Localization of dual periodic scaling and wavelet functions

Han-Lin Chen ${ }^{\text {a,* }}$ and Si-Long Peng ${ }^{b}$
${ }^{a}$ Institute of Mathematics, Chinese Academy of Sciences, 100080, Beijing, P.R. China
E-mail: chen@math03.math.ac.cn
${ }^{b}$ Institute of Automation, Chinese Academy of Sciences, 100080, Beijing, P.R. China
E-mail: silong.peng@mail.ia.ac.cn

Received 2 November 2001; accepted 25 October 2002
Communicated by C.A. Micchelli

Abstract

In 1996, we constructed periodic interpolatory scaling functions φ_{j}, wavelet functions L_{j} and their dual basis $\tilde{\varphi}_{j}$ and \widetilde{L}_{j} with properties such as symmetry, biorthogonality, any order of smoothness, real-valuedness, explicit expressions and interpolatory. We proved the localization of φ_{j} in 1997, and in 1998 with Li proved the localization of L_{j}. In this paper we shall give a detailed proof of the localization for the dual functions $\tilde{\varphi}_{j}$ and \widetilde{L}_{j}.

Keywords: localization, dual function, periodic wavelet

1. Introduction

Periodic wavelets were first studied in the book of Meyer [22] and Daubechies [14]. Subsequently, many researchers contributed to the development of this subject, which we have documented in our reference list.

It is well known that we cannot have a univariate wavelet which is simultaneously orthogonal, compactly supported, symmetric and continuous. To overcome this difficulty, some efforts have been devoted to constructing multiwavelets [24,34,35] or wavelets with dilation $m, m>2[23,36]$. These wavelets usually increase the computational cost or lack other desirable properties. For this reason, our interest turned to periodic wavelets.

In 1996, we constructed periodic interpolatory wavelets [12] and proved that they have the following properties: explicit representation, symmetry, any order of smoothness, biorthogonality, real-valued and interpolatory. In 1997, we proved the localization of the periodic scaling function by two different approaches [11]. Following the method in [11], in 1998, we proved the localization of the periodic interpolating wavelet [19]. In this paper, we shall give a detailed proof of the localization of the dual functions.

[^0]We consider the localization of function in one of the following two ways:
$D 1$. The functions f_{j} decays exponentially in one period of f_{j} as j tends to infinity, where j is the level of scaling.
$D 2$. The circular variance of f_{j}, denoted by $\operatorname{Var}\left(f_{j}\right)$, tends to zero as j tends to infinity.
Recall that $\operatorname{Var}(f)$ is defined as follows: For a T-periodic continuous differentiable function f whose L^{2} norm is one, we set

$$
\tau(f):=\int_{0}^{T} \mathrm{e}^{\mathrm{i}(2 \pi / T) t}|f(t)|^{2} \mathrm{~d} t
$$

and

$$
\operatorname{Var}(f):=1-|\tau(f)|
$$

The size of $1-|\tau(f)|$ is a good measure of how localized $|f|^{2}$ is about $\tau(f)$. For example, if $|f(t)|^{2}$ approaches a point mass located at t_{0}, then $\tau(f)$ approaches $\mathrm{e}^{\mathrm{i} t_{0}}$, and $1-|\tau(f)|$ approaches zero. Conversely, if $1-|\tau(f)|=0$, then $|f|^{2}$ is the distribution corresponding to a point mass located at $\tau(f)$ (see $[5,19,25]$). In this paper we prove the localization of the dual functions in the sense of $D 2$. In the next section, we review their construction.

2. The properties of $\tilde{\varphi}_{j}$

Before we construct the PISF we shall first recall the definition of the generators for periodic multi-resolution analysis. Let j be a nonnegative integer, k a positive integer, and $k_{j}=2^{j} k, h_{j}=2 \pi / k_{j}$. Let G be a 2π-periodic, continuous differentiable function whose Fourier coefficients are positive, i.e.,

$$
G(x)=\sum_{n \in \mathbb{Z}} d_{n} \mathrm{e}^{\mathrm{i} n x}, \quad d_{n}>0, \forall n \in \mathbb{Z}
$$

For $l=0,1, \ldots, k_{j}-1$, we define

$$
\mathcal{C}_{l}^{j}(x):=\sum_{k=0}^{k_{j}-1} G\left(x-k h_{j}\right) \mathrm{e}^{\mathrm{i} k l h_{j}}
$$

from which it follows that

$$
\mathcal{C}_{l}^{j}(x)=k_{j} \sum_{n \in \mathbb{Z}} d_{n k_{j}-l} \mathrm{e}^{\mathrm{i}\left(n k_{j}-l\right) x}
$$

Let

$$
\widetilde{\mathcal{C}}_{l}^{j}(x):=\frac{\mathcal{C}_{l}^{j}(x)}{\left\|\mathcal{C}_{l}^{j}\right\|}
$$

where we use the norm $\|f\|^{2}=(1 / 2 \pi) \int_{0}^{2 \pi}|f(x)|^{2} \mathrm{~d} x$ for a periodic function $f \in$ $L^{2}([0,2 \pi])$. Since $\mathcal{C}_{l}^{j}(0)>0$, we can define the following periodic cardinal interpolatory scaling function (PISF)

$$
\varphi_{j}(x):=\frac{1}{k_{j}} \sum_{l=0}^{k_{j}-1} \frac{\mathcal{C}_{l}^{j}(x)}{\mathcal{C}_{l}^{j}(0)}, \quad j>0, j \in \mathbb{Z} .
$$

The dual scaling function is defined by the equation

$$
\begin{equation*}
\tilde{\varphi}_{j}(x):=\sum_{v=0}^{k_{j}-1} c_{j}^{v} \varphi_{j}\left(x-v h_{j}\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{j}^{\nu}=\sum_{l=0}^{k_{j}-1}\left(a_{j, l}\right)^{-1} \omega^{-\nu l} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{j, l}=\frac{\left(\sum_{n \in \mathbb{Z}} d_{n k_{j}-l}^{2}\right)}{\left(\sum_{m \in \mathbb{Z}} d_{m k_{j}-l}\right)^{2}} . \tag{3}
\end{equation*}
$$

Using the methods introduced in [5, p. 172] it follows that

$$
\left\langle\tilde{\varphi}_{j}\left(\cdot-k h_{j}\right), \varphi\left(\cdot-l h_{j}\right)\right\rangle=\delta_{k, l}
$$

for $k, l=0,1, \ldots, k_{j}-1$.
We begin by studying the localization of $\tilde{\varphi}_{j}$.
Theorem 2.1. Suppose that

$$
\begin{equation*}
\left\{\frac{d_{n}}{d_{n+1}}-1: n \in \mathbb{Z}\right\} \in l^{2} \tag{4}
\end{equation*}
$$

and there is a positive constant c such that

$$
\begin{equation*}
\inf \left\{\frac{d_{r}}{s_{r}^{j}}:|r| \leqslant k_{j-1}, j \in \mathbb{Z}_{+}\right\} \geqslant c, \tag{5}
\end{equation*}
$$

where $s_{r}^{j}:=\sum_{n \in \mathbb{Z}} d_{n k_{j}-r}, j \in \mathbb{Z}_{+}$, then we have that

$$
\operatorname{Var}\left(\tilde{\varphi}_{j}\right)=\mathrm{O}\left(\frac{1}{\sqrt{k_{j}}}\right), \quad j \rightarrow \infty
$$

For the proof of theorem 2.1, we have to establish some lemmas.

