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Abstract

A new fuzzy controller for anti-swing and position control of an overhead traveling

crane is proposed based on the Single Input Rule Modules (SIRMs) dynamically con-

nected fuzzy inference model. The trolley position and velocity, the rope swing angle

and angular velocity are selected as the input items, and the trolley acceleration as the

output item. Each input item is given with a SIRM and a dynamic importance degree.

The control system is proved to be asymptotically stable to the destination. The con-

troller is robust to different rope lengths and has generalization ability for different

initial positions. Control simulation results show that by using the fuzzy controller, the

crane is smoothly driven to the destination in short time with small swing angle and

almost no overshoot.
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1. Introduction

Overhead traveling crane plays an important role in many factories, which

transports a load from one place to another. Because high positioning accu-
racy, small swing angle, short transportation time, and high safety are required,

operating an overhead traveling crane is a hard work and automation of op-

eration is desirable.

Mita and Kanai [12] applied optimal control theory to generate a target

speed pattern for fixed length crane on the assumption that there existed no

swing angles at initial position and destination. Song et al. [17] showed a model

reference adaptive control system with a fuzzy adaptation rule base, which

reference model was essentially a target speed pattern. Because the target speed
pattern approach did not consider the swing angle, Itoh et al. [8] added a fuzzy

reasoning module into the deceleration section of the target speed pattern for

both preventing big swing angle and positioning. Besides the target speed

pattern based positioning, Hakamada and Nomura [5] further designed a

feedback controller to control the swing angle through the whole process.

Based on energy optimal speed reference, Hamalainen et al. [6] gave an optimal

path planning approach for a trolley crane. For a given path with hoisting and

lowering, Bartolini et al. [2] addressed a second-order sliding-mode crane
controller and Moon and Vanlandingham [14] suggested a fuzzy approach for

minimum time crane operation. However, the target speed pattern had to be

regenerated for different rope length and different destination distance, and

positioning accuracy was easily affected by disturbance.

Ishide et al. [7] trained a fuzzy neural network to control an overhead

traveling crane by back-propagation method. Because trolley speed still kept

big even when the trolley arrived at destination, however, this would result in

big residual swing, low safety, and bad positioning accuracy. Kang et al. [10]
proposed an adaptive switching control scheme, which had to design a set of

fixed-length controllers based on different fixed-length nominal crane models

and then selected one fixed-length controller according to control situations by

an observer-based supervisor. Ohbayashi et al. [16] investigated robust control

of an overhead traveling crane to different load mass by using second order

derivative of universal learning network, but the maximum swing angle was

larger than 10.0�. Other approaches like gain-scheduling controller [3], ob-
server-controller [4], and variable structure control scheme [11] all need precise
mathematical model and complicated calculation.

As Kang and Bien [9] pointed out, controlling a crane system is a multi-

objective satisfactory problem. The system has two objectives: positioning of

the trolley and anti-swing of the payload. Apparently, the two objectives

contradict each other. For each objective, Nalley and Trabia [15] separately

designed one fuzzy rule set and took the summation of the reference results of

the two fuzzy rule sets as control input.
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In this paper, a new fuzzy controller for anti-swing and position control of

an overhead traveling crane is proposed. The trolley position and velocity, the

rope swing angle and angular velocity are selected as the input items, and the

trolley acceleration is selected as the output item. The Single Input Rule
Modules (SIRMs) dynamically connected fuzzy inference model [18,19] is used

to design the fuzzy controller. The fuzzy controller has a simple structure and

needs no target speed pattern. Stability analysis is given and the fuzzy system is

proved to be asymptotically stable to destination. The fuzzy controller is robust

to different rope lengths and has generalization ability for different initial po-

sitions. Control simulation results demonstrate that by using the fuzzy con-

troller, the overhead traveling crane smoothly moves to the destination in short

time internal with small swing angle and almost no overshoot.
2. SIRMs dynamically connected fuzzy inference model

