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In 1996, we constructed Eeriodic interpolatory scaling functions ¢ ;, wavelet functions L ;
and their dual basis ¢; and L ; with properties such as symmetry, biorthogonality, any order
of smoothness, real-valuedness, explicit expressions and interpolatory. We proved the local-
ization of ¢ ; in 1997, and in 1998 with Li proved the localization of L j In this paper we shall
give a detailed proof of the localization for the dual functions ¢; and L ;.
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1. Introduction

Periodic wavelets were first studied in the book of Meyer [22] and Daubechies [14].
Subsequently, many researchers contributed to the development of this subject, which we
have documented in our reference list.

It is well known that we cannot have a univariate wavelet which is simultane-
ously orthogonal, compactly supported, symmetric and continuous. To overcome this
difficulty, some efforts have been devoted to constructing multiwavelets [24,34,35] or
wavelets with dilation m, m > 2 [23,36]. These wavelets usually increase the compu-
tational cost or lack other desirable properties. For this reason, our interest turned to
periodic wavelets.

In 1996, we constructed periodic interpolatory wavelets [12] and proved that they
have the following properties: explicit representation, symmetry, any order of smooth-
ness, biorthogonality, real-valued and interpolatory. In 1997, we proved the localization
of the periodic scaling function by two different approaches [11]. Following the method
in [11], in 1998, we proved the localization of the periodic interpolating wavelet [19].
In this paper, we shall give a detailed proof of the localization of the dual func-
tions.

* Supported by a research grant of Prof. Y. Xu from the program “Hundreds of Distinguished Young
Scientists” of the Chinese Academy of Sciences.
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We consider the localization of function in one of the following two ways:

D1. The functions f; decays exponentially in one period of f; as j tends to infinity,
where j is the level of scaling.

D2. The circular variance of f;, denoted by Var(f;), tends to zero as j tends to infinity.

Recall that Var( f) is defined as follows: For a T-periodic continuous differentiable
function f whose L? norm is one, we set

T
o(f) = / /11| £ ()| dr
0
and

Var(f) :=1—|t(f)].

The size of 1 — |t(f)| is a good measure of how localized | f|* is about T(f). For
example, if | £ (¢)|> approaches a point mass located at t,, then 7 (f) approaches €', and
1 — |z (f)| approaches zero. Conversely, if 1 — |t(f)| = 0, then | f|? is the distribution
corresponding to a point mass located at 7(f) (see [5,19,25]). In this paper we prove the
localization of the dual functions in the sense of D2. In the next section, we review their
construction.

2.  The properties of ¢;

Before we construct the PISF we shall first recall the definition of the generators for
periodic multi-resolution analysis. Let j be a nonnegative integer, k a positive integer,
and k; = 2/k, h; = 27 /k;. Let G be a 27 -periodic, continuous differentiable function
whose Fourier coefficients are positive, i.e.,

G(x) = Zdnei’”, d, >0, VneZ.

nez
For/=0,1,...,k; — 1, we define

kj—1

Cl(x) ==Y G(x — khj)e*™,

k=0
from which it follows that

Cl] (x) — k] Zdnkj—lei(nkj_l)x-

nez

Let
RLe))
e/

Cl(x) :
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where we use the norm | f||?> = (1/2m) fOzﬂ | f(x)|*dx for a periodic function f €
L?([0,2x]). Since Cl’ (0) > 0, we can define the following periodic cardinal interpo-

latory scaling function (PISF)

ki—1 ;i
1 {50 ()

@j(x) = — L j>0,jeZ.

! kj ,§ ¢ (0)

The dual scaling function is defined by the equation

kj—1

§i(x) =) clo;(x — vh)),

v=0
where
kj—1
v -1 —vl
c; = E (aj))” w
1=0
and

_ (ZHEZ dl%kj —l)
(ZMEZ dmkj —1)2 '
Using the methods introduced in [5, p. 172] it follows that

(@;¢- —khy), @ —1h))) =8,

Clj,]

fork,I =0,1,...,k; — L
We begin by studying the localization of ¢;.