Lemma 2.1. If $\tilde{\xi}_{j}$ is defined as

$$
\tilde{\xi}_{j}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i} x}\left|\tilde{\varphi}_{j}(x)\right|^{2} \mathrm{~d} x
$$

then

$$
\tilde{\xi}_{j}=\sum_{\mu=0}^{k_{j}-1} \frac{s_{\mu}^{j} s_{\mu+1}^{j} v_{\mu, \mu+1}^{j}}{q_{\mu}^{j} q_{\mu+1}^{j}}
$$

where

$$
\begin{equation*}
s_{r}^{j}=\sum_{n \in \mathbb{Z}} d_{n k_{j}-r}, \quad q_{r}^{j}=\sum_{n \in \mathbb{Z}} d_{n k_{j}-r}^{2}, \quad v_{r, s}^{j}=\sum_{n \in \mathbb{Z}} d_{n k_{j}-r} d_{n k_{j}-s} \tag{6}
\end{equation*}
$$

Proof. The proof follows by a computation with equations (1)-(3). We leave the details to the reader.

Lemma 2.2. If $\tilde{\eta}_{j}$ is defined as

$$
\tilde{\eta}_{j}:=\left\|\tilde{\varphi}_{j}\right\|^{2}
$$

then

$$
\tilde{\eta}_{j}=\sum_{r=0}^{k_{j}-1} \frac{\left(s_{r}^{j}\right)^{2}}{q_{r}^{j}}
$$

Proof. From (1), we have that

$$
\begin{equation*}
\tilde{\eta}_{j}=\left(\sum_{v, l=0}^{k_{j}-1} c_{j}^{v} \overline{c_{j}^{l}}\right) I \tag{7}
\end{equation*}
$$

where

$$
I:=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi\left(x-v h_{j}\right) \overline{\varphi_{j}\left(x-l h_{j}\right)} \mathrm{d} x
$$

A direct calculation leads to the formula

$$
I=\sum_{\lambda, \mu=0}^{k_{j}-1} \frac{\mathrm{e}^{\mathrm{i}(\lambda v-\mu l) h_{j}}}{\mathcal{C}_{\lambda}^{j}(0) \mathcal{C}_{\mu}^{j}(0)} \sum_{m, n \in \mathbb{Z}} d_{n k_{j}-\lambda} d_{m k_{j}-\mu} \delta_{n, m} \delta_{\mu, \lambda}
$$

that is,

$$
\begin{equation*}
I=\sum_{\lambda=0}^{k_{j}-1}\left(\frac{1}{\mathcal{C}_{\lambda}^{j}(0)}\right)^{2} \mathrm{e}^{\mathrm{i} \lambda(\nu-l) h_{j}} q_{\lambda}^{j} \tag{8}
\end{equation*}
$$

Now, we substitute (8) into (7) to obtain the desired result.

Proof of theorem 2.1. By the definition of variance, we conclude that $\operatorname{Var}\left(\tilde{\varphi}_{j}\right)=$ $\left(1 / \tilde{\eta}_{j}\right)\left(\tilde{\eta}_{j}-\tilde{\xi}_{j}\right)$. From lemmas 2.1 and 2.2, we obtain that

$$
\begin{aligned}
\operatorname{Var}\left(\tilde{\varphi}_{j}\right) & =\frac{1}{\tilde{\eta}_{j}} \sum_{r=0}^{k_{j}-1} \frac{\left(s_{r}^{j}\right)^{2}}{q_{r}^{j} q_{r+1}^{j}}\left(q_{r+1}^{j}-\frac{s_{r+1}^{j} v_{r, r+1}^{j}}{s_{r}^{j}}\right) \\
& =\frac{1}{\tilde{\eta}_{j}} \sum_{r=0}^{k_{j}-1} \frac{\left(s_{r}^{j}\right)^{2}}{q_{r}^{j} q_{r+1}^{j}}\left[\left(1-\frac{s_{r+1}^{j}}{s_{r}^{j}}\right) v_{r, r+1}^{j}-v_{r, r+1}^{j}+q_{r+1}^{j}\right],
\end{aligned}
$$

and using the Cauchy-Schwarz inequality we have that

$$
\begin{aligned}
\operatorname{Var}\left(\tilde{\varphi}_{j}\right) \leqslant & \frac{1}{\tilde{\eta}_{j}}\left\{\sum_{r=0}^{k_{j}-1}\left[\frac{\left(s_{r}^{j}\right)^{2}}{q_{r}^{j} q_{r+1}^{j}} v_{r, r+1}^{j}\right]^{2}\right\}^{1 / 2}\left\{\sum_{r}^{k_{j}-1}\left(1-\frac{s_{r+1}^{j}}{s_{r}^{j}}\right)^{2}\right\}^{1 / 2} \\
& +\frac{1}{\tilde{\eta}_{j}}\left\{\sum_{r=0}^{k_{j}-1} \frac{\left(s_{r}^{j}\right)^{4}}{\left(q_{r}^{j}\right)^{2}}\right\}^{1 / 2}\left\{\sum_{r=0}^{k_{j}-1}\left(\frac{1}{q_{r+1}^{j}}\right)^{2}\left[\sum_{n} d_{n k_{j}-r-1}\left(d_{n k_{j}-r-1}-d_{n k_{j}-r}\right)\right]^{2}\right\}^{1 / 2} \\
= & \frac{1}{\tilde{\eta}_{j}}\left(T_{1} T_{2}+T_{3} T_{4}\right)
\end{aligned}
$$

We estimate T_{1}, T_{2}, T_{3} and T_{4} separately. By using (6) we obtain the estimate

$$
T_{1}=\left\{\sum_{r=0}^{k_{j}-1}\left[\frac{\left(s_{r}^{j}\right)^{2}}{q_{r}^{j} q_{r+1}^{j}} v_{r, r+1}^{j}\right]^{2}\right\}^{1 / 2} \leqslant\left\{\sum_{r=0}^{k_{j}-1} \frac{\left(s_{r}^{j}\right)^{4}}{q_{r}^{j} q_{r+1}^{j}}\right\}^{1 / 2}
$$

and also use the notation in (6) to obtain that

$$
T_{1} \leqslant\left\{\sum_{r=-k_{j-1}}^{k_{j-1}-1} \frac{\left(s_{r}^{j}\right)^{4}}{d_{-r}^{2} d_{-r-1}^{2}}\right\}^{1 / 2}=\left\{\sum_{r=-k_{j-1}}^{k_{j-1}-1}\left(\frac{s_{r}^{j}}{d_{-r}}\right)^{4}\left(\frac{d_{-r}}{d_{-r-1}}\right)^{2}\right\}^{1 / 2}
$$