Let�s begin with the SIRMs dynamically connected fuzzy inference model
(shortened as the SIRMs model) [18,19] briefly for systems of n input items and
one output item. The SIRMs model first sets up a SIRM separately for each

input item as
SIRM-i : Rj
i : if xi

�
¼ Aj

i then fi ¼ Cj
i

�mi

j¼1: ð1Þ
Here, SIRM-i denotes the SIRM of the ith input item, and Rj
i is the jth rule in

the SIRM-i. The ith input item xi is the only variable in the antecedent part,
and the consequent variable fi is an intermediate variable corresponding to the
output item f . In the jth rule of the SIRM-i, Aj

i is a fuzzy subset of xi, and C
j
i is

a fuzzy subset or singleton real number of fi. Further, i ¼ 1; 2; . . . ; n is the
index number of the SIRMs, and j ¼ 1; 2; . . . ;mi is the index number of the
rules in the SIRM-i.
To express clearly the different role of each input item on system perfor-

mance, the SIRMs model further defines a dynamic importance degree wDi
independently for each input item xi (i ¼ 1; 2; . . . ; n) as
wDi ¼ wi þ BiDwi: ð2Þ
The base value wi guarantees the minimum weight of the corresponding

input item for a control process. The dynamic value, defined as the product of

the breadth Bi and the inference result of the dynamic variable Dwi, plays a

role in tuning the degree of the influence of the input item on system per-

formance according to control situations. The base value and the breadth
are control parameters, and the dynamic variable is described by fuzzy

rules.
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Suppose that each dynamic importance degree and the fuzzy inference result

of each SIRM are already calculated. Then, the SIRMs model obtains the

value of the output item f by
f ¼
Xn

i¼1
wDi fi; ð3Þ
as the summation of the products of the fuzzy inference result of each SIRM

and its dynamic importance degree for all the input items. By using the SIRMs,

the input items can be processed dispersedly and the total number of fuzzy

rules can be reduced much. By using the dynamic importance degrees, the

control priority order of each input item can be represented definitely.
Therefore, the SIRMs model makes designing of fuzzy controllers possible

even for complicated control objects.

Since each SIRM can have only several fuzzy rules, it is easy to set such

fuzzy rules just according to the relation of the input item with system per-

formance. For simple problem, the parameters of the dynamic importance

degrees may be selected by trial and error. But for complex problems, the

parameters have to be tuned by some systematic approach like GA or other

optimal searching methods. Although the SIRMs have no relationship
with each other, Eq. (3) aggregates them with their dynamic importance de-

grees. Therefore, each input item takes its role in system performance ac-

cording to its proportion in Eq. (3). If the output of each SIRM equals to its

input and each importance degree is a constant, then Eq. (3) essentially be-

comes a linear state feedback controller. If the output of each SIRM equals to

its input and each importance degree changes dynamically, then Eq. (3) cor-

responds to a gain scheduling controller. If the SIRMs and the importance

degrees are given with nonlinearity, then Eq. (3) becomes nonlinear controller.
Therefore, fuzzy controllers based on the SIRMs model can solve difficult

control problem.
3. Fuzzy controller for overhead traveling crane

As shown in Fig. 1, the overhead traveling crane consists of a trolley, a rope,

and a load. The load is regarded as a material particle with a mass of m. The
rope is considered as an inflexible rod with a length of l, which mass is ignored
compared with the load mass. Having a mass of M , the trolley moves on a
straight rail. Supposing no friction exists in the system, then the dynamic

equations [10] of the overhead traveling crane are given by
cosðhÞ€xxþ l€hh þ g sinðhÞ ¼ 0; ð4Þ

ðM þ mÞ€xxþ ml cosðhÞ€hh � ml _hh2 sinðhÞ ¼ F ; ð5Þ
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Fig. 1. Overhead traveling crane model.
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by means of the Lagrange�s equation of motion. Here, parameter g ¼ 9:81 m/s2
is the gravity acceleration. Variables x, h, F separately denote the trolley po-
sition, the rope swing angle, and the driving force applied to the trolley. The

trolley position is positive if the trolley locates at the right side of the rail or-

igin. The rope swing angle is positive if the rope rotates counterclockwise from

pendent position. The driving force toward right direction is positive.

Without loss of generality, the rail origin is taken as the desired position (the

destination) of the trolley and the load. The control objective is to drive the

trolley to transport the load safely from an initial position to the destination in
short time without residual swing. This requires that the four state variables

