposition algorithm.
Computer simulations show that the suggested method is adaptive, reliable, and insensitive to noise. Comparison with the traditional
nonlinear regression method indicated that the presented method is more accurate and faster to determine the CBV, CBF and MTT. © 2003
Elsevier Inc. All rights reserved.
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1. Introduction

There are two widely used methods for absolute quanti-
fication of the mean transit time (MTT), cerebral blood
volume (CBV), and cerebral blood flow (CBF) with dy-
namic susceptibility contrast-enhanced MRI (DSC-MRI)
[1]. One of these is the tissue impulse response method and
the other is the �-variate fitting method. The former method
uses the calculated tissue-residue function which is calcu-
lated by singular value decomposition (SVD) [2–4]. Based
on the residue function and its derivative, the CBF, CBV,
and MTT can be calculated. The latter utilizes the �-variate

fitting technique to eliminate recirculation, and the CBF,
CBV, and MTT are calculated according to the fitted con-
centration-time curves [5–8]. Most of these methods
adopted the nonlinear regression algorithm such as Leven-
berg-Marquart (LM) for curve fitting. The major drawback
of the method is inaccurate and computationally demanding
especially the free parameters are many. Another drawback
of the LM fitting method is that it requires carefully chosen
initial values to guarantee the success fitting [8]. When
taking into account the delay between arterial and tissue
response in the �-variate function fitting, this method gen-
erally did not produce satisfactory results [2]. Moreover,
due to numerical computation, this algorithm may introduce
numerical noise [1].

The purpose of the present study was to develop a
method for improving the �-variate fitting method for ob-
taining more accuracy absolute quantification of the MTT,
CBV, and CBF. By considering the trace delay [4], an
adaptive total least square method for �-variate fitting was
proposed. Then we introduced the robust and accurate
method for determination of arterial input function (AIF).
Finally, absolute quantification of the MTT, CBV, and CBF
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were calculated by means of SVD method. We also report
our comparison results with the nonlinear regression
method for determination absolute quantification of these
parameters.

2. Methods

2.1. Indicator dilution theory

The relation between concentration and signal intensity
is as follows [9]:

Cm�t� � �k � ln
S�t�

S�t0�
(1)

where Cm(t) is the measured concentration of gadolinium
diethylene triamine pentaacetic acid (Gd-DTPA) with re-
spect to time, k is a proportionality constant that is inversely
proportional to the TE and depends on the MR scanner (for
simplicity, a value of 1 for k is assumed throughout the rest
of the study), S(t) is the MRI signal intensity with respect to
time, and S(t0) is the baseline MRI signal before the pres-
ence of Gd-DTPA and after steady-state magnetization has
been achieved. To acquire S(t0), one step M-estimator (see
appendix) was chosen to filter the first 2-6 image before the
trace appear from the brain perfusion image sequence.

MTT can be calculated by using the following equations
[5,6,10,11]:

MTT �

� C�t�dt

Cmax
�

CBV

CBF
(2)

where Cmax is the maximum of the C(t), C(t) is the idealized
bolus which is given by:

C�t� � Cm�t� R
�1 AIF�t�, to � t (3)

where t0 is the appear time of the tissue; R
�1 represents the

deconvolution operation, AIF(t) is the measured AIF.
After Cm(t) was determined, the CBV can be calculated

using the relation:

CBV �
kH

�
�

� Cm�t�dt

� AIF�t�dt

(4)

where kH � 0.73; � � 1.04 g/ml.
Finally, the CBF can be calculated as:

CBF �
CBV

MTT
(5)

2.2. Data acquisition

Patients data were acquired using a 3-T GE Signa scan-
ner (GE Medical Systems, Milwaukee, WI, USA) with 5

mm slice thickness, 1 mm interslice gap, 24 � 24 cm2 field
of view (FOV) and 14 slices per volume. A single-shot
gradient-echo EPI sequence (TR/TE � 2000 msec/30 msec)
was used to perform the bolus tracking, with the sequence
started at the same time after the Gd-DTPA injection (0.1/
mmol/kg). The bolus was injected at a rate of 5 mL/sec,
using an MR-compatible power injector (Medrad Inc., Pitts-
burgh, PA, USA). The study was approved by local ethics
committee and consented by the patients.