By using the condition of the theorem, we provide the conclusion that

$$
\begin{equation*}
T_{1} \leqslant c k_{j}^{1 / 2} \tag{9}
\end{equation*}
$$

We estimate T_{2} in the following way. By using its definition and the CauchySchwarz inequality, we have that

$$
T_{2} \leqslant\left\{\sum_{r=0}^{k_{j}-1} \frac{\sum_{n \in \mathbb{Z}} d_{n k_{j}-r}^{2}}{\left(\sum_{n \in \mathbb{Z}} d_{n k_{j}-r}\right)^{2}} \sum_{n \in \mathbb{Z}}\left(\frac{d_{n k_{j}-r-1}}{d_{n k_{j}-r}}-1\right)^{2}\right\}^{1 / 2}
$$

and using the fact that all d 's are positive, we obtain the inequality

$$
T_{2} \leqslant\left\{\sum_{r=0}^{k_{j}-1} \sum_{n \in \mathbb{Z}}\left(\frac{d_{n k_{j}-r-1}}{d_{n k_{j}-r}}-1\right)^{2}\right\}^{1 / 2}
$$

Hence from (4), we conclude that there is a positive constant c such that

$$
\begin{equation*}
T_{2} \leqslant c \tag{10}
\end{equation*}
$$

while from (5), we obtain that

$$
\begin{equation*}
T_{3}=\left\{\sum_{r=0}^{k_{j}-1} \frac{\left(s_{r}^{j}\right)^{4}}{\left(q_{r}^{j}\right)^{2}}\right\}^{1 / 2} \leqslant c k_{j}^{1 / 2} \tag{11}
\end{equation*}
$$

Similarly, we have that

$$
T_{4}^{2} \leqslant \sum_{r=0}^{k_{j}-1} \frac{1}{q_{r+1}^{j}} \sum_{n \in \mathbb{Z}}\left(d_{n k_{j}-r-1}-d_{n k_{j}-r}\right)^{2} \leqslant \sum_{m \in \mathbb{Z}}\left(1-\frac{d_{m+1}}{d_{m}}\right)^{2},
$$

and therefore from the condition of the theorem, there is a positive constant $c>0$ such that

$$
\begin{equation*}
T_{4} \leqslant c . \tag{12}
\end{equation*}
$$

This provides us, by (9)-(12), with the inequality

$$
\begin{equation*}
\operatorname{Var}\left(\tilde{\varphi}_{j}\right) \leqslant c \frac{1}{\tilde{\eta}_{j}} \sqrt{k_{j}}, \tag{13}
\end{equation*}
$$

where c is a constant independent of j. From lemma 2.2 we have that $\tilde{\eta}_{j} \geqslant k_{j}$, and combined (13), we derive the desired bound and prove the result.

3. The properties of \widetilde{L}_{j}

In this section, we study the localization of the function \widetilde{L}_{j}. To this end, we define the functions

$$
\begin{equation*}
\mathcal{D}_{l}^{j}(x):=\left\{c_{l}^{j+1} \widetilde{\mathcal{C}}_{l}^{j+1}(x)-c_{k_{j}+l}^{j+1} \widetilde{\mathcal{L}}_{k_{j}+l}^{j+1}(x)\right\} \mathrm{e}^{\mathrm{i} / h_{j+1}} \tag{14}
\end{equation*}
$$

for $l=0,1, \ldots, k_{j}-1$, where $c_{l}^{j+1}=\left\|\mathcal{C}_{k_{j}+l}^{j+1}\right\| /\left\|\mathcal{C}_{l}^{j}\right\|$ which is the same as in equation (2).

$$
\begin{equation*}
L_{j}(x):=\frac{1}{k_{j}} \sum_{l=0}^{k_{j}-1} \frac{\mathcal{D}_{l}^{j}(x)}{\mathcal{D}_{l}^{j}\left(h_{j+1}\right)}, \tag{15}
\end{equation*}
$$

and introduce the matrix

$$
M:=\operatorname{diag}\left\{Q_{j}(1), Q_{j}(\omega), \ldots, Q_{j}\left(\omega^{k_{j}-1}\right)\right\}
$$

where

$$
\begin{equation*}
Q_{j}(z):=\sum_{k=0}^{k_{j}-1}\left\langle L_{j}(\cdot), L_{j}\left(\cdot-k h_{j}\right)\right| z^{k} . \tag{16}
\end{equation*}
$$

The dual function of L_{j} is defined by the equation

$$
\begin{equation*}
\widetilde{L}_{j}(x):=\sum_{v=0}^{k_{j}-1} d_{j, v} L_{j}\left(x-v h_{j}\right) \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{j, v}:=\frac{1}{k_{j}} \sum_{l=0}^{k_{j}-1}\left(Q_{j}\left(\omega^{l}\right)\right)^{-1} \omega^{-l v} . \tag{18}
\end{equation*}
$$

As for the localization of \widetilde{L}_{j}, we have the following theorem.
Theorem 3.1. Under the conditions (4) and (5), we have that

$$
\operatorname{Var}\left(\widetilde{L}_{j}\right)=\mathrm{O}\left(\frac{1}{\sqrt{k_{j}}}\right), \quad j \rightarrow \infty
$$

To estimate the localization of \tilde{L}_{j}, we have to establish some lemmas.
Lemma 3.1. Let \widetilde{L}_{j} be defined as in (17), then

$$
\begin{equation*}
\left\|\widetilde{L}_{j}\right\|^{2}=\frac{1}{k_{j}} \sum_{l=0}^{k_{j}-1}\left(\overline{Q_{j}\left(\omega^{l}\right)}\right)^{-1} \tag{19}
\end{equation*}
$$

Proof. This result follows by a direct computation with equations (16)-(18), we leave the details to the reader.

In our next result we give an alternative expression for $\left\|\widetilde{L}_{j}\right\|$.

Lemma 3.2.

$$
\begin{equation*}
\left\|\widetilde{L}_{j}\right\|=\left\{\sum_{l=0}^{k_{j}-1} \frac{\left(s_{l}^{j+1} q_{k_{j}+l}^{j+1}+s_{k_{j}+l}^{j+1} q_{l}^{j+1}\right)^{2}}{q_{l}^{j+1} q_{k_{j}+l}^{j+1}\left(q_{l}^{j+1}+q_{k_{j}+l}^{j+1}\right)}\right\}^{1 / 2} \tag{20}
\end{equation*}
$$

where s_{r} and q_{r} are given in equation (6).
Proof. Since $Q_{j}(z)=\sum_{v=0}^{k_{j}-1} q_{j, v} z^{v}$, we calculate $q_{j, v}:=\left\langle L_{j}(\cdot), L_{j}\left(\cdot-v h_{j}\right)\right\rangle$, by using the formula (15). Specifically, we have that

$$
q_{j, v}=\frac{1}{k_{j}^{2}} \sum_{l, k=0}^{k_{j}-1} \frac{1}{\mathcal{D}_{l}^{j}\left(h_{j+1}\right) \overline{\mathcal{D}_{k}^{j}\left(h_{j+1}\right)}} I_{l, k}^{v},
$$

where $I_{l, k}^{v}$ is defined to be

$$
I_{l, k}^{v}:=\left\langle\mathcal{D}_{l}^{j}(\cdot), \mathcal{D}_{k}^{j}\left(\cdot-v h_{j}\right)\right\rangle .
$$

