
Advances in Computational Mathematics 19: 195–210, 2003.
 2003 Kluwer Academic Publishers. Printed in the Netherlands.

Localization of dual periodic scaling and wavelet functions

Han-Lin Chen a,∗ and Si-Long Peng b

a Institute of Mathematics, Chinese Academy of Sciences, 100080, Beijing, P.R. China
E-mail: chen@math03.math.ac.cn

b Institute of Automation, Chinese Academy of Sciences, 100080, Beijing, P.R. China
E-mail: silong.peng@mail.ia.ac.cn

Received 2 November 2001; accepted 25 October 2002
Communicated by C.A. Micchelli

In 1996, we constructed periodic interpolatory scaling functions ϕj , wavelet functions Lj
and their dual basis ϕ̃j and L̃j with properties such as symmetry, biorthogonality, any order
of smoothness, real-valuedness, explicit expressions and interpolatory. We proved the local-
ization of ϕj in 1997, and in 1998 with Li proved the localization of Lj . In this paper we shall
give a detailed proof of the localization for the dual functions ϕ̃j and L̃j .
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1. Introduction

Periodic wavelets were first studied in the book of Meyer [22] and Daubechies [14].
Subsequently, many researchers contributed to the development of this subject, which we
have documented in our reference list.

It is well known that we cannot have a univariate wavelet which is simultane-
ously orthogonal, compactly supported, symmetric and continuous. To overcome this
difficulty, some efforts have been devoted to constructing multiwavelets [24,34,35] or
wavelets with dilation m, m > 2 [23,36]. These wavelets usually increase the compu-
tational cost or lack other desirable properties. For this reason, our interest turned to
periodic wavelets.

In 1996, we constructed periodic interpolatory wavelets [12] and proved that they
have the following properties: explicit representation, symmetry, any order of smooth-
ness, biorthogonality, real-valued and interpolatory. In 1997, we proved the localization
of the periodic scaling function by two different approaches [11]. Following the method
in [11], in 1998, we proved the localization of the periodic interpolating wavelet [19].
In this paper, we shall give a detailed proof of the localization of the dual func-
tions.
∗ Supported by a research grant of Prof. Y. Xu from the program “Hundreds of Distinguished Young

Scientists” of the Chinese Academy of Sciences.
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We consider the localization of function in one of the following two ways:

D1. The functions fj decays exponentially in one period of fj as j tends to infinity,
where j is the level of scaling.

D2. The circular variance of fj , denoted by Var(fj ), tends to zero as j tends to infinity.

Recall that Var(f ) is defined as follows: For a T -periodic continuous differentiable
function f whose L2 norm is one, we set

τ(f ) :=
∫ T

0
ei(2π/T )t

∣∣f (t)∣∣2 dt

and

Var(f ) := 1 − ∣∣τ(f )∣∣.
The size of 1 − |τ(f )| is a good measure of how localized |f |2 is about τ(f ). For
example, if |f (t)|2 approaches a point mass located at t0, then τ(f ) approaches eit0 , and
1 − |τ(f )| approaches zero. Conversely, if 1 − |τ(f )| = 0, then |f |2 is the distribution
corresponding to a point mass located at τ(f ) (see [5,19,25]). In this paper we prove the
localization of the dual functions in the sense of D2. In the next section, we review their
construction.

2. The properties of ϕ̃j

Before we construct the PISF we shall first recall the definition of the generators for
periodic multi-resolution analysis. Let j be a nonnegative integer, k a positive integer,
and kj = 2j k, hj = 2π/kj . Let G be a 2π -periodic, continuous differentiable function
whose Fourier coefficients are positive, i.e.,

G(x) =
∑
n∈Z

dne
inx, dn > 0, ∀n ∈ Z.

For l = 0, 1, . . . , kj − 1, we define

Cjl (x) :=
kj−1∑
k=0

G(x − khj)e
iklhj ,

from which it follows that

Cjl (x) = kj
∑
n∈Z

dnkj−le
i(nkj−l)x.