Theorem 2.1. Suppose that

dy,
{ —l:ne Z} el’
dn—i—l

and there is a positive constant ¢ such that

d
inf{—;: Ir| <kj_1, j€ Z+} Zc,
Sy

where 57 1= > nez uk;—rs J € Zy, then we have that

1
Var(¢;) = O| —= j .
ar((p]) (\/E)’ .]_>OO

For the proof of theorem 2.1, we have to establish some lemmas.

ey

(@)

3

“

&)
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Lemma 2.1. If £, is defined as

s 1 o x|~ 2
§j = %/o e |@; ()| dx,

then
ki—1 j
. 2 : susu-i-l u lH-l

=0 QMCI;H-I

where

srj = Zdnkj—ra qr] = Z nkj—r> vrj,s = Zdnkj—rdnkj—s- (6)

nez nez nez

Proof.  The proof follows by a computation with equations (1)—(3). We leave the details
to the reader. [l

Lemma 2.2. If 7; is defined as
;= 16,117
then

Proof. From (1), we have that

k-1
M= (Z c;c§.>1, (7)

v,l=0
where
1 e -
I := T ; @(x —vhj)e;(x —lh;)dx.
A direct calculation leads to the formula
K7l Giow—ubh;
I = i dnk-—)»dmk‘—;LSn,mSu,)n
A,u=0 C){ (O)C/]‘ (0) m,nez ' '
that is,
kj—1 1 2
/= <4 )awnhd. (®)
; C; (0)

Now, we substitute (8) into (7) to obtain the desired result. O
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Proof of theorem 2.1. By the definition of variance, we conclude that Var(¢;) =
(1/nj)(n; — &;). From lemmas 2.1 and 2.2, we obtain that

kj—1

LS 6D sl
V“r(g"i):TZ 77 Qr]+1_+—f+
S

[ ;

k/'—l i j
- JN\2 J
1 (s7) | S} j j
- =~ J T Virr1 = Vst + 941 |
nj s
J r=0 qr qr+1 r

and using the Cauchy—Schwarz inequality we have that

R U VAN
7)< — 7 ) _ rtl
Var(¢/)<ﬁj{2[qr]' 7 vr,r+l:| } {Z(l j ) }

r=0 qr+1 r Sr
o %“N ) ki( ; )2[201 d d )]2 N
=~ : i nkj—r—1\4nk;—r—1 — Unk;—r
nj =0 (qu)Z r=0 qr]+1 n ' : :
1
=—(NT, + T:Ty).
nj

We estimate Ty, T», T5 and T, separately. By using (6) we obtain the estimate
kj—1 IN 21 1/2 kj—1 ja )12
(s7) i (s7)
LD = D o
{ r=0 q’]qr]—H r=0 quqrj-i-l
and also use the notation in (6) to obtain that

kj1—1 jva V2 ko=l o\ 4 2) /2
(s7) Sr d_,
T, < . 1 = :
: { Z dzrdzr—l } { Z <d—r> <d—r—1> }

r:—kj,l r:—kj,l

By using the condition of the theorem, we provide the conclusion that
T < okl ©

We estimate 75 in the following way. By using its definition and the Cauchy—
Schwarz inequality, we have that

kj—1 Z dZ d 2 1/2

neZ “nkj—r nkj—r—1

T, < € J ( J _ 1) ,

D)

dnk; -
r=0 nez nkj—r

and using the fact that all d’s are positive, we obtain the inequality

k-1 J 12
1; < {Z Z( il 1) } .

duk.—
r=0 nezZ nkj—r
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Hence from (4), we conclude that there is a positive constant ¢ such that

I <c, (10)
while from (5), we obtain that
=1 a2
(s7) 1/2
T; = . < k" (11
{g (g7)? } !

Similarly, we have that

kj—1 2
T42 < Z JL Z(dnkj—r—l - dnkj—r)2 < Z(l - d:;n—:l> s

r=0 9r+1 nez meZ

and therefore from the condition of the theorem, there is a positive constant ¢ > 0 such
that

T, < c. (12)
This provides us, by (9)—(12), with the inequality

J

1
Var(¢;) < CT\/IC_j (13)
n
where c is a constant independent of j. From lemma 2.2 we have that n; > k;, and
combined (13), we derive the desired bound and prove the result. O
3. The properties of L j

In this section, we study the localization of the function L ;. To this end, we define
the functions

Df () = [/ "'C T ) — [l o Je i (14)
forl =0,1,... . k;—1,wherec/ ™" = ||c,{j++1,||/||c,f || which is the same as in equation (2).
1 < Dl
Li) = o )~ (15)
i =0 Dj(hjt)

and introduce the matrix

M :=diag{Q;(1), Q;(®), ..., Q; (")},
where
kj—1

Q;(@) =Y _(L;(), L;(- —khj)). (16)

k=0
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The dual function of L is defined by the equation

kj—1
Lij(x) =Y d;,Lj(x — vh)), (17)
v=0
where
1 kj—l
dj,v = k_ Z(Qj(wl))_la)_l”. (18)
7 1=0

As for the localization of L j» we have the following theorem.