From definition (14) a direct computation leads to the formula

$$
I_{l, k}^{\nu}=\mathrm{e}^{-\mathrm{i} l \nu h_{j}}\left(\frac{\left\|\mathcal{C}_{\mathcal{K}_{j}+1}^{j+1}\right\|^{2}}{\left\|\mathcal{C}_{l}^{j}\right\|^{2}}+\frac{\left\|\mathcal{C}_{l}^{j+1}\right\|^{2}}{\left\|\mathcal{C}_{l}^{j}\right\|^{2}}\right) \delta_{l, k},
$$

which we substitute into $q_{j, v}$ to obtain

$$
q_{j, v}=\frac{1}{k_{j}^{2}} \sum_{\tilde{l}=0}^{k_{j}-1} \frac{\left\|\mathcal{C}_{k_{j}+\tilde{l}}^{j+1}\right\|^{2}+\left\|\mathcal{C}_{\tilde{l}}^{j+1}\right\|^{2}}{\left(\left\|\mathcal{C}_{k_{j}+\tilde{l}}^{j+1}\right\| \widetilde{\mathcal{C}}_{\tilde{l}}^{j+1}(0)+\left\|\mathcal{C}_{\tilde{l}}^{j+1}\right\| \widetilde{\mathcal{C}}_{k_{j}+\tilde{l}}^{j+1}(0)\right)^{2}} \cdot \mathrm{e}^{-\mathrm{i} \tilde{l} \nu h_{j}}
$$

where we use the fact that

$$
\mathcal{D}_{l}^{j}\left(h_{j+1}\right)=c_{l}^{j+1} \widetilde{\mathcal{C}}_{l}^{j+1}(0)+c_{k_{j}+l}^{j+1} \widetilde{\mathcal{C}}_{k_{j}+l}^{j+1}(0)
$$

Therefore, we have that

$$
Q_{j}\left(\omega^{l}\right)=\sum_{k=0}^{k_{j}-1} q_{j, k} \omega^{l k}=\frac{1}{k_{j}} \frac{\left\|\mathcal{C}_{k_{j}+l}^{j+1}\right\|^{2}+\left\|\mathcal{C}_{l}^{j+1}\right\|^{2}}{\left.\left\|\mathcal{C}_{k_{j}+l}^{j+1}\right\| \widetilde{\mathcal{C}}_{l}^{j+1}(0)+\left\|\mathcal{C}_{l}^{j+1}\right\| \widetilde{\mathcal{C}}_{k_{j}+l}^{j+1}(0)\right)^{2}}
$$

and so by (19) we obtain the formula

$$
\left\|\widetilde{L}_{j}\right\|^{2}=\sum_{l=0}^{k_{j}-1} \frac{\left(\left\|\mathcal{C}_{k_{j}+l}^{j+1}\right\| \widetilde{\mathcal{C}}_{l}^{j+1}(0)+\left\|\mathcal{C}_{l}^{j+1}\right\| \widetilde{\mathcal{C}}_{k_{j}+l}^{j+1}(0)\right)^{2}}{\left\|\mathcal{C}_{k_{j}+l}^{j+1}\right\|^{2}+\left\|\mathcal{C}_{l}^{j+1}\right\|^{2}}
$$

Since $\left\|\mathcal{C}_{v}^{j+1}\right\|=k_{j+1}\left(q_{v}^{j+1}\right)^{1 / 2}$ and $\widetilde{\mathcal{C}}_{v}^{j+1}(0)=s_{v}^{j+1} /\left(q_{v}^{j+1}\right)^{1 / 2}$, this formula yields the desired conclusion.

Lemma 3.3. For $j \in \mathbb{Z}_{+}$, we have that

$$
\begin{equation*}
k_{j} \leqslant\left\|\tilde{L}_{j}\right\|^{2} \leqslant \frac{4}{c^{2}} k_{j} \tag{21}
\end{equation*}
$$

where c is a positive constant such that

$$
\inf \left\{\frac{d_{l}}{s_{l}^{j}}:|l| \leqslant k_{j-1}, j \in \mathbb{Z}_{+}\right\} \geqslant c
$$

Proof. From (20) and (6) we have that

$$
\left\|\widetilde{L}_{j}\right\|^{2} \leqslant 2 \sum_{l=-k_{j-1}}^{k_{j-1}-1}\left(\frac{\left(s_{l}^{j+1}\right)^{2}}{d_{-l}^{2}}+\frac{\left(s_{k_{j}+l}^{j+1}\right)^{2}}{d_{-k_{j}+l}^{2}}\right)
$$

According to the hypothesis of the lemma we obtain that

$$
\left\|\widetilde{L}_{j}\right\|^{2} \leqslant \frac{4}{c^{2}} k_{j}
$$

On the other hand, from (20) we have that

$$
\left\|\widetilde{L}_{j}\right\|^{2} \geqslant \sum_{l=0}^{k_{j}-1} \frac{\left(\sqrt{q_{k_{j}+l}^{j+1}}+\sqrt{q_{l}^{j+1}} q_{k_{j}+l}^{j+1} / q_{l}^{j+1}\right)^{2}}{q_{k_{j}+l}^{j+1}\left(1+q_{k_{j}+l}^{j+1} / q_{l}^{j+1}\right)} \geqslant k_{j}
$$

from which we conclude that (21) holds.
Now, we consider the quantity $\tilde{\lambda}_{j}$, where

$$
\tilde{\lambda}_{j}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i} t}\left|\widetilde{L}_{j}(t)\right|^{2} \mathrm{~d} t
$$

From (17) and (18) we have that

$$
\tilde{\lambda}_{j}=\frac{1}{k_{j}^{2}} \sum_{v_{1}, v_{2}=0}^{k_{j}-1} \sum_{l_{1}, l_{2}=0}^{k_{j}-1}\left(Q_{j}\left(\omega^{l_{1}}\right) Q_{j}\left(\omega^{l_{2}}\right)\right)^{-1} \omega^{l_{2} v_{2}-l_{1} v_{1}} p_{v_{1}, v_{2}}
$$

where

$$
\begin{aligned}
p_{v_{1}, v_{2}} & :=\left\langle\mathrm{e}^{\mathrm{i} \cdot} L_{j}\left(\cdot-v_{1} h_{j}\right), L_{j}\left(\cdot-v_{2} h_{j}\right)\right\rangle \\
& =\frac{1}{k_{j}^{2}} \sum_{l, k=0}^{k_{j}-1} \frac{1}{\mathcal{D}_{l}^{j}\left(h_{j+1}\right) \overline{\mathcal{D}_{k}^{j}\left(h_{j+1}\right)}}\left(J_{1}+J_{2}+J_{3}+J_{4}\right) \mathrm{e}^{\mathrm{i} h_{j}\left(l v_{1}-k v_{2}\right)} \mathrm{e}^{\mathrm{i} h_{j+1}(l-k)}, \\
J_{1} & :=\frac{c_{l}^{j+1} c_{k}^{j+1}}{\left\|\mathcal{C}_{l}^{j+1}\right\|\left\|\mathcal{C}_{k}^{j+1}\right\|} \widetilde{J}_{1}, \quad J_{2}:=-\frac{c_{l}^{j+1} c_{k_{j}+k}^{j+1}}{\left\|\mathcal{C}_{l}^{j+1}\right\|\left\|\mathcal{C}_{k_{j}+k}^{j+1}\right\|} \widetilde{J}_{2}, \\
J_{3} & :=-\frac{c_{k_{j}+l}^{j+1} c_{k}^{j+1}}{\left\|\mathcal{C}_{k_{j}+l}^{j+1}\right\|\left\|\mathcal{C}_{k}^{j+1}\right\|} \widetilde{J}_{3}, \quad J_{4}:=\frac{c_{k_{j}+l}^{j+1} c_{k_{j}+k}^{j+1}}{\left\|\mathcal{C}_{k_{j}+l}^{j+1}\right\|\left\|\mathcal{C}_{k_{j}+k}^{j+1}\right\|} \widetilde{J}_{4} \\
\widetilde{J}_{1} & :=k_{j+1}^{2} \sum_{n \in \mathbb{Z}} d_{n k_{j+1}-l} d_{n k_{j+1}-k} \delta_{l, k+1}, \\
\widetilde{J}_{2} & :=k_{j+1}^{2} \sum_{n \in \mathbb{Z}} d_{n k_{j+1}-l} d_{(n+1) k_{j+1}-k-k_{j}} \delta_{l, 0} \delta_{k, k_{j}-1}, \\
\widetilde{J}_{3} & :=k_{j+1}^{2} \sum_{n \in \mathbb{Z}} d_{n k_{j+1}-k_{j}-l} d_{n k_{j+1}-k} \delta_{l, 0} \delta_{k, k_{j}-1},
\end{aligned}
$$