Let

C̃jl (x) := Cjl (x)
‖Cjl ‖

,
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where we use the norm ‖f ‖2 = (1/2π)
∫ 2π

0 |f (x)|2 dx for a periodic function f ∈
L2([0, 2π ]). Since Cjl (0) > 0, we can define the following periodic cardinal interpo-
latory scaling function (PISF)

ϕj(x) := 1

kj

kj−1∑
l=0

Cjl (x)
Cjl (0)

, j > 0, j ∈ Z.

The dual scaling function is defined by the equation

ϕ̃j (x) :=
kj−1∑
ν=0

cνj ϕj (x − νhj ), (1)

where

cνj =
kj−1∑
l=0

(aj,l)
−1ω−νl (2)

and

aj,l = (
∑

n∈Z
d2
nkj−l)

(
∑

m∈Z
dmkj−l)2

. (3)

Using the methods introduced in [5, p. 172] it follows that〈
ϕ̃j (· − khj), ϕ(· − lhj )

〉 = δk,l

for k, l = 0, 1, . . . , kj − 1.
We begin by studying the localization of ϕ̃j .

Theorem 2.1. Suppose that {
dn

dn+1
− 1: n ∈ Z

}
∈ l2 (4)

and there is a positive constant c such that

inf

{
dr

s
j
r

: |r| � kj−1, j ∈ Z+
}

� c, (5)

where sjr := ∑
n∈Z

dnkj−r , j ∈ Z+, then we have that

Var(ϕ̃j ) = O

(
1√
kj

)
, j → ∞.

For the proof of theorem 2.1, we have to establish some lemmas.
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Lemma 2.1. If ξ̃j is defined as

ξ̃j := 1

2π

∫ 2π

0
eix
∣∣ϕ̃j (x)∣∣2 dx,

then

ξ̃j =
kj−1∑
µ=0

sjµs
j

µ+1v
j

µ,µ+1

q
j
µq

j

µ+1

,

where

sjr =
∑
n∈Z

dnkj−r , qjr =
∑
n∈Z

d2
nkj−r , vjr,s =

∑
n∈Z

dnkj−rdnkj−s . (6)

Proof. The proof follows by a computation with equations (1)–(3). We leave the details
to the reader. �

Lemma 2.2. If η̃j is defined as

η̃j := ‖ϕ̃j‖2

then

η̃j =
kj−1∑
r=0

(s
j
r )

2

q
j
r

.

Proof. From (1), we have that

η̃j =
(
kj−1∑
ν,l=0

cνj c
l
j

)
I, (7)

where

I := 1

2π

∫ 2π

0
ϕ(x − νhj )ϕj (x − lhj ) dx.

A direct calculation leads to the formula

I =
kj−1∑
λ,µ=0

ei(λν−µl)hj

Cjλ(0)C
j
µ(0)

∑
m,n∈Z

dnkj−λdmkj−µδn,mδµ,λ,

that is,

I =
kj−1∑
λ=0

(
1

Cjλ(0)

)2

eiλ(ν−l)hj qjλ . (8)

Now, we substitute (8) into (7) to obtain the desired result. �
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Proof of theorem 2.1. By the definition of variance, we conclude that Var(ϕ̃j ) =
(1/η̃j )(η̃j − ξ̃j ). From lemmas 2.1 and 2.2, we obtain that

Var(ϕ̃j )= 1

η̃j

kj−1∑
r=0

(s
j
r )

2

q
j
r q

j

r+1

(
q
j

r+1 − s
j

r+1v
j

r,r+1

s
j
r

)

= 1

η̃j

kj−1∑
r=0

(s
j
r )

2

q
j
r q

j

r+1

[(
1 − s

j

r+1

s
j
r

)
v
j

r,r+1 − v
j

r,r+1 + q
j

r+1

]
,

and using the Cauchy–Schwarz inequality we have that

Var(ϕ̃j )�
1

η̃j

{
kj−1∑
r=0

[
(s
j
r )

2

q
j
r q

j

r+1

v
j

r,r+1

]2
}1/2{kj−1∑

r

(
1 − s

j

r+1

s
j
r

)2
}1/2

+ 1

η̃j

{
kj−1∑
r=0

(s
j
r )

4

(q
j
r )2

}1/2{kj−1∑
r=0

(
1

q
j

r+1

)2[∑
n

dnkj−r−1(dnkj−r−1 − dnkj−r )
]2
}1/2

= 1

η̃j
(T1T2 + T3T4).