Theorem 3.1. Under the conditions (4) and (5), we have that
~ 1
Var(Lj) = O(—) j — oo.

Vk;
To estimate the localization of I j» we have to establish some lemmas.

Lemma 3.1. Let L be defined as in (17), then

| bl

12, = = 2_(5(@)) (19)

7 1=0

Proof.  This result follows by a direct computation with equations (16)—(18), we leave
the details to the reader. Il

In our next result we give an alternative expression for || L ||.

Lemma 3.2.

kj—=1 , j+1 _j+l1 i+1_j+1 12

7)1 = {5 St ) 0
J= 1+, j+1 1

1=0 q %{,H(qz] +q1{,+z)
where s, and ¢, are given in equation (6).
Proof Since Q;(z) = Y qjvz", we calculate q;., = (L;(), L;(- — vh,)), by
using the formula (15). Specifically, we have that

ki—1
1 < 1

qjv = p ; jill‘jk’
J 1.k=0 Dj (hj 1) Dy (hj11)

where [ l‘fk is defined to be

Iy = <Dzj('), D,{(- — vh;)).
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From definition (14) a direct computation leads to the formula

J+12 41,2
) —ilvh; ”Ck +l” ”C]] ”
ly=¢e""" ———t 5 81 ks
' IC} 117 IC/ 117

which we substitute into g; , to obtain

! bl IC 5P+ e -
qdjv = 75 -
5 (IC"H1C 0 + 1e T IC] T (002

where we use the fact that

D/ (hj1) = ¢/ ¢ ©0) + ¢/, G 0).

Therefore, we have that

_ j+1 j+1
kZl e LI + e
q4jk@ = 5t ' A
kj ||c,{+jl|| GO + e G 02

and so by (19) we obtain the formula

O ACCT ) + 16T 0)?

e

J Jj+1
=0 ICi, +,II2 +1IC 112

Since [|CIY| = k;11(g{™)"/? and Cit1(0) = s/1/(gi ™)/, this formula yields the
desired conclusion. O

Lemma 3.3. For j € Z,, we have that
~ 2 4
ki < |L;]" < 2K 2D

where c is a positive constant such that

1nf{ S < kG 1,j€Z+}2c.
s

Proof.  From (20) and (6) we have that

kj-1-1 ]+1 2 jtly2
~ ) (Sk-+l)
LI <2 3 (S + )

I=—kj_; —kj+l1

According to the hypothesis of the lemma we obtain that

-, 4
1L <gkj-
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On the other hand, from (20) we have that

~ o (el el el
I1Z;° > ) =

j+1 +1 = Rj
1=0 d; +l(1 + %{ﬁ—l/q]

from which we conclude that (21) holds. Il

Now, we consider the quantity A j» Where

— L/h eit|z-(t)|2dt
o 2 0 / '

From (17) and (18) we have that

2 Z Z Q] ll Q]( 12)) lzvz_llvlpvl,\)z,

J v1,v=011,l,b=0

where

Porws i=(€"L;(- —vih;), L;(- — vah)))

kj—1
1 < 1 i i
2 < ——— (1 + h + J3 + e TEeihin 20,
J 1k=0 D} (hj1)D{ (hj+1)
i+1 j+1 J+1 L+l
Ji _ij} Jp = _u‘z
T A j+1 T j+1 j+l1
G G| IC I Sl
j+1 j+1 Jj+1 j+1
i Ch;j+1Ck ~ ) ChjriChjtk  ~
fyi= o=
I1C MGl ICi, +1||||Ck el
~
Jii=kjy, Zdnkj+1—ldnkj+1—k81,k+l’
nez
~
Jri=kiy, Zdnkj+1—ld(n+1)kj+1—k—kj81,08k,k_,-—lv
nez
~
J3i=kjy, Zdnk_,-+1—kj—ldnk_,-+1—k81,08k,kj—la
nez