2.3. Determination of delay and first pass ending time

We developed a method to adaptive determine the time
widow (the appear time and first pass ending time) of the
concentration-time curve. Because the blood flow velocity
is different in different tissue, the appear time t0 in Eq. (2)
and the first pass ending time te is different. An adaptive
method was developed to determine the tissue appear time
t0 and te. In the first step, for each concentration-time curve,
we search for the time tmax when tissue concentration
reaches its maximum. We set t0, if at that point it fulfilled
the following conditions:
if

�Cm�ti�1� � Cm�ti� � 0� & �Cm�ti�2� � Cm�ti�1�

� 0) & �Cm�ti�3� � Cm�ti�2�

� 0) & �ti�3 � tmax� (6)

where i � 1
and if

Cm�ti�1� � Cm�ti�

Cm�ti�
� 1 (7)

then

t0 � ti

else

t0 � ti 	 1

In the same way, the end time te can be determined if it
fulfilled the follow conditions:
if

�Cm�ti� � Cm�ti�1� � 0� & �Cm�ti�1� � Cm�ti�2�

� 0) & �Cm�ti�2� � Cm�ti�3�

� 0) & �ti � tmax� (8)

where i � 1
and if

Cm�ti�1� � Cm�ti�

Cm�ti�
� 1 (9)

then

te � ti

else

te � ti � 1
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2.4. Data analysis (total linear square for curve fitting)

To denoise and eliminate tracer recirculation, Cm(t)
curves were fitted to the gamma function [12,13]:

Cm�t� � K�t � t0�

 e�

t�t0

� , t � t0 (10)

where t is the time after injection, K is constant scale
factors, 
, � are �-variate parameters.

When fitting nonlinear Eq. (10), many numerical meth-
ods such as Gauss-Newton method, steepest descent
method, and LM method (see [14] and references therein)
can be used. For nonlinear function fitting, the initial values
are important to convergence and efficiency for curve fit-
ting. Thus, using a more complex nonlinear model does not
always improve parameter accuracy, because the data are
too noisy or the number of measurements is too low. In
contrast, enhancing the data by SVD based methods before
parameters estimation and exploiting prior knowledge as
much as possible, clearly helps to improve the accuracy. In
linear regression such as moment estimator method [12],
weighted least square method [13] can be adopted for this
purpose. However, these methods trend to be inaccurate,
because the appearance time t0 is experiential determined.
In this study, we present an adaptive minimum-norm total
linear least square (AMN-TLLS) [15-17] method for Cm(t)
fitting.

Logarithm Eq. (10) [13], we get:

ln�Cm�t�� � ln�K� 	 
 ln�t � t0� �
1

�
�t � t0�, t

� t0 (11)

or

yi � b0 	 b1xi1 	 b2xi2 (12)

where yi � ln(Cm(ti)), b0 � ln(K), b1 � 
, b2 � �
1

�
, xi1 �

ln(ti � t0), xi2 � ti � t0.

Eq. (12) can be written as:

y1 � b0 	 b1x11 	 b2x12

y2 � b0 	 b1x21 	 b2x22

· · · · · · · · · · · ·
yi � b0 	 b1xi1 	 b2xi2

or

�
y1

y2

· · ·
yi

� � �
1 x11 x12

1 x21 x22

· · · · · · · · ·
1 xi1 xi2

� � � b0

b1

b2
�

In the following, we shall use the short-hand matrix notion

Y � X � B (13)

where

Y � �
y1

y2

· · ·
yi

� ,

X � �
1 x11 x12

1 x21 x22

· · · · · · · · ·
1 xi1 xi2

� ,

B � � b0

b1

b2

� .

Solving Eq. (13) need to minimize

�X � B � Y�

where � � denotes the vector norm.
From Eq. (13) we have

B � X� � Y (14)

where X� is the Moore Penrose inverse of X. To solve Eq.
(14), the most robust method SVD is adopted [2,15–17].

By using SVD, matrix X� in Eq. (14) can be decomposed
as

X� � V � W � UT (15)

where W is a diagonal matrix, V and UT are orthogonal and
transpose orthogonal matrices, respectively. Given this
pseudo inverse, X can be expressed as

B � V � W � UT � Y (16)

From Eqs. (13) and (16), we have K � eb0, 
 � b1 and

� � �
1
b2

.

2.5. Determination of the AIF

To achieve reliable and accurate AIF despite the exis-
tence of noise, we developed a program to allow selection of
pixels located in brain major arteries. The method can be
divided into three steps. In the first step, parameters of fitted
tissue concentration-time curve such as the full width at half
maximum (FWHM), the maximum concentration (MC),
and the moment of maximum concentrations (MMC) were
calculated pixel by pixel from the whole brain or ROI. The
pixels were selected to satisfy both of the following condi-
tions:

FWHMAIF � Sort�FWHM��c� (17)

MMCAIF � Sort�MMC��c� (18)

where Sort is the sort operation of the sequence, FWHMAIF

is the FWHM of the AIF, MMCAIF is the MMC of the AIF.
Sort(FWHM)(c) is the c smallest of the sorted FWHM;
Sort(MMC)(c) is the c smallest of the sorted MMC.