We estimate T1, T2, T3 and T4 separately. By using (6) we obtain the estimate

T1 =
{
kj−1∑
r=0

[
(s
j
r )

2

q
j
r q

j

r+1

v
j

r,r+1

]2
}1/2

�
{
kj−1∑
r=0

(s
j
r )

4

q
j
r q

j

r+1

}1/2

and also use the notation in (6) to obtain that

T1 �
{ kj−1−1∑
r=−kj−1

(s
j
r )

4

d2−rd2
−r−1

}1/2

=
{ kj−1−1∑
r=−kj−1

(
s
j
r

d−r

)4(
d−r
d−r−1

)2
}1/2

.

By using the condition of the theorem, we provide the conclusion that

T1 � ck
1/2
j . (9)

We estimate T2 in the following way. By using its definition and the Cauchy–
Schwarz inequality, we have that

T2 �
{
kj−1∑
r=0

∑
n∈Z

d2
nkj−r

(
∑

n∈Z
dnkj−r)2

∑
n∈Z

(
dnkj−r−1

dnkj−r
− 1

)2
}1/2

,

and using the fact that all d’s are positive, we obtain the inequality

T2 �
{
kj−1∑
r=0

∑
n∈Z

(
dnkj−r−1

dnkj−r
− 1

)2
}1/2

.
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Hence from (4), we conclude that there is a positive constant c such that

T2 � c, (10)

while from (5), we obtain that

T3 =
{
kj−1∑
r=0

(s
j
r )

4

(q
j
r )2

}1/2

� ck
1/2
j . (11)

Similarly, we have that

T 2
4 �

kj−1∑
r=0

1

q
j

r+1

∑
n∈Z

(dnkj−r−1 − dnkj−r )
2 �

∑
m∈Z

(
1 − dm+1

dm

)2

,

and therefore from the condition of the theorem, there is a positive constant c > 0 such
that

T4 � c. (12)

This provides us, by (9)–(12), with the inequality

Var(ϕ̃j ) � c
1

η̃j

√
kj , (13)

where c is a constant independent of j . From lemma 2.2 we have that η̃j � kj , and
combined (13), we derive the desired bound and prove the result. �

3. The properties of L̃j

In this section, we study the localization of the function L̃j . To this end, we define
the functions

Dj

l (x) := {
c
j+1
l C̃j+1

l (x)− c
j+1
kj+l C̃

j+1
kj+l(x)

}
eilhj+1 (14)

for l = 0, 1, . . . , kj−1, where cj+1
l = ‖Cj+1

kj+l‖/‖Cjl ‖ which is the same as in equation (2).

Lj(x) := 1

kj

kj−1∑
l=0

Dj

l (x)

Dj

l (hj+1)
, (15)

and introduce the matrix

M := diag
{
Qj(1),Qj(ω), . . . ,Qj

(
ωkj−1)},

where

Qj(z) :=
kj−1∑
k=0

〈
Lj(·), Lj (· − khj )

〉
zk. (16)
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The dual function of Lj is defined by the equation

L̃j (x) :=
kj−1∑
ν=0

dj,νLj (x − νhj ), (17)

where

dj,ν := 1

kj

kj−1∑
l=0

(
Qj

(
ωl
))−1

ω−lν. (18)

As for the localization of L̃j , we have the following theorem.

Theorem 3.1. Under the conditions (4) and (5), we have that

Var
(
L̃j
) = O

(
1√
kj

)
, j → ∞.

To estimate the localization of L̃j , we have to establish some lemmas.

Lemma 3.1. Let L̃j be defined as in (17), then

∥∥L̃j∥∥2 = 1

kj

kj−1∑
l=0

(
Qj

(
ωl
))−1

. (19)

Proof. This result follows by a direct computation with equations (16)–(18), we leave
the details to the reader. �

In our next result we give an alternative expression for ‖L̃j‖.