and

T2
Jo == ki E iy —kj—1Gnk; o —k;—kO1k+1-

nez

Therefore, we obtain that

Aj=E +Ey+ E;s+ Eq,
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where
kj—l ih j+1
J+l 4 4
E '_Ze / Ak-HAkvk-H,k m]+1m1+1 (22)
L= JHL_j+l k1M
k=0 Dikj+kDicj+k+1
; AoAg;—1 TRE
. ih; i~ Jj+1_j+1
fd JHl— L
Ez. € S U(),kjﬂ_lmo mkj+l—1’ (23)
ki Dkjii—1
; AoAg;—1 i1
. ih J j+1 o j+1
— JHl—
E3. € S vkj,k_/._lmkj mk_/__l (24)
ki Tkj1=1
and
kji—1 Lihjq Jj+1
E.- et Ak+1AkUkj+k+l,k_/+k j+1 j+1 25
4= j+L_j+1 ket Mo 25)
k=0 Dk +k Dk +k+1

i1 j+1 i+l j+1
where A; :=m]'s{ T + m,{;ls,f_:rl.
To simplify our notation, we shall now delete the superscript j + 1 as the context

makes its presence clear. By using (20), (22)—(25), we have that

”zj Hz . kil{ (qi;+151 + Q15k,41)* Ay V1} _ %Vz, (26)
=l ag (@ + a0 GGk GGk —1
where
Vi = U mymgy Vit 1Mk 14 1M 4
and

Vo 1= 00,k — 10Nk —1 F Uk k=1 M1 -

To estimate the right-hand side of equation (26) we set

Xy = mysy, Y = mmp V41,
and observe that
ki—1
Iz ”2 5] < Jz[(xz +x00a) O X)) ern F X)) (O + yl+k_,-)]
A7 =1x] < _
! ’ oL @t K+ Qi+k; G1+1+k;

which gives the estimate
— A <h+bL+L+1, 27

where

2
[ Z( X; X1 X141 ) (28)

o \4 T itk Gk Gtk



H.-L. Chen, S.-L. Peng / Localization of dual periodic scaling 205

k_/'—l 2

Xvk; X4k X1+ 1+k; I
b;:Z( I ++fy>, (29)
=0 \4! T i+, Qi+k; Gi+1+k;
k-1

13::'2:( XiXiky X1x1+1+kjy1> 30)

—o \4 T itk Gk Gtk

and
kj—1

X1 X . X X
Io— Z( itk Xk X1 ) 31

=0 \4 T itk Gk Qi1+k;

We establish the following results.
Lemma 3.4. Under the assumption (4) and (5) there exists a constant ¢ such that for all
Jj € Z,, we have

L] < ck)” and |L| < ck;”, (32)

Proof. From (28) we obtain that

kj—1

ni<y —

— (@ q+x;)'?

2
my,  mSi1V1 041

mps; —

qi+1+k;

Consequently, using the condition of (5), we have that

1S 81 st (@ ' v
+ +
|11|<—§ —1——< ) : .
e st \q+1/)  (qqi)'?

By the Cauchy—Schwarz inequality and the assumption (5), we obtain the inequality

ave kj—1 271/2

j Si+1 V141

L <<= ) |1—-— : (33)
<= St g+l

We shall establish the existence of the constants ¢; and ¢, such that for all j € Z,,

kj—1 2
S
Z(l - ﬂ) <a (34)
1=0 81
and
kj—1

2
Z(l — U”H) < 0. (35)
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In fact, from equations (5) and (6), we obtain that

ki—1 .
S1+1 Aok —l—1
S(1- ) < Xy (- e
I=0 ( =0 neZ "k/+l —l
which proves (34). As for the estimate (35), we first observe that
ki—1
2(1_ vz,1+1)2 Z [Zn nkj 1 —l— 1 (U= iy —1/ iy —1- 1)]
1=0 qi+1 —o ‘11+1
that is,
kj—l )
UL,i+1 Aok il
0 b (R
g( qi+1 Z; nk]H e X

from which we obtain (35). Also, using the Cauchy—Schwarz inequality, we obtain that

kj—1 271/2 271/2
VIRE) S v
[Zl_ﬁ it } {220_&) HZ(HI) (1_ ,,M” |
=0 St 4+ =0 \ qi+1
Therefore from (34), (35) and the boundedness of the sequence {s;,/s;: | € Z.}, we
have that

k-1 12
v
{Z ] = St i } <ec (36)