(trolley position x, trolley velocity _xx, rope swing angle h, and rope swing an-
gular velocity _hh) have to converge to zero.
Here, the four state variables after normalization are chosen in order as the

input items xi (i ¼ 1, 2, 3, 4), and the trolley acceleration €xx is selected as the
output item. The scaling factors items si (i ¼ 1, 2, 3, 4) of the four input items
are fixed to 1.0 m, 1.0 m/s, 10.0�, and 10.0�/s, respectively. From Eq. (4), it can
be seen that the load mass and the trolley mass have no direct influence on the
swing angular acceleration if the trolley acceleration is known. After the trolley

acceleration and the swing angular acceleration are obtained, the driving force

F can be calculated according to Eq. (5).
Since there are four input items, the conventional fuzzy inference model,

which puts all the input items into the antecedent part of each fuzzy rule, is

confronted with problems such as difficulty of rule setting and exponential

increase of fuzzy rules. Furthermore, it is intuitively understood that both the

trolley velocity and the swing angle must be controlled to small with priority in
order to achieve high safety. However, the conventional fuzzy inference model

treats all the four input items equally and cannot give control priority to a
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specific input item. On the other hand, the SIRMs model solves the problems

of the conventional fuzzy inference model by introducing the SIRMs and the

dynamic importance degrees. Each SIRM can be considered to determine

mainly the direction of the contribution of the corresponding input item in the
model output of Eq. (3), and each dynamic importance degree can be con-

sidered to determine the magnitude of the contribution of the corresponding

input item in Eq. (3). By adjusting the dynamic importance degrees according

to control situations, the SIRMs together give reasonable value to the model

output with competition and cooperation. Therefore, the SIRMs model is used

to construct the fuzzy controller for anti-swing and position control of the

overhead traveling crane. The design process includes the setting of the SIRMs,

the setting of the fuzzy rules for the dynamic variables, and the setting of the
control parameters of the dynamic importance degrees.
3.1. Setting the SIRMs

If the trolley position is positive, negative acceleration is needed so that the

trolley moves negatively toward the destination. If the trolley position is neg-

ative, positive acceleration is needed so that the trolley moves positively toward

the destination. Resultantly, the trolley position tends to approach to the

destination.

If the trolley velocity is positive, negative acceleration is necessary such that

the trolley velocity decreases from positive to zero. If the trolley velocity is
negative, positive acceleration is necessary such that the trolley velocity in-

creases from negative to zero. In this way, the swing angle will be small.

Therefore, the SIRMs of the two input items x1 and x2 corresponding to the
trolley position and velocity can be set up both to Table 1.

If the swing angle is positive, the trolley should accelerate. Because of the

inertia of the load, the rope will rotate clockwise and make the swing angle

decrease toward zero. If the swing angle is negative, the trolley should decel-

erate so that the rope rotates counterclockwise and causes the swing angle to
increase toward zero.

If the swing angular velocity is positive, the trolley should accelerate such

that the swing angular acceleration becomes negative. If the swing angular

velocity is negative, the trolley should decelerate such that the swing angular
Table 1

SIRMs of the trolley position and velocity

Antecedent variable xi (i ¼ 1, 2) Consequent variable €xxi (i ¼ 1, 2)
NB 1.0

ZO 0.0

PB )1.0



Table 2

SIRMs of the swing angle and angular velocity

Antecedent variable xi (i ¼ 3, 4) Consequent variable €xxi (i ¼ 3, 4)
NB )1.0
ZO 0.0

PB 1.0

-1.0             0.0            1.0

  NB         ZO              PB

Fig. 2. Membership functions for the SIRMs.
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acceleration becomes positive. Consequently, the swing angular velocity tends

to become small.

Therefore, the SIRMs of the two input items x3 and x4 corresponding to the
swing angle and angular velocity of the rope are both set up to Table 2.

In Tables 1 and 2, the membership functions NB, ZO, PB of each antecedent

variable are defined in Fig. 2 as triangle or trapezoids. The consequent vari-

ables €xxi (i ¼ 1, 2, 3, 4) are intermediate variables, all corresponding to the
output item €xx of the fuzzy controller, and their outputs are assigned with
singleton real numbers.
3.2. Setting the dynamic variables

For the dynamic variable of the trolley position, the absolute value of the

trolley position can be selected as the antecedent variable. If the trolley is far

from the destination, the dynamic variable of the trolley position should take

big value so that the dynamic importance degree of the trolley position in-

creases. As a result, the control of the trolley position is emphasized and the

trolley is driven strongly toward the destination.
For the dynamic variable of the trolley velocity, the absolute value of the

trolley velocity is used as the antecedent variable. If the trolley moves fast, the

dynamic variable of the trolley velocity should become big so that the dynamic

importance degree of the trolley velocity goes up. As a result, the trolley ve-

locity takes control priority. From the SIRM setting of the trolley velocity, the

trolley velocity will then be suppressed.
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For the dynamic variable of the swing angle, the absolute value of the swing

angle is chosen as the antecedent variable. If the swing angle is big, the dynamic

variable of the swing angle should show big value such that the dynamic im-

portance degree of the swing angle increases. Then, the control of the swing
angle is strengthened and the swing angle tends to get small.