Lemma 3.2. ∥∥L̃j∥∥ =
{
kj−1∑
l=0

(s
j+1
l q

j+1
kj+l + s

j+1
kj+l q

j+1
l )2

q
j+1
l q

j+1
kj+l(q

j+1
l + q

j+1
kj+l)

}1/2

, (20)

where sr and qr are given in equation (6).

Proof. Since Qj(z) = ∑kj−1
ν=0 qj,νz

ν , we calculate qj,ν := 〈Lj (·), Lj (· − νhj )〉, by
using the formula (15). Specifically, we have that

qj,ν = 1

k2
j

kj−1∑
l,k=0

1

Dj

l (hj+1)Dj

k (hj+1)

I νl,k,

where I νl,k is defined to be

I νl,k := 〈
Dj

l (·),Dj

k (· − νhj )
〉
.
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From definition (14) a direct computation leads to the formula

I νl,k = e−ilνhj

(‖Cj+1
kj+l‖2

‖Cjl ‖2
+ ‖Cj+1

l ‖2

‖Cjl ‖2

)
δl,k,

which we substitute into qj,ν to obtain

qj,ν = 1

k2
j

kj−1∑
l̃=0

‖Cj+1
kj+l̃‖

2 + ‖Cj+1
l̃

‖2

(‖Cj+1

kj+l̃‖C̃
j+1

l̃
(0)+ ‖Cj+1

l̃
‖C̃j+1

kj+l̃ (0))
2

· e−il̃νhj ,

where we use the fact that

Dj

l (hj+1) = c
j+1
l C̃j+1

l (0)+ c
j+1
kj+l C̃

j+1
kj+l(0).

Therefore, we have that

Qj

(
ωl
) =

kj−1∑
k=0

qj,kω
lk = 1

kj

‖Cj+1
kj+l‖2 + ‖Cj+1

l ‖2

‖Cj+1
kj+l‖ C̃j+1

l (0)+ ‖Cj+1
l ‖ C̃j+1

kj+l(0))
2

and so by (19) we obtain the formula

∥∥L̃j∥∥2 =
kj−1∑
l=0

(‖Cj+1
kj+l‖ C̃j+1

l (0)+ ‖Cj+1
l ‖ C̃j+1

kj+l(0))
2

‖Cj+1
kj+l‖2 + ‖Cj+1

l ‖2
.

Since ‖Cj+1
ν ‖ = kj+1(q

j+1
ν )1/2 and C̃j+1

ν (0) = sj+1
ν /(qj+1

ν )1/2, this formula yields the
desired conclusion. �

Lemma 3.3. For j ∈ Z+, we have that

kj �
∥∥L̃j∥∥2 � 4

c2
kj , (21)

where c is a positive constant such that

inf

{
dl

s
j

l

: |l| � kj−1, j ∈ Z+
}

� c.

Proof. From (20) and (6) we have that

∥∥L̃j∥∥2 � 2

kj−1−1∑
l=−kj−1

(
(s
j+1
l )2

d2
−l

+ (s
j+1
kj+l)

2

d2
−kj+l

)
.

According to the hypothesis of the lemma we obtain that∥∥L̃j∥∥2 � 4

c2
kj .
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On the other hand, from (20) we have that

∥∥L̃j∥∥2 �
kj−1∑
l=0

(√
q
j+1
kj+l +

√
q
j+1
l q

j+1
kj+l/q

j+1
l

)2

q
j+1
kj+l(1 + q

j+1
kj+l/q

j+1
l )

� kj

from which we conclude that (21) holds. �

Now, we consider the quantity λ̃j , where

λ̃j := 1

2π

∫ 2π

0
eit
∣∣L̃j (t)∣∣2 dt.