N
=0 1 qi+1

We now employ (33) and (36) to complete the proof of the first inequality of (32).
Now, we start the proof of the second assertion. First, we observe that

kj—1

2
L] < Z (M gie; Si4r;) |:1 @ty x1+1+k_,-y1] <o
=0 AT d+k qi+k;qi+1+k; Xl+k;
where
ki1 1/2
Ql - {./ ((ml+kjsl+kj)2)2:|
—o \ 4T itk
and

kj—1 n X y 21/2
Q, = |:Z<1_ Gt Qiek;  Xitik z>j| ‘

qQi+k;q1+1+k; Xitk;
By using (5) we have that
=1, 2\ 2l/?
Q) < {Z<ﬂ> } <okl jeis. 37)

1=0 QI-H{]‘
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Similarly, we obtain that

Q) < V2(2.1 + 20)' 2,

where
kj—1 2
Myi41+k;
Q= E (1 -—
’ My,
—o I+k;
and

kj—1

J m ) 2 s _ 4 ) 2
Qe Z( 1+1+k,> (1 Stk (@ 6]1+k,)y1> '

—o \ Mi+k; Stk Gitk;Gi+1+k;

By using the formula given in [5, (4.8.12), p. 195], we have

kj—1 22
M1+,
21 < E I - ( - - <ec.
=0 I+k;

We estimate €2, , next. Specifically, we have that

= Ste1k; (@ + Qi )mimisi v\
< Z - J J ’ < 0 0
rasc = (1 itk Qi+k; Gi+1+k; ) < 208+ 2680,
where
0 a Si41+k; 2
= (- 50)
=0 j
and
ki—1

0 qr + Gk, Qi Gierex,) :
92’2 = Z 1 - 12 Vii+1 | -
= Gk Qi+1+k; (Qiqi+1)

By using the same method used to confirm (35), we have that 93,1 < c¢. For the second
inequality, one can also refer to [5, (4.8.16), p. 199], specifically, we have that

kj—1
0 . @ik Qr14) 7 00 T
92-,2\2 - ( 1/2
P qiq1+1) qi+1
kj—1 m \2 kj—1 m \2 v 2
() e
—0 mp+ —o \TH+1 qi+1

from which the technique used to derive the inequality (37) and (35), yields the bound
Qg’z < c thereby providing the inequality €2, < c. This establishes the second inequality
in (32). g
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Lemma 3.5. Under the conditions (4) and (5), there is a positive constant ¢ such that for
all _] € Z+,

Ll <ck?, Ll < k). (38)

Proof. From the definition of x; and y;, we have that

kj—1
TARS SISI+k; { ml+1+k_,-Sl+1+k,m1m1+1vl,l+1}
31 X E - .
— 2(q1q141;)"? G414k Uk 14k
1=0 j j j j

Consequently, the Cauchy—Schwarz inequality yields the bound
kj—1

ol 5 12 s . 5 172
1S1+k; 14k 141k V141
b Z 2qqrx)'? Z Gi+1+k; G1S1+k;

=0 =0

kj—1

172
<ckl/2{' [1 Si41+k; +s1+1+k,» (1 qi+k; v,’,H)]z}
<ck, E — _

J

=0 Stk Stk qi+1+k; 41

k-1 . 2y 12
I+k; V)
gck;/z{c+02(l—#ﬂ> } . J €Ly

=0 Qi+1+k; 41

We use (5) and (37) to obtain that
|I3| g ijl‘/za ./ € Z+a

since the sequence (g4, /ql+1+kj)2 is bounded for j € Z,, and

kj—1
2(1 _ qi+k; v1,1+1)2
=0 qi+1+k; 41
kj—1 2
_ [1 _ ek ik (1 B v1,1+1>:|
— Qi+1+k;  qi+14k; q
kj—1 2 kj—1 2 2
<2 (1 _ Qi+k ) +2Z< itk ) (1 B vz,z+1> ‘
=0 Qi+14k; =0 \4i+1+k; q

Now, we prove the second inequality in (38). To this end, we note that

kj—1

X X|4k;
L= -

=0 A T A+,

kj—1
' SISI+k;
<!

=0 A T A+

@+ g X

XG4k i+1+k;

1

Si+1 g1 V41
S qiv1 41
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We estimate this sum just as above and conclude that

L4l < ckj” ) € Zy. O

Proof of theorem 3.1. The proof follows directly from (27)—(31) and lemmas 3.3-3.5.
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