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New Results on Doubly Coprime Fractional class of proper stable rational functio®H- denotes the set of strictly
Representations of Generalized proper and stable rational functionS;denotes the class of rational
Dynamical Systems functions in the formm.,,(s) + as + b, wherem,,(s) € RHa, a,
b € R; AT denotes the transpose 4f I'm(A) andKer(A) respec-
Zhi-Wei Gao and Fei-Yue Wang tively denote the image and kernel &f

Consider a generalized dynamical plant
Abstract—This note first points out that the main results by Wang and Ei(t) = Ax(t) + Bu(t) 1
Balas regarding the doubly coprime fractional representations for general- y(t) = Ca(t) + Du(t) )
ized dynamical systems have severe limitation in their applications, that is, ’

the doubly coprime factorization obtained by Wang and Balas cannot char- wherex(t) € R" is the descriptor vectok(t) € R™ andy(t) €
acterize the parameterization of all properly stabilizing controllers when

P H H . nXn
a system is singular, therefore, truly generalized. To remedy those resuilts, '~ &€ reSpECt'V_ely the input and output vectafs;c R may
two new doubly coprime factorizations have been developed here that will be singular, that is, rankE’) < n. The pair(E, A) is assumed to be

parameterize all properly stabilizing controllers for single-input or single-  regular, i.e.det(sE — A) % 0. The transfer function matrix of (1) is
output cases. In addition, the new results can characterize the parameteri- represented as
zation of all corresponding causal properly stabilizing controllers. Finally,

the extension to the multiple-input—-multiple-output case is presented. sE— A B

C D

)

! L
Index Terms—Controller parameterization, coprime factorizations