and

$$
\widetilde{J}_{4}:=k_{j+1}^{2} \sum_{n \in \mathbb{Z}} d_{n k_{j+1}-k_{j}-l} d_{n k_{j+1}-k_{j}-k} \delta_{l, k+1}
$$

Therefore, we obtain that

$$
\tilde{\lambda}_{j}=E_{1}+E_{2}+E_{3}+E_{4}
$$

where

$$
\begin{align*}
& E_{1}:=\sum_{k=0}^{k_{j}-1} \frac{\mathrm{e}^{\mathrm{i} h_{j+1}} \Delta_{k+1} \Delta_{k} v_{k+1, k}^{j+1}}{q_{k_{j}+k}^{j+1} q_{k_{j}+k+1}^{j+1}} m_{k+1}^{j+1} m_{k}^{j+1}, \tag{22}\\
& E_{2}:=\mathrm{e}^{\mathrm{i} h_{j+1}} \frac{\Delta_{0} \Delta_{k_{j}-1}}{q_{k_{j}}^{j+1} q_{k_{j+1}-1}^{j+1}} v_{0, k_{j+1}-1} m_{0}^{j+1} m_{k_{j+1}-1}^{j+1}, \tag{23}\\
& E_{3}:=\mathrm{e}^{\mathrm{i} h_{j+1}} \frac{\Delta_{0} \Delta_{k_{j}-1}}{q_{k_{j}}^{j+1} q_{k_{j+1}-1}^{j+1}} v_{k_{j}, k_{j}-1} m_{k_{j}}^{j+1} m_{k_{j}-1}^{j+1} \tag{24}
\end{align*}
$$

and

$$
\begin{equation*}
E_{4}:=\sum_{k=0}^{k_{j}-1} \frac{\mathrm{e}^{\mathrm{i} h_{j+1}} \Delta_{k+1} \Delta_{k} v_{k_{j}+k+1, k_{j}+k}^{j+1}}{q_{k_{j}+k}^{j+1} q_{k_{j}+k+1}^{j+1}} m_{k_{j}+k+1}^{j+1} m_{k_{j}+k}^{j+1}, \tag{25}
\end{equation*}
$$

where $\Delta_{l}:=m_{l}^{j+1} s_{l}^{j+1}+m_{k_{j}+l}^{j+1} s_{k_{j}+l}^{j+1}$.
To simplify our notation, we shall now delete the superscript $j+1$ as the context makes its presence clear. By using (20), (22)-(25), we have that

$$
\begin{equation*}
\left\|\widetilde{L}_{j}\right\|^{2}-\left|\tilde{\lambda}_{j}\right|=\sum_{l=0}^{k_{j}-1}\left\{\frac{\left(q_{k_{j}+l} s_{l}+q_{l} s_{k_{j}+l}\right)^{2}}{q_{l} q_{k_{j}+l}\left(q_{l}+q_{k_{j}+l}\right)}-\frac{\Delta_{l+l} \Delta_{l}}{q_{k_{j}+l} q_{k_{j}+l+1}} \nabla_{1}\right\}-\frac{\Delta_{0} \Delta_{k_{j}-1}}{q_{k_{j}} q_{k_{j+1}-1}} \nabla_{2} \tag{26}
\end{equation*}
$$

where

$$
\nabla_{1}:=v_{l+1, l} m_{l} m_{l+1}+v_{k_{j}+l+1, k_{j}+l} m_{k_{j}+l+1} m_{k_{j}+l}
$$

and

$$
\nabla_{2}:=v_{0, k_{j+1}-1} m_{0} m_{k_{j+1}-1}+v_{k_{j}, k_{j}-1} m_{k_{j}} m_{k_{j}-1} .
$$

To estimate the right-hand side of equation (26) we set

$$
x_{l}:=m_{l} s_{l}, \quad y_{l}:=m_{l} m_{l+1} v_{l, l+1}
$$

and observe that

$$
\left\|\widetilde{L}_{j}\right\|^{2}-\left|\tilde{\lambda}_{j}\right| \leqslant \sum_{l=0}^{k_{j}-1}\left[\frac{\left(x_{l}+x_{l+k_{j}}\right)^{2}}{q_{l}+q_{k_{j}}+l}-\frac{\left(x_{l}+x_{l+k_{j}}\right)\left(x_{l+1}+x_{l+1+k_{j}}\right)\left(y_{l}+y_{l+k_{j}}\right)}{q_{l+k_{j}} q_{l+1+k_{j}}}\right]
$$

which gives the estimate

$$
\begin{equation*}
\left\|\widetilde{L}_{j}\right\|^{2}-\tilde{\lambda}_{j} \leqslant I_{1}+I_{2}+I_{3}+I_{4} \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{1}:=\sum_{l=0}^{k_{j}-1}\left(\frac{x_{l}^{2}}{q_{l}+q_{l+k_{j}}}-\frac{x_{l} x_{l+1} y_{l}}{q_{l+k_{j}} q_{l+1+k_{j}}}\right), \tag{28}
\end{equation*}
$$

$$
\begin{align*}
& I_{2}:=\sum_{l=0}^{k_{j}-1}\left(\frac{x_{l+k_{j}}^{2}}{q_{l}+q_{l+k_{j}}}-\frac{x_{l+k_{j}} x_{l+1+k_{j}} y_{l}}{q_{l+k_{j}} q_{l+1+k_{j}}}\right) \tag{29}\\
& I_{3}:=\sum_{l=0}^{k_{j}-1}\left(\frac{x_{l} x_{l+k_{j}}}{q_{l}+q_{l+k_{j}}}-\frac{x_{l} x_{l+1+k_{j}} y_{l}}{q_{l+k_{j}} q_{l+1+k_{j}}}\right) \tag{30}
\end{align*}
$$

and

$$
\begin{equation*}
I_{4}:=\sum_{l=0}^{k_{j}-1}\left(\frac{x_{l} x_{l+k_{j}}}{q_{l}+q_{l+k_{j}}}-\frac{x_{l+k_{j}} x_{l+1} y_{l}}{q_{l+k_{j}} q_{l+1+k_{j}}}\right) \tag{31}
\end{equation*}
$$