From (17) and (18) we have that

λ̃j = 1

k2
j

kj−1∑
ν1,ν2=0

kj−1∑
l1,l2=0

(
Qj

(
ωl1
)
Qj

(
ωl2
))−1

ωl2ν2−l1ν1pν1,ν2,

where

pν1,ν2 := 〈
ei·Lj(· − ν1hj), Lj (· − ν2hj)

〉
= 1

k2
j

kj−1∑
l,k=0

1

Dj

l (hj+1)Dj

k (hj+1)
(J1 + J2 + J3 + J4)e

ihj (lν1−kν2)eihj+1(l−k),

J1 := c
j+1
l c

j+1
k

‖Cj+1
l ‖‖Cj+1

k ‖ J̃1, J2 := − c
j+1
l c

j+1
kj+k

‖Cj+1
l ‖‖Cj+1

kj+k‖
J̃2,

J3 := − c
j+1
kj+lc

j+1
k

‖Cj+1
kj+l‖‖Cj+1

k ‖ J̃3, J4 := c
j+1
kj+lc

j+1
kj+k

‖Cj+1
kj+l‖‖Cj+1

kj+k‖
J̃4.

J̃1 := k2
j+1

∑
n∈Z

dnkj+1−ldnkj+1−kδl,k+1,

J̃2 := k2
j+1

∑
n∈Z

dnkj+1−ld(n+1)kj+1−k−kj δl,0δk,kj−1,

J̃3 := k2
j+1

∑
n∈Z

dnkj+1−kj−ldnkj+1−kδl,0δk,kj−1,

and

J̃4 := k2
j+1

∑
n∈Z

dnkj+1−kj−ldnkj+1−kj−kδl,k+1.

Therefore, we obtain that

λ̃j = E1 + E2 + E3 + E4,
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where

E1 :=
kj−1∑
k=0

eihj+1,k+1,kv
j+1
k+1,k

q
j+1
kj+kq

j+1
kj+k+1

m
j+1
k+1m

j+1
k , (22)

E2 := eihj+1
,0,kj−1

q
j+1
kj

q
j+1
kj+1−1

v0,kj+1−1m
j+1
0 m

j+1
kj+1−1, (23)

E3 := eihj+1
,0,kj−1

q
j+1
kj

q
j+1
kj+1−1

vkj ,kj−1m
j+1
kj
m
j+1
kj−1 (24)

and

E4 :=
kj−1∑
k=0

eihj+1,k+1,kv
j+1
kj+k+1,kj+k

q
j+1
kj+kq

j+1
kj+k+1

m
j+1
kj+k+1m

j+1
kj+k, (25)

where ,l := m
j+1
l s

j+1
l +m

j+1
kj+ls

j+1
kj+l .

To simplify our notation, we shall now delete the superscript j + 1 as the context
makes its presence clear. By using (20), (22)–(25), we have that

∥∥L̃j∥∥2 − ∣∣λ̃j ∣∣ =
kj−1∑
l=0

{
(qkj+lsl + qlskj+l )2

qlqkj+l(ql + qkj+l)
− ,l+1,l

qkj+lqkj+l+1
∇1

}
− ,0,kj−1

qkj qkj+1−1
∇2, (26)

where

∇1 := vl+1,lmlml+1 + vkj+l+1,kj+lmkj+l+1mkj+l

and

∇2 := v0,kj+1−1m0mkj+1−1 + vkj ,kj−1mkjmkj−1.

To estimate the right-hand side of equation (26) we set

xl := mlsl, yl := mlml+1vl,l+1,

and observe that

∥∥L̃j∥∥2 − ∣∣λ̃j ∣∣ �
kj−1∑
l=0

[
(xl + xl+kj )2

ql + qkj+l
− (xl + xl+kj )(xl+1 + xl+1+kj )(yl + yl+kj )

ql+kj ql+1+kj

]
which gives the estimate ∥∥L̃j∥∥2 − λ̃j � I1 + I2 + I3 + I4, (27)

where

I1 :=
kj−1∑
l=0

(
x2
l

ql + ql+kj
− xlxl+1yl

ql+kj ql+1+kj

)
, (28)
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I2 :=
kj−1∑
l=0

(
x2
l+kj

ql + ql+kj
− xl+kj xl+1+kj yl

ql+kj ql+1+kj

)
, (29)

I3 :=
kj−1∑
l=0

(
xlxl+kj
ql + ql+kj

− xlxl+1+kj yl
ql+kj ql+1+kj

)
(30)

and

I4 :=
kj−1∑
l=0

(
xlxl+kj
ql + ql+kj

− xl+kj xl+1yl

ql+kj ql+1+kj

)
. (31)

We establish the following results.