In the second step, only these pixels of the preselected
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pixels were considered to have a maximum concentration of
at least 75% of the highest value. In the third step, one step
M-estimator [18] was used to denoise (see appendix).

To calculate the decomvolution in Eq. (2), SVD method
was used. We deconvolved the tissues concentration-time
curve with AIF over the whole range of dynamical images
[1].

Eq. (3) can be express as:

Cm�tk� � �
k�0

i

AIF�k� � C�tk � k� (19)

or matrix form:

�
Cm�t0�
Cm�t1�

· · ·
Cm�ti�

�
��

AIF(t0) 0 · · · 0
AIF(t1) AIF(t0) · · · 0

· · · · · · · · · 0
AIF(ti) AIF(ti�1) · · · AIF(t0)

���
C(t0)
C(t1)
· · ·

C(ti)
�

(20)

C(t) can be obtained for the Eq. (20) by truncated SVD
method [2]. Absolute value of the MTT was determined
from Eq. (2).

Fig. 1. Concentration-time curve and its fitted results by using ATLLS method.

Fig. 2. An example of the extraction of anterior cerebral artery used
ATLLS fitting method. The white rectangular line shows the mask ROI
drawn around the anterior cerebral artery.

Fig. 3. By utilizing the ATLLS method, the possible artery location in the
brain was determined. The white pixels represented the location of arteries,
including possible noise pixels.
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3. Results

Simulations were performed by utilizing commercial
software package (MATLAB, Mathworks, Natick, MA,
USA). In the simulation, we used the first 2-6 images
(before the apparent of bolus) and developed the robust
method to allow accurate estimate the baseline signal S(t0).

Figs. 1–7 show the simulation results. Fig. 1 shows the
concentration-time curves fitted results. We used the uni-
form random sample method to select the position of the
concentration. The number of the curve is 6. It can be seen
that ATLLS method fits all the random sample curves. The
appear time of tissue concentration-time curves t0 were
traced by the suggested ATLLS method, as shown in Fig. 1.

In Figs. 2 and 3, the white pixels stand for the selected

possible artery pixels by computer program. We drew a 10
� 10 masking in the artery region and set coefficient c � 50
in Eqs. (17,18). Fig. 2 shows an artery region (shown by
arrow) extracted using our method, together with the mask
ROI shown by a white rectangular line. Adjusting coefficient c
� 500 in Eqs. (17) and (18), the artery pixels (white pixels) in
the whole image region search results are shown in Fig. 3.

Fig. 4 shows the AIF and its fitted results. We fitted all
curves by using ATLLS. The AIF was fitted after the artery
pixels had been smoothed by robust filter.

As reported previously [19], the quality of the fit depends
on the signal noise rate (SNR) of the raw data. Because of
noise and tracer dispersion, there were some curves still can
not be fitted. Eliminating these pixels, the CBF, CBV, and
MTT map can be calculated. The results are shown in Figs.

Fig. 4. Curve fitting results by using ATLLS method. The parameters of AIF were determined to be: K � 0.073, 
 � 6.263, � � 0.984, ta � 15 sec, te �
31 sec. The ta and te of AIF were determined by using one step M-estimator.

Fig. 5. An example of CBV map generated by using Eq. (4). Fig. 6. An example of MTT map obtained by using Eq. (2).
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5-7. By virtue of this algorithm, more than 2344 of 2441
(image region) curves had been fitted by using ATLLS
algorithm.

4. Discussion

4.1. Comparison ATLLS with the current nonlinear
regression

To compare the ATLLS method with LM method for
absolute quantification, we used the LM algorithm to cal-
culate the CBV, CBF, and MTT.

Figs. 8–10 show the results produced by LM method.
The initial values of Eq. (10) for K, 
, �, and t0 were set to
be 2, 5, 1, and 13, and the ending point was set to 31 secs.

Because the existence of noise, there were some curves can
not be fitted by this method, we break the loop when the
iterations over 100 times.

We used the same random sample method as ATLLS to
select the position of the concentration time curves for
�-variate fitting. Compare Fig. 8 with Fig. 1, it is clear that
LM method is more often inaccurate for estimating tissue
concentration-time curve. It can also be seen that the appear
time are not fitted the true concentration-time curves.