We establish the following results.
Lemma 3.4. Under the assumption (4) and (5) there exists a constant c such that for all $j \in \mathbb{Z}_{+}$, we have

$$
\begin{equation*}
\left|I_{1}\right| \leqslant c k_{j}^{1 / 2} \quad \text { and } \quad\left|I_{2}\right| \leqslant c k_{j}^{1 / 2} . \tag{32}
\end{equation*}
$$

Proof. From (28) we obtain that

$$
\left|I_{1}\right| \leqslant \sum_{l=0}^{k_{j}-1} \frac{s_{l}}{\left(q_{l} q_{l+k_{j}}\right)^{1 / 2}}\left|m_{l} s_{l}-\frac{m_{l+1}^{2} m_{l} s_{l+1} v_{l, l+1}}{q_{l+1+k_{j}}}\right| .
$$

Consequently, using the condition of (5), we have that

$$
\left|I_{1}\right| \leqslant \frac{1}{c} \sum_{l=0}^{k_{j}-1} \frac{s_{l}}{q_{l}^{1 / 2}}\left|1-\frac{s_{l+1}}{s_{l}}\left(\frac{q_{l}}{q_{l+1}}\right)^{1 / 2} \frac{v_{l, l+1}}{\left(q_{l} q_{l+1}\right)^{1 / 2}}\right| .
$$

By the Cauchy-Schwarz inequality and the assumption (5), we obtain the inequality

$$
\begin{equation*}
\left|I_{1}\right| \leqslant \frac{k_{j}^{1 / 2}}{c^{2}}\left[\sum_{l=0}^{k_{j}-1}\left|1-\frac{s_{l+1}}{s_{l}} \frac{v_{l l+1}}{q_{l+1}}\right|^{2}\right]^{1 / 2} \tag{33}
\end{equation*}
$$

We shall establish the existence of the constants c_{1} and c_{2} such that for all $j \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
\sum_{l=0}^{k_{j}-1}\left(1-\frac{s_{l+1}}{s_{l}}\right)^{2}<c_{1} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{l=0}^{k_{j}-1}\left(1-\frac{v_{l, l+1}}{q_{l}}\right)^{2}<c_{2} \tag{35}
\end{equation*}
$$

In fact, from equations (5) and (6), we obtain that

$$
\sum_{l=0}^{k_{j}-1}\left(1-\frac{s_{l+1}}{s_{l}}\right)^{2} \leqslant \sum_{l=0}^{k_{j}-1} \sum_{n \in \mathbb{Z}}\left(1-\frac{d_{n k_{j+1}-l-1}}{d_{n k_{j+1}-l}}\right)^{2}
$$

which proves (34). As for the estimate (35), we first observe that

$$
\sum_{l=0}^{k_{j}-1}\left(1-\frac{v_{l, l+1}}{q_{l+1}}\right)^{2}=\sum_{l=0}^{k_{j}-1} \frac{\left[\sum_{n} d_{n k_{j+1}-l-1}^{2}\left(1-d_{n k_{j+1}-l} / d_{n k_{j+1}-l-1}\right)\right]^{2}}{q_{l+1}^{2}}
$$

that is,

$$
\sum_{l=0}^{k_{j}-1}\left(1-\frac{v_{l, l+1}}{q_{l+1}}\right)^{2} \leqslant \sum_{l=0}^{k_{j}-1} \sum_{n}\left(1-\frac{d_{n k_{j+1}-l}}{d_{n k_{j+1}-l-1}}\right)^{2} \leqslant c_{2}
$$

from which we obtain (35). Also, using the Cauchy-Schwarz inequality, we obtain that

$$
\left[\sum_{l=0}^{k_{j}-1}\left|1-\frac{s_{l+1}}{s_{l}} \frac{v_{l, l+1}}{q_{l+1}}\right|^{2}\right]^{1 / 2} \leqslant\left[2 \sum_{l=0}^{k_{j}-1}\left(1-\frac{s_{l+1}}{s_{l}}\right)^{2}+2 \sum_{l=0}^{k_{j}-1}\left(\frac{s_{l+1}}{s_{l}}\right)^{2}\left(1-\frac{v_{l, l+1}}{q_{l+1}}\right)^{2}\right]^{1 / 2}
$$

Therefore from (34), (35) and the boundedness of the sequence $\left\{s_{l+1} / s_{l}: l \in \mathbb{Z}_{+}\right\}$, we have that

$$
\begin{equation*}
\left[\sum_{l=0}^{k_{j}-1}\left|1-\frac{s_{l+1}}{s_{l}} \frac{v_{l, l+1}}{q_{l+1}}\right|^{2}\right]^{1 / 2} \leqslant c \tag{36}
\end{equation*}
$$

We now employ (33) and (36) to complete the proof of the first inequality of (32).
Now, we start the proof of the second assertion. First, we observe that

$$
\left|I_{2}\right| \leqslant \sum_{l=0}^{k_{j}-1} \frac{\left(m_{l+k_{j}} s_{l+k_{j}}\right)^{2}}{q_{l}+q_{l+k_{j}}}\left[1-\frac{q_{l}+q_{l+k_{j}}}{q_{l+k_{j}} q_{l+1+k_{j}}} \cdot \frac{x_{l+1+k_{j}} y_{l}}{x_{l+k_{j}}}\right] \leqslant \Omega_{1} \Omega_{2}
$$

where

$$
\Omega_{1}:=\left[\sum_{l=0}^{k_{j}-1}\left(\frac{\left(m_{l+k_{j}} s_{l+k_{j}}\right)^{2}}{q_{l}+q_{l+k_{j}}}\right)^{2}\right]^{1 / 2}
$$

and

$$
\Omega_{2}:=\left[\sum_{l=0}^{k_{j}-1}\left(1-\frac{q_{l}+q_{l+k_{j}}}{q_{l+k_{j}} q_{l+1+k_{j}}} \cdot \frac{x_{l+1+k_{j}} y_{l}}{x_{l+k_{j}}}\right)^{2}\right]^{1 / 2}
$$

By using (5) we have that

$$
\begin{equation*}
\Omega_{1} \leqslant\left[\sum_{l=0}^{k_{j}-1}\left(\frac{s_{l+k_{j}}^{2}}{q_{l+k_{j}}}\right)^{2}\right]^{1 / 2} \leqslant c k_{j}^{1 / 2}, \quad j \in \mathbb{Z}_{+} \tag{37}
\end{equation*}
$$

Similarly, we obtain that

$$
\Omega_{2} \leqslant \sqrt{2}\left(\Omega_{2,1}+\Omega_{2,2}\right)^{1 / 2}
$$

where

$$
\Omega_{2,1}:=\sum_{l=0}^{k_{j}-1}\left(1-\frac{m_{l+1+k_{j}}}{m_{l+k_{j}}}\right)^{2}
$$

and

$$
\Omega_{2,2}:=\sum_{l=0}^{k_{j}-1}\left(\frac{m_{l+1+k_{j}}}{m_{l+k_{j}}}\right)^{2}\left(1-\frac{s_{l+1+k_{j}}}{s_{l+k_{j}}} \frac{\left(q_{l}+q_{l+k_{j}}\right) y_{l}}{q_{l+k_{j}} q_{l+1+k_{j}}}\right)^{2}
$$