For the dynamic variable of the swing angular velocity, the absolute value of

the swing angular velocity is taken as the antecedent variable. If the swing

angular velocity is big, the dynamic variable of the swing angular velocity

should get big such that the dynamic importance degree of the swing angular

velocity goes up. Resultantly, the control of the swing angular velocity is

emphasized and the swing angular velocity becomes small from the SIRM

setting.
Therefore, the fuzzy rules for the four dynamic variables can all be set up in

Table 3. Here, the membership functions DS, DM, DB are defined in Fig. 3.

From Table 3, it is clear that if the absolute value of one input item is small, the

corresponding dynamic variable will take small value. If the absolute value of

one input item is big, the corresponding dynamic variable will take big value.
3.3. Setting the control parameters

To tune automatically the control parameters, i.e., the base values and the

breadths of the four dynamic importance degrees, the random optimization

search method [1] is used.
Table 3

Fuzzy rules of each dynamic variable

Antecedent variable jxij Consequent variable Dwi

DS 0.0

DM 0.5

DB 1.0

0.0           0.5               1.0

DS              DM                 DB

Fig. 3. Membership functions for the dynamic variables.
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Here, the rope length, the trolley maximum velocity, and the trolley maxi-

mum acceleration are set up to, 1.0 m, 1.0 m/s and 1.0 m/s2, respectively. The

initial trolley position is set up to )1.0 m, while the initial values of the other
state variables are set up to zero. The base values and the breadths of
the dynamic importance degrees are initially set up to zero. In each trial of the

random optimization search, the sampling period is fixed to 0.01 s, and the

total control time is fixed to 25.0 s which is long enough for the trolley to arrive

at the destination. The performance index is defined as
Table

Contro

Inpu

Trol

Trol

Swin

Ang
U ¼ T þ
XTþ10

tP T

ðjxj þ j _xxj þ jhj þ j _hhjÞ; ð6Þ
where the first term T is the transportation time when the trolley first arrives at
the destination from each trial beginning. The second term means the total

absolute error of the four state variables for 10 s after the trolley arrives at the

destination. Apparently, the smaller the first term is, the shorter the trans-
portation time becomes. The smaller the second term is, the faster the con-

vergence of the four state variables is. Therefore, small performance index

insures short transportation time, small swing angle, and small overshoot.

The random optimization search is run for 1000 trials along such a direction

that the performance index decreases. The base values and the breadths after

the random optimization search are listed in Table 4. As it can be seen from

Table 4, the sum of the base value and the breadth of the dynamic importance

degree of the trolley velocity is the biggest among the four input items.
Moreover, the sum of the base value and the breadth of the dynamic impor-

tance degree of the swing angle is bigger than that of the other two input items.

As a result, the dynamic importance degree of the trolley velocity will be the

biggest when the trolley velocity is big, and the dynamic importance degree of

the swing angle will be significant if the swing angle is big.

3.4. Control mechanism

The block diagram of the proposed fuzzy controller is shown in Fig. 4. The

four state variables of the overhead traveling crane are first normalized by their

scaling factors separately to generate the input items xi (i ¼ 1, 2, 3, 4). Each
4

l parameters

t item Base value Breadth

ley position 2.0095 0.4890

ley velocity 3.3873 2.2554

g angle 2.5474 1.2201

ular velocity 0.8262 1.6815
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Fig. 4. Block diagram of the fuzzy controller.
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input item xi is then sent to the corresponding SIRM block and dynamic im-

portance degree (DID) block. Based on the simplified inference method [13],

the SIRM-i block performs the fuzzy inference of the SIRM corresponding to

the input item xi. Taking the absolute value of the input item xi as the ante-
cedent variable, the DID-i block calculates the value of the corresponding
dynamic importance degree. After the output of each SIRM-i block is multi-
plied by the output of the DID-i block, the sum total for all the input items
becomes the output of the fuzzy controller, i.e., the trolley acceleration €xx.
If the trolley locates far from the destination and the other state variables

are nearly zero, the dynamic importance degree of the trolley position becomes

almost as big as the others from Tables 3 and 4. Because only the SIRM of the

trolley position is significant in this case, the contribution of the trolley position

makes up the main part of the output item. According to the SIRM of the

trolley position, the trolley will then be driven to move toward the destination.