Lemma 3.4. Under the assumption (4) and (5) there exists a constant c such that for all
j ∈ Z+, we have

|I1| � ck
1/2
j and |I2| � ck

1/2
j . (32)

Proof. From (28) we obtain that

|I1| �
kj−1∑
l=0

sl

(qlql+kj )1/2

∣∣∣∣mlsl − m2
l+1mlsl+1vl,l+1

ql+1+kj

∣∣∣∣.
Consequently, using the condition of (5), we have that

|I1| � 1

c

kj−1∑
l=0

sl

q
1/2
l

∣∣∣∣1 − sl+1

sl

(
ql

ql+1

)1/2
vl,l+1

(qlql+1)1/2

∣∣∣∣.
By the Cauchy–Schwarz inequality and the assumption (5), we obtain the inequality

|I1| �
k

1/2
j

c2

[
kj−1∑
l=0

∣∣∣∣1 − sl+1

sl

vl,l+1

ql+1

∣∣∣∣2
]1/2

. (33)

We shall establish the existence of the constants c1 and c2 such that for all j ∈ Z+,

kj−1∑
l=0

(
1 − sl+1

sl

)2

< c1 (34)

and

kj−1∑
l=0

(
1 − vl,l+1

ql

)2

< c2. (35)
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In fact, from equations (5) and (6), we obtain that

kj−1∑
l=0

(
1 − sl+1

sl

)2

�
kj−1∑
l=0

∑
n∈Z

(
1 − dnkj+1−l−1

dnkj+1−l

)2

which proves (34). As for the estimate (35), we first observe that

kj−1∑
l=0

(
1 − vl,l+1

ql+1

)2

=
kj−1∑
l=0

[∑
n d

2
nkj+1−l−1(1 − dnkj+1−l/dnkj+1−l−1)

]2

q2
l+1

,

that is,

kj−1∑
l=0

(
1 − vl,l+1

ql+1

)2

�
kj−1∑
l=0

∑
n

(
1 − dnkj+1−l

dnkj+1−l−1

)2

� c2,

from which we obtain (35). Also, using the Cauchy–Schwarz inequality, we obtain that[kj−1∑
l=0

∣∣∣∣1 − sl+1

sl

vl,l+1

ql+1

∣∣∣∣2
]1/2

�
[

2

kj−1∑
l=0

(
1 − sl+1

sl

)2

+ 2

kj−1∑
l=0

(
sl+1

sl

)2(
1 − vl,l+1

ql+1

)2
]1/2

.

Therefore from (34), (35) and the boundedness of the sequence {sl+1/sl: l ∈ Z+}, we
have that [

kj−1∑
l=0

∣∣∣∣1 − sl+1

sl

vl,l+1

ql+1

∣∣∣∣2
]1/2

� c. (36)

We now employ (33) and (36) to complete the proof of the first inequality of (32).
Now, we start the proof of the second assertion. First, we observe that

|I2| �
kj−1∑
l=0

(ml+kj sl+kj )2

ql + ql+kj

[
1 − ql + ql+kj

ql+kj ql+1+kj
· xl+1+kj yl

xl+kj

]
� /1/2,

where

/1 :=
[
kj−1∑
l=0

(
(ml+kj sl+kj )2

ql + ql+kj

)2
]1/2

and

/2 :=
[
kj−1∑
l=0

(
1 − ql + ql+kj

ql+kj ql+1+kj
· xl+1+kj yl

xl+kj

)2
]1/2

.

By using (5) we have that

/1 �
[
kj−1∑
l=0

(
s2
l+kj
ql+kj

)2
]1/2

� ck
1/2
j , j ∈ Z+. (37)
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Similarly, we obtain that

/2 �
√

2(/2,1 +/2,2)
1/2,

where

/2,1 :=
kj−1∑
l=0

(
1 − ml+1+kj

ml+kj

)2

and

/2,2 :=
kj−1∑
l=0

(
ml+1+kj
ml+kj

)2(
1 − sl+1+kj

sl+kj

(ql + ql+kj )yl
ql+kj ql+1+kj

)2

.