By using the formula given in [5, (4.8.12), p. 195], we have

$$
\Omega_{2,1} \leqslant \sum_{l=0}^{k_{j}-1}\left|1-\left(\frac{m_{l+1+k_{j}}}{m_{l+k_{j}}}\right)^{2}\right|^{2} \leqslant c
$$

We estimate $\Omega_{2,2}$ next. Specifically, we have that

$$
\Omega_{2,2} \leqslant c \sum_{l=0}^{k_{j}-1}\left(1-\frac{s_{l+1+k_{j}}}{s_{l+k_{j}}} \frac{\left(q_{l}+q_{l+k_{j}}\right) m_{l} m_{l+1} v_{l, l+1}}{q_{l+k_{j}} q_{l+1+k_{j}}}\right)^{2} \leqslant 2 c \Omega_{2,1}^{0}+2 c \Omega_{2,2}^{0},
$$

where

$$
\Omega_{2,1}^{0}:=\sum_{l=0}^{k_{j}-1}\left(1-\frac{s_{l+1+k_{j}}}{s_{l+k_{j}}}\right)^{2}
$$

and

$$
\Omega_{2,2}^{0}:=\sum_{l=0}^{k_{j}-1}\left[1-\frac{q_{l}+q_{l+k_{j}}}{q_{l+k_{j}} q_{l+1+k_{j}}} \frac{\left(q_{l+k_{j}} q_{l+1+k_{j}}\right)^{1 / 2}}{\left(q_{l} q_{l+1}\right)^{1 / 2}} v_{l, l+1}\right]^{2}
$$

By using the same method used to confirm (35), we have that $\Omega_{2,1}^{0}<c$. For the second inequality, one can also refer to [5, (4.8.16), p. 199], specifically, we have that

$$
\begin{aligned}
\Omega_{2,2}^{0} & \leqslant \sum_{l=0}^{k_{j}-1}\left[1-\frac{\left(q_{l+k_{j}} q_{l+1+k_{j}}\right)^{1 / 2}}{\left(q_{l} q_{l+1}\right)^{1 / 2}} \frac{v_{l, l+1}}{q_{l+1}}\right]^{2} \\
& \leqslant 2 \sum_{l=0}^{k_{j}-1}\left(1-\frac{m_{l}}{m_{l+1}}\right)^{2}+2 \sum_{l=0}^{k_{j}-1}\left(\frac{m_{l}}{m_{l+1}}\right)^{2}\left(1-\frac{v_{l, l+1}}{q_{l+1}}\right)^{2}
\end{aligned}
$$

from which the technique used to derive the inequality (37) and (35), yields the bound $\Omega_{2,2}^{0} \leqslant c$ thereby providing the inequality $\Omega_{2}<c$. This establishes the second inequality in (32).

Lemma 3.5. Under the conditions (4) and (5), there is a positive constant c such that for all $j \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
\left|I_{3}\right| \leqslant c k_{j}^{1 / 2}, \quad\left|I_{4}\right| \leqslant c k_{j}^{1 / 2} \tag{38}
\end{equation*}
$$

Proof. From the definition of x_{l} and y_{l}, we have that

$$
\left|I_{3}\right| \leqslant \sum_{l=0}^{k_{j}-1} \frac{s_{l} s_{l+k_{j}}}{2\left(q_{l} q_{l+k_{j}}\right)^{1 / 2}}\left\{1-\frac{m_{l+1+k_{j}} s_{l+1+k_{j}} m_{l} m_{l+1} v_{l, l+1}}{q_{l+1+k_{j}} m_{l+k_{j}} s_{l+k_{j}}}\right\}
$$

Consequently, the Cauchy-Schwarz inequality yields the bound

$$
\begin{aligned}
\left|I_{3}\right| & \leqslant\left\{\sum_{l=0}^{k_{j}-1}\left(\frac{s_{l} s_{l+k_{j}}}{2\left(q_{l} q_{l+k_{j}}\right)^{1 / 2}}\right)^{2}\right\}^{1 / 2}\left\{\sum_{l=0}^{k_{j}-1}\left[1-\frac{q_{l+k_{j}} s_{l+1+k_{j}} v_{l, l+1}}{q_{l+1+k_{j}} q_{l} s_{l+k_{j}}}\right]^{2}\right\}^{1 / 2} \\
& \leqslant c k_{j}^{1 / 2}\left\{\sum_{l=0}^{k_{j}-1}\left[1-\frac{s_{l+1+k_{j}}}{s_{l+k_{j}}}+\frac{s_{l+1+k_{j}}}{s_{l+k_{j}}}\left(1-\frac{q_{l+k_{j}}}{q_{l+1+k_{j}}} \frac{v_{l, l+1}}{q_{l}}\right)\right]^{2}\right\}^{1 / 2} \\
& \leqslant c k_{j}^{1 / 2}\left\{c+c \sum_{l=0}^{k_{j}-1}\left(1-\frac{q_{l+k_{j}}}{q_{l+1+k_{j}}} \frac{v_{l, l+1}}{q_{l}}\right)^{2}\right\}^{1 / 2}, \quad j \in \mathbb{Z}_{+}
\end{aligned}
$$

We use (5) and (37) to obtain that

$$
\left|I_{3}\right| \leqslant c k_{j}^{1 / 2}, \quad j \in \mathbb{Z}_{+}
$$

since the sequence $\left(q_{l+k_{j}} / q_{l+1+k_{j}}\right)^{2}$ is bounded for $j \in \mathbb{Z}_{+}$, and

$$
\begin{aligned}
& \sum_{l=0}^{k_{j}-1}\left(1-\frac{q_{l+k_{j}}}{q_{l+1+k_{j}}} \frac{v_{l, l+1}}{q_{l}}\right)^{2} \\
& \quad=\sum_{l=0}^{k_{j}-1}\left[1-\frac{q_{l+k_{j}}}{q_{l+1+k_{j}}}+\frac{q_{l+k_{j}}}{q_{l+1+k_{j}}}\left(1-\frac{v_{l, l+1}}{q_{l}}\right)\right]^{2} \\
& \quad \leqslant 2 \sum_{l=0}^{k_{j}-1}\left(1-\frac{q_{l+k_{j}}}{q_{l+1+k_{j}}}\right)^{2}+2 \sum_{l=0}^{k_{j}-1}\left(\frac{q_{l+k_{j}}}{q_{l+1+k_{j}}}\right)^{2}\left(1-\frac{v_{l, l+1}}{q_{l}}\right)^{2}
\end{aligned}
$$

Now, we prove the second inequality in (38). To this end, we note that

$$
\begin{aligned}
\left|I_{4}\right| & =\sum_{l=0}^{k_{j}-1} \frac{x_{l} x_{l+k_{j}}}{q_{l}+q_{l+k_{j}}}\left|1-\frac{\left(q_{l}+q_{l+k_{j}}\right) x_{l+1} y_{l}}{x_{l} q_{l+k_{j}} q_{l+1+k_{j}}}\right| \\
& \leqslant \sum_{l=0}^{k_{j}-1} \frac{s_{l} s_{l+k_{j}}}{q_{l}+q_{l+k_{j}}}\left|1-\frac{s_{l+1}}{s_{l}} \frac{q_{l}}{q_{l+1}} \frac{v_{l, l+1}}{q_{l}}\right| .
\end{aligned}
$$

We estimate this sum just as above and conclude that

$$
\left|I_{4}\right| \leqslant c k_{j}^{1 / 2}, \quad j \in \mathbb{Z}_{+}
$$

Proof of theorem 3.1. The proof follows directly from (27)-(31) and lemmas 3.3-3.5.