If the trolley velocity becomes big, its SIRM and dynamic variable will both

strongly get fired. In this case, the dynamic importance degree of the trolley
velocity becomes the biggest and the inference result of the SIRM is also big.

Consequently, the trolley velocity takes the control priority over the others.

According to the SIRM of the trolley velocity, the trolley will then be con-

trolled to move slowly so that no big swing angle occurs.

If the trolley velocity is small and the swing angle is big, the dynamic im-

portance degree of the swing angle becomes bigger than that of the trolley
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velocity. Further, the inference result of the SIRM of the swing angle is also

bigger than that of the trolley velocity. In this case, the contribution of the

swing angle to the output item exceeds that of the trolley velocity and the swing

angle instead has the control priority over the others. From the SIRM setting
of the swing angle, the swing angle will then be forced to decrease.

If the swing angular velocity gets big while the others are small, the dynamic

importance degree of the swing angular velocity becomes nearly as big as the

others. Because only the inference result of the SIRM of the swing angular

velocity is big in this case, however, the contribution of the swing angular

velocity forms the major part of the output item. Then the control of the swing

angular velocity becomes activated and the swing angular velocity will be re-

duced based on its SIRM.
In this way, anti-swing and position control of the overhead traveling crane

is realized by using the SIRMs and adjusting the values of the dynamic im-

portance degrees automatically according to control situations.

3.5. Stability analysis

To guarantee the performance of a control system, stability analysis is
necessary. As well known, however, stability analysis of a non-TK type fuzzy

control system is not an easy task. To make stability analysis possible, here

discussion is first limited in a small neighbor of the destination, that is, the

values of the four state variables are all supposed to be very small.

In the neighbor of the destination, the inference results of the two SIRMs of

the trolley reversely equal to the corresponding input items and the inference

results of the two SIRMs of the load completely equal to the corresponding

input items according to the SIRMs and the membership functions of Fig. 2.
Because the inference result of each dynamic variable becomes almost zero in

the neighbor of the destination from the fuzzy rules of Table 3 and the

membership functions of Fig. 3, each dynamic importance degree can be ap-

proximated by its base value. According to Eq. (3) and Table 4, therefore, the

output item of the fuzzy controller, i.e., the trolley acceleration is then obtained

by
€xx ¼ �2:0095x1 � 3:3873x2 þ 2:5474x3 þ 0:8262x4: ð7Þ

Substituting the state variables for the input items, Eq. (7) further becomes
€xx ¼ �2:0095x� 3:3873 _xxþ 14:5955h þ 4:7338 _hh: ð8Þ

Compared with the well-known linear state feedback controller, it is evident

that Eq. (8) is essentially a linear state feedback controller. Therefore, the

stability analysis problem of the fuzzy control system is transformed into the

stability analysis problem of a usual linear state feedback control system when
the values of the four state variables are small enough. In order to identify the
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stability of the designed control system, the well-known linear state feedback

control theories are available.

First, Eq. (4) is linearized for small swing angle and a linear state equation of

the four state variables is established. Then, Eq. (8) is substituted into the state
equation and a closed-loop system matrix is obtained. After the system matrix

is solved, the four eigenvalues of the system matrix are found to be

)3.190+ 1.927i, )3.190)1.927i, )0.870+ 0.814i, )0.870–0.814i, where i is the
imaginary unit. Because the real parts of the eigenvalues are all negative, the

designed control system proves to be asymptotically stable to the destination.

Furthermore, if the trolley is far from the destination, the trolley will be

forced to move toward the destination according to its SIRM setting. If the

trolley velocity is big, the SIRM of the trolley velocity will make the trolley
velocity decrease. If the swing angle becomes big, the SIRM setting will cause

the swing angle to get small. If the swing angular velocity gets big, the SIRM

setting will reduce the swing angular velocity. Therefore, global stability of the

control system is guaranteed.
4. Control simulations

In order to verify the performance of the proposed fuzzy controller, several

control simulations are done in this section. Moreover, the control results are

compared with those of the linear state feedback controller of Eq. (8).