By using the formula given in [5, (4.8.12), p. 195], we have

/2,1 �
kj−1∑
l=0

∣∣∣∣1 −
(
ml+1+kj
ml+kj

)2∣∣∣∣2 � c.

We estimate /2,2 next. Specifically, we have that

/2,2 � c

kj−1∑
l=0

(
1 − sl+1+kj

sl+kj

(ql + ql+kj )mlml+1vl,l+1

ql+kj ql+1+kj

)2

� 2c/0
2,1 + 2c/0

2,2,

where

/0
2,1 :=

kj−1∑
l=0

(
1 − sl+1+kj

sl+kj

)2

and

/0
2,2 :=

kj−1∑
l=0

[
1 − ql + ql+kj

ql+kj ql+1+kj

(ql+kj ql+1+kj )1/2

(qlql+1)1/2
vl,l+1

]2

.

By using the same method used to confirm (35), we have that /0
2,1 < c. For the second

inequality, one can also refer to [5, (4.8.16), p. 199], specifically, we have that

/0
2,2 �

kj−1∑
l=0

[
1 − (ql+kj ql+1+kj )1/2

(qlql+1)1/2

vl,l+1

ql+1

]2

� 2

kj−1∑
l=0

(
1 − ml

ml+1

)2

+ 2

kj−1∑
l=0

(
ml

ml+1

)2(
1 − vl,l+1

ql+1

)2

,

from which the technique used to derive the inequality (37) and (35), yields the bound
/0

2,2 � c thereby providing the inequality /2 < c. This establishes the second inequality
in (32). �
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Lemma 3.5. Under the conditions (4) and (5), there is a positive constant c such that for
all j ∈ Z+,

|I3| � ck
1/2
j , |I4| � ck

1/2
j . (38)

Proof. From the definition of xl and yl , we have that

|I3| �
kj−1∑
l=0

slsl+kj
2(qlql+kj )1/2

{
1 − ml+1+kj sl+1+kjmlml+1vl,l+1

ql+1+kjml+kj sl+kj

}
.

Consequently, the Cauchy–Schwarz inequality yields the bound

|I3| �
{
kj−1∑
l=0

(
slsl+kj

2(qlql+kj )1/2

)2
}1/2{kj−1∑

l=0

[
1 − ql+kj sl+1+kj vl,l+1

ql+1+kj qlsl+kj

]2
}1/2

� ck
1/2
j

{
kj−1∑
l=0

[
1 − sl+1+kj

sl+kj
+ sl+1+kj

sl+kj

(
1 − ql+kj

ql+1+kj

vl,l+1

ql

)]2
}1/2

� ck
1/2
j

{
c + c

kj−1∑
l=0

(
1 − ql+kj

ql+1+kj

vl,l+1

ql

)2
}1/2

, j ∈ Z+.

We use (5) and (37) to obtain that

|I3| � ck
1/2
j , j ∈ Z+,

since the sequence (ql+kj /ql+1+kj )2 is bounded for j ∈ Z+, and

kj−1∑
l=0

(
1 − ql+kj

ql+1+kj

vl,l+1

ql

)2

=
kj−1∑
l=0

[
1 − ql+kj

ql+1+kj
+ ql+kj
ql+1+kj

(
1 − vl,l+1

ql

)]2

� 2
kj−1∑
l=0

(
1 − ql+kj

ql+1+kj

)2

+ 2
kj−1∑
l=0

(
ql+kj
ql+1+kj

)2(
1 − vl,l+1

ql

)2

.

Now, we prove the second inequality in (38). To this end, we note that

|I4| =
kj−1∑
l=0

xlxl+kj
ql + ql+kj

∣∣∣∣1 − (ql + ql+kj )xl+1yl

xlql+kj ql+1+kj

∣∣∣∣
�

kj−1∑
l=0

slsl+kj
ql + ql+kj

∣∣∣∣1 − sl+1

sl

ql

ql+1

vl,l+1

ql

∣∣∣∣.
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We estimate this sum just as above and conclude that

|I4| � ck
1/2
j , j ∈ Z+. �

Proof of theorem 3.1. The proof follows directly from (27)–(31) and lemmas 3.3–3.5.
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