Acknowledgement

The authors would like to thank Professor Charles Micchelli for his fruitful and patient suggestion on improving the presentation of this paper.

References

[1] H.L. Chen, Antiperiodic wavelets, J. Comput. Math. 14(1) (1996) 32-39.
[2] H.L. Chen, Wavelets from trigonometric spline approach, Approx. Theory Appl. 12(2) (1996) 99-110.
[3] H.L. Chen, Periodic orthonormal quasi-wavelet bases, Chinese Sci. Bull. 41(7) (1996) 552-554.
[4] H.L. Chen, Wavelets on the unit circle, Result Math. 31 (1997) 322-336.
[5] H.L. Chen, Complex Harmonic Splines, Periodic Quasi-Wavelets, Theory and Applications (Kluwer Academic, Dordrecht, 2000).
[6] H.L. Chen and D.F. Li, Construction of multidimensional biorthogonal periodic multiwavelets, Chinese J. Contemp. Math. 21(3) (2000) 223-232.
[7] H.L. Chen, X.Z. Liang and G.R. Jin, Bivariate box-spline wavelets, in: Harmonic Analysis in China, eds. M.T. Cheng et al. (Kluwer Academic, Dordrecht, 1995) pp. 183-196.
[8] H.L. Chen, X.Z. Liang, S.L. Peng and S.L. Xiao, Real valued periodic wavelets: construction and the relation with Fourier series, J. Comput. Math. 17(5) (1999) 509-522.
[9] H.L. Chen and S.L. Peng, Solving integral equations with logarithmic kernel by using periodic quasiwavelet, J. Comput. Math. 18(5) (2000) 387-512.
[10] H.L. Chen and S.L. Peng, An $\mathrm{O}(N)$ quasi-wavelet algorithm for a second kind boundary integral equation with a logarithmic kernel, J. Comput. Math. 18(5) (2000) 487-512.
[11] H.L. Chen and S.L. Peng, Local properties of periodic cardinal interpolatory function, Acta Math. Sinica (English Series) 17(4) (2001) 613-620.
[12] H.L. Chen and S.L. Xiao, Periodic cardinal interpolatory wavelets, Chinese Ann. Math. 198(2) (1998) 133-142.
[13] C.K. Chui and H.N. Mhashar, On trigonometric wavelets, Constr. Approx. 9 (1993) 167-190.
[14] I. Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series on Applied Mathematics, Vol. 61 (SIAM, Philadelphia, PA, 1992).
[15] N. Getz, A fast discrete periodic wavelet transform, Memorandum No. UCB/ERL M92/138 (1992).
[16] S.S. Goh and K.M. Teo, An algorithm for constructing multidimensional biorthogonal periodic multiwavelets, Proc. Edinburgh Math. Soc. 43 (2000) 633-649.
[17] S.S. Goh and C.H. Yeo, Uncertainty products of local periodic wavelets, Adv. Comput. Math. 13 (2000) 319-333.
[18] Y.W. Koh, S.L. Lee and H.H. Tan, Periodic orthogonal splines and wavelets, Appl. Comput. Harmon. Anal. 2 (1995) 201-218.
[19] D.F. Li, S.L. Peng and H.L. Chen, The local property of a class of periodic wavelets, Acta Math. Sinica 44(6) (2001).
[20] W. Lin and L. Mingsheng, On semi-orthogonal wavelet bases of periodic splines and their duals, Differential Equations Control Theory 10 (1995) 503-520.
[21] W. Lin and Y.J. Shen, Wavelet solution to the natural integral equations of the plane elasticity, in: Proc. of the 2nd ISAAC Congress (Kluwer Academic, Dordrecht, 2000) pp. 1417-1480.
[22] Y. Meyer, Onedelletes et Operateurs (Herman, Paris, 1990).
[23] C.A. Micchelli, A tutorial on multivariate wavelet decomposition, in: Approximation Theory, Spline Functions and Applications, ed. S.P. Singh (Kluwer Academic, Dordrecht, 1992) pp. 191-212.
[24] C.A. Micchelli and T. Sauer, One the regularity of multiwavelets, Adv. Comput. Math. 7 (1997) 455545.
[25] F.J. Narcowich and J.D. Ward, Wavelets associated with periodic basis functions, Appl. Comput. Harmon. Anal. 3 (1996) 40-56.
[26] A.P. Petukhov, Trigonometric wavelet bases, Preprint.
[27] A.P. Petukhov, Periodic wavelets, Sbornik Math. 188(10) (1997) 69-94.
[28] G. Plonka and M. Tasche, Periodic spline wavelets, Technical Report 93/94, FB Mathematik, Universität Rostock, Germany (1993).
[29] G. Plonka and M. Tasche, A unified approach to periodic wavelets, in: Wavelets: Theory, Algorithms and Applications, eds. C.K. Chui, L. Montefusco and L. Puccio (Academic Press, San Diego, 1994) pp. 137-151.
[30] G. Plonka and M. Tasche, On the computation of periodic wavelets, Appl. Comput. Harmon. Anal. 2 (1995) 1-14.
[31] I.J. Schoenberg, Cardinal interpolatory and spline functions II: Interpolatory of data of power growth, J. Approx. Theory 6 (1972) 404-420.
[32] S. Shi, On orthonormal splines wavelets of multi-knots in periodic case, in: Lecture Notes in Pure and Applied Mathematics, Vol. 202, eds. Z.Y. Chen, Y.S. Li, C.A. Micchelli and Y.S. Xu (Marcel Dekker, New York, 1999) pp. 491-505.
[33] M. Skopina, Multiresolution analysis of periodic functions, East J. Approx. 3(2) (1997) 203-224.
[34] G. Strang and V. Strela, Short wavelets and matrix dilation equations, IEEE Trans. Signal Processing 43 (1995) 108-115.
[35] V. Strela and G. Strang, Finite element multiwavelets, in: Proc. of NATO Conf., Maratea (Kluwer Academic, Boston, 1995).
[36] Q. Sun, Refinable functions with compact support, J. Approx. Theory 86(2) (1996) 240-252.
[37] V.A. Zheludev, Operational calculus connected with periodic splines, Dokl. Akad. Nauk SSSR 313(6) (1990) 1309-1315.
[38] V.A. Zheludev, Periodic splines and wavelets, in: Proc. of the Conf. on Math. Analysis and Signal Processing, Cairo, 2-9 January 1994.
[39] V.A. Zheludev, Periodic splines, harmonic analysis and wavelets, in: Signal and Image Representation in Combined Spaces, eds. J. Zeevi and R. Coifman (1996) pp. 1-43.
[40] V.A. Zheludev and A.Z. Averbuch, Construction of biorthogonal discrete wavelet transform using interpolatory splines (to appear).

[^0]: * Supported by a research grant of Prof. Y. Xu from the program "Hundreds of Distinguished Young Scientists" of the Chinese Academy of Sciences.