In Fig. 5, time responses of the trolley position and the swing angle are

depicted. Fig. 5(a) is obtained by the proposed fuzzy controller, while Fig. 5(b)

is obtained by the linear state feedback controller. The initial position of the
trolley is )1.0 m, and the initial values of the other state variables are all zero.
The maximum swing angle is 3.307� in Fig. 5(a) and 3.572� in Fig. 5(b). The
transportation time, that the four state variables of the overhead traveling

crane converge from the control beginning to 0.01 m, 0.01 m/s, 0.10�, and
0.10�/s, is 4.66 s in Fig. 5(a) and 6.46 s in Fig. 5(b). As it can be seen from the
time responses, the linear state feedback controller further causes some over-

shoot (0.030 m) besides the long transportation time.

In Fig. 6, another control simulation example is shown where the initial
position of the trolley is set up to )2.0 m. Because the initial position is out of
the scaling factor of the trolley position, the SIRM of the trolley position

works at its saturation domain and the trolley acceleration is suppressed by the

fuzzy controller. As a result, in Fig. 6(a) the trolley moves at a moderate speed

without overshoot, and the transportation time and the maximum swing angle

are separately 7.26 s and 3.554�. On the other hand, because the linear state
feedback controller determines the control input in proportional to each state

variable, big trolley acceleration is generated for big trolley position. Conse-
quently, in Fig. 6(b) the trolley moves at a high speed and the maximum swing



Fig. 5. Control simulation example (1). (a) Proposed fuzzy controller, (b) linear state feedback

controller.
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angle increases almost double to 6.913�. Although the trolley transits the
destination in less than 4.0 s, an overshoot amount of 0.060 m appears in the

time response of the trolley position and the transportation time finally be-

comes 7.19 s.
Fig. 7 shows the control results of the overhead traveling crane, where the

rope length is 0.5 m long and the initial position is )2.0 m. Although the initial



Fig. 6. Control simulation example (2). (a) Proposed fuzzy controller, (b) linear state feedback

controller.
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position and the rope length are both different from those used in the random

optimization search, the fuzzy controller can robustly drive the crane to the

destination in 7.37 s with an overshoot amount of only 0.002 m. On the other

hand, the linear state feedback controller generates big trolley acceleration
from the control beginning and shortens the transportation time to 7.25 s with

an overshoot amount of 0.052 m. Further because the rope is shorter, the

natural frequency of the rope increases. For the same trolley acceleration,



Fig. 7. Control simulation example (3). (a) Proposed fuzzy controller, (b) linear state feedback

controller.
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shorter rope is easier to swing. As a result, the maximum swing angle (3.558�)
in Fig. 7(a) gets a little bigger than that of Fig. 6(a), and the maximum swing

angle in Fig. 7(b) becomes even bigger to 7.221�.
The control results of the overhead traveling crane, where the rope length is

2.0 m long and the initial position is )2.0 m, are indicated in Fig. 8. Even
though the rope length is doubled compared with Fig. 6, the fuzzy control-

ler can still smoothly control the crane to the destination in 7.36 s without



Fig. 8. Control simulation example (4). (a) Proposed fuzzy controller, (b) linear state feedback

controller.
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overshoot. Because of big overshoot amount of 0.096 m, however, the linear

state feedback controller takes 7.75 s to finish the control. Further because the

natural frequency of the rope becomes smaller in this example, the rope is slow

to swing. Resultantly, the maximum swing angle decreases to 3.449� in Fig.
8(a) and 6.190� in Fig. 8(b) compared with Fig. 6. Apparently the maximum
swing angle by the linear state feedback controller is still much bigger than that
by the fuzzy controller.
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Fig. 9 displays the transportation time necessary for the fuzzy controller and

the linear state feedback controller under different rope lengths and different

initial positions. The rope length (vertical axis) is selected every 0.1 m from 0.1

to 2.0 m. Because the results are symmetric with respect to positive and neg-
ative trolley positions, the trolley initial position (horizontal axis) is chosen

every 0.1 m from 0.1 to 2.0 m. The symbols �, �, j, � mean separately that the
transportation time is within 3.5, or 5.0, or 6.5, or 8.0 s. By using the fuzzy

controller, the transportation time is within 5.0 s in most of the cases that the

rope length is shorter than 1.3 m and the initial position is smaller than 1.3 m,

and is within 6.5 s if the rope length is shorter than 1.6 m and the initial po-

sition is smaller than 1.6 m. By using the linear state feedback controller, on the

other hand, the transportation time is over 5.0 s if the initial position is bigger
than 0.4 m, and is over 6.5 s if the initial position is bigger than 1.0 m.

Fig. 10 depicts the maximum swing angles resulting from the fuzzy con-

troller and the linear state feedback controller under different conditions. The

symbols �, �, j, � specify separately that the maximum swing angle is within
2.0�, or 4.0�, or 6.0�, or 8.0�. As it can be seen from Fig. 10, the maximum
swing angle is within 4.0� for all the conditions when the fuzzy controller is
used. By using the linear state feedback controller, however, the maximum

swing angle is almost bigger than 4.0� if the initial position is bigger than 1.1 m.
In most of the cases that the initial position exceeds 1.7 m, the maximum swing

angle becomes even bigger than 6.0�.
Fig. 11 shows the overshoot amounts arising under different conditions. The

symbols �, �, j, � denote separately that the overshoot amount is within 0.01,
or 0.04, or 0.07, or 0.10 m. It is clear from Fig. 11 that in almost all the cases

the overshoot amount is within 0.01 m when the fuzzy controller is used.

However, the overshoot amount gets large with the increasing of the initial

position and the rope length under the linear state feedback controller. And the
overshoot amount exceeds 0.04 m in most of the cases that the initial position is

bigger than 1.0 m.
5. Discussions

No need to say, the linear state feedback controller of Eq. (8) has constant

feedback gains. Although the maximum trolley acceleration is given, the actual

trolley acceleration determined by Eq. (8) is proportional to the value of each

state variable if the trolley acceleration is still smaller than the maximum.

When the trolley is far from the destination, the linear state feedback controller

will then generate big trolley acceleration. Consequently, the trolley moves fast

toward the destination and causes the rope to swing largely. When the trolley

approaches to the destination, the trolley velocity decays slowly because of the
constant feedback gains. As a result, big overshoot occurs, big residual swing



Fig. 9. Comparison of transportation time. (a) Proposed fuzzy controller, (b) linear state feedback

controller.
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appears, and the transportation time becomes long although the trolley transits

the destination in short time interval.



Fig. 10. Comparison of maximum swing angles. (a) Proposed fuzzy controller, (b) linear state

feedback controller.
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The proposed fuzzy controller, on the other hand, uses the SIRMs that

have saturation features, and the dynamic importance degrees that change



Fig. 11. Comparison of overshoot amounts. (a) Proposed fuzzy controller, (b) linear sate feedback

controller.
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automatically with control situations. Each dynamic importance degree has its

minimum when the corresponding input item is zero and has its maximum after
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the corresponding input item reaches its scaling factor. Except the SIRM of the

trolley position, the other three SIRMs are designed to essentially prevent the

trolley velocity from getting big. The saturation feature of each SIRM limits

the output of the SIRM. When the trolley is far from the destination, the
SIRM of the trolley position will get saturated. After the trolley starts moving

toward the destination, the dynamic importance degrees of the trolley velocity,

the swing angle, and the angular velocity will increase so that the trolley ve-

locity is strongly suppressed. Resultantly, the maximum swing angle is small

and the trolley arrives at the destination almost without overshoot.

Since the fuzzy controller and the linear state feedback controller both

guarantee the stability of the control system, high positioning accuracy is re-

alized in both cases. From the above control results, however, the transpor-
tation time by the fuzzy controller is shorter than or nearly equal to that by the

linear state feedback controller. During transportation, big swing angle will

lead to low safety and even danger. When the trolley approaches to the des-

tination, big overshoot amount and big residual swing angle may cause the

load to bump against others locating in front of the destination. As indicated

above, the control results by the fuzzy controller demonstrate small swing

angles and almost no overshoot. Further in Figs. 5–8, the fuzzy controller

causes almost no residual swing angle while the linear state feedback controller
causes a residual swing angle of near or over 1.0� when the trolley first transits
the destination. Compared with the linear state feedback controller, therefore,

it can be said that the overhead traveling crane controlled by the fuzzy con-

troller is transported to the destination safely in short time interval with high

accuracy.

Unlike the target speed pattern approaches [5,6,8,12,17], the designed fuzzy

controller is more flexible because no target speed pattern is necessary. From

different initial positions, the desired fuzzy controller can achieve almost sim-
ilar results while the target speed pattern approaches have to regenerate the

target speed pattern each time. If disturbance appears during transportation,

the proposed fuzzy controller can absorb the influence of disturbance and then

perform as usual. In such situation, however, the target speed pattern ap-

proaches will lead to bad positioning accuracy.