In Fig. 9, the artery pixels were selected by using LM
algorithm and Rempp et al.’s method. The white pixels
represent the selected artery in the whole brain. Using these
pixels, the AIF was fitted by LM method, as shown in Fig.
10.

The CBV, CBF, and MTT maps obtained by LM method

Fig. 7. An example of CBF map produced by using Eq. (5).

Fig. 8. Concentration-time curve and its fitted results by using LM method.

Fig. 9. LM method for the artery pixels searching, artery pixels were
chosen according to Rempp et al.’s method [5], the coefficient before the
standard deviation was set to be 0.7.
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are similar to the ATLLS method by visual; due to space
limit, we do not show the figures here.

4.2. Comparison different methods for determined AIF

Many methods for determined AIF were proposed
Rempp et al. [5] reported an interactive computer program
to determine AIF automatically. This method is fast, accu-
rate, objective, but sensitive to noise. Similar method was
developed by Mark Rijpkema et al. [20]. A new interactive
program was suggested by Smith et al. [6] for determining
the AIF. This method is robust to noise but subjective and
time consuming for picking out noise pixels by manual. To
acquire high robust to noise, Murase et al. [21] presented the
fuzzy clustering method for determining AIF. In using this
method, a mask ROI was first drawn around the targeted
artery. Then FCM cluster was used to segment the artery
pixels in the mask ROI. The AIF was obtained from the
mean concentration-time curve in those regions. The
method is complex and difficult to choose the optimal pa-
rameters of the cluster. Moreover, the fuzzy rules of the
cluster are subjective and also difficult to determine.

To determine the AIF, we developed method based on
order statistics. We do not calculate the standard deviation
as done by Rempp. The only thing need to do is determi-
nation the order number. This can be done by several tries.
Rempp et al.’s method for selected AIF pixels needs to
adjust the coefficient before the preselected pixels. In most
case, this parameter required to be adjusted.

To deconvolve with tissue concentration-time curve, we
capitalized on SVD algorithm to perform deconvolution and
thus more robust to the numerical inaccuracy [17]. The
other advantage is the uniform of the algorithm. When
idealized bolus was calculated, we used the SVD algorithm
to deconvolve tissue concentration-curve time with AIF.
When we fitted the AIF and tissue time concentration curve
by using ATLLS, the same SVD algorithm can be used
again.

We investigated the feasibility of using ATLLS method
to accuracy fit the delayed tissue concentration time curves,
and therefore more accurate to determine absolute quanti-
fication of the perfusion parameters. Moreover, we pro-
posed a new method for determining AIF from both ROI
and whole image. The advantage of the method is accurate,
objective, and robust to noise. Further study is needed to
prove the clinical value of this technique.

5. Conclusions

Taking into account the delay of tissue concentration-
time curve, we presented ATLLS method for accuracy de-
termination of the absolute quantification of perfusion pa-
rameters. The method first estimates the appear time and
first pass ending time, then using SVD method for �-variate
fitting.

Furthermore, this study presented a robust method to
determine the AIF in cerebral perfusion imaging. The

Fig. 10. Fitting results of AIF curve by using LM method, the parameters of �-variate were: K � 2.013, 
 � 5.140, � � 0.721, and t0 � 17 secs. The t0
of AIF were determined by using one step M-estimator, and because of temporal resolution limitation, we omitted the decimal parts.
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method based on robust statistical theory allows for more
accurate and robust extraction of the arterial pixels and
determination AIF curve.

In short, it possible to more accurate determines the
absolute CBV, CBF, and MTT by using ATLLS method.
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Appendix
This appendix demonstrates the principle of one step

M-estimator [18]. For simply, we take the estimation of
S0(t) for example.

S0�t� �
1.28�MADN��MU � L� 	 MB

n � L � MB

MADN �
MAD

0.6745

MAD is the median absolute deviation statistic, calcu-
lated as follows:

MAD � median��S02�t� � M�,

�S03�t� � M�,· · ·, �S06�t� � M��

where
M � median(S02(t), S03(t), . . . , S06(t)) is the sample

median;
S02(t), S03(t) . . . S06(t) are the baseline image before the

appears of trace;
MU is the number of outliers greater than the median;
L is the number of outliers smaller than the median;
MB is the sum value that for not labeled outliers.
For two dimensions, the estimator was set to 3 � 3, the

principle of which is similar.
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