Moreover, because the change of the rope length has little influence on the

control performance of the fuzzy controller from the control simulations, the

fuzzy controller is robust to different rope length. Different from the adaptive
switching control scheme [10], therefore, there is no need to prepare several

controllers for different rope lengths. Even though the rope length is different,

the fuzzy controller can achieve almost the same good control results. As

mentioned above, the trolley mass and the load mass do not affect the per-

formance of the fuzzy controller. Compared with the universal learning net-

work [16], therefore, the proposed fuzzy controller is more robust and performs

better.



Table 5

Traditional fuzzy rule set

h ¼ NB h ¼ ZO h ¼ PB
x

NB ZO PB NB ZO PB NB ZO PB

_hh ¼ NB _xx NB )0.91 0.78 0.94 )0.22 0.01 )0.99 )1.15 )0.65 1.06

ZO )2.10 )1.92 )0.88 )0.07 )0.31 )0.78 )0.57 )1.40 )0.45
PB )2.43 1.45 )0.77 )1.12 )1.36 )1.37 )0.04 1.17 0.63

_hh ¼ ZO _xx NB )0.36 0.45 )0.10 1.53 )0.33 )0.63 )0.24 )0.46 )1.41
ZO 1.11 0.16 0.53 0.51 0.00 )0.61 )2.20 )0.45 1.43

PB 0.18 )0.41 )1.45 0.03 )1.14 1.69 0.46 )0.62 0.40

_hh ¼ PB _xx NB 1.54 0.04 )0.78 0.10 1.12 1.65 0.00 )0.98 )1.67
ZO )2.43 )0.64 0.56 0.24 0.36 )0.58 0.24 0.84 )1.47
PB )1.09 1.59 )0.55 )0.08 0.60 )2.27 )1.20 )1.12 )2.01
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To further compare with traditional fuzzy model, a four-input one-output

fuzzy rule system for the overhead crane is constructed here (Table 5). Just like

the controller designed in Section 3, the four input items are trolley position x,
trolley velocity _xx, rope swing angle h, and rope swing angular velocity _hh, and
the output item is the trolley acceleration €xx. The input scaling factors are the
same with the proposed controller, and Fig. 2 gives the membership functions

for each input item. Because there are totally 81 fuzzy rules in the rule set and

each fuzzy rule has four inputs to consider, it is not easy to set such a fuzzy rule
set manually. Then the random optimization search method [1] is again used to

tune automatically the fuzzy rules under the same conditions with Section 3.1.

Table 4 shows the final fuzzy rule set. Fig. 12 depicts four control results based

on the fuzzy controller. The control conditions of Fig. 12(a) correspond to that

during tuning. As can be seen from these figures, the traditional fuzzy con-

troller can control the swing angle to a rather small range and transport the

payload to the destination. However, the payload swings sharply during

transportation, and the transportation time becomes long. Furthermore, the
control results change much with the control situations. When the rope length

is shortened from 1.0 to 0.5 m and the trolley initial position is changed from

)1.0 to )2.0 m, for example, Fig. 12(c) indicates that the swing angle of
the payload becomes about 3.0� and it takes more than 15.0 s to converge to
the destination. Therefore, compared with the traditional fuzzy controller, the

proposed fuzzy controller is more robust and effective. In addition, the pro-

posed fuzzy controller is easy to design and easy to understand because each

SIRM and each dynamic variable have only several fuzzy rules, and the dy-
namic importance degrees directly adjust the influence of the corresponding

input items.



Fig. 12. Simulation results by traditional fuzzy controller. (a) Rope length 1.0 m and trolley initial

position )1.0 m, (b) rope length 1.0 m and trolley initial position )2.0 m, (c) rope length 0.5 m and
trolley initial position )2.0 m, (d) rope length 2.0 m and trolley initial position )2.0 m.
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6. Conclusions

A new fuzzy controller based on the SIRMs dynamically connected fuzzy

inference model is proposed for anti-swing and positioning control of

the overhead traveling crane. The fuzzy controller takes the trolley position,

the trolley velocity, the rope swing angle, and the swing angular velocity as the

input items, and the trolley acceleration as the output item. Each input item

has a SIRM and a dynamic importance degree. The dynamic variable of each
dynamic importance degree uses the absolute of the corresponding input item

as its antecedent variable. The fuzzy controller has a simple structure and the

control system is proved to be asymptotically stable to the destination. Control

simulation results show that the fuzzy controller is robust to the change of the

rope length and has generalization ability for different initial positions.
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Compared with the linear state feedback controller, the fuzzy controller real-

izes the anti-swing and positioning control of the overhead traveling crane in

short time interval with high accuracy and small swing angle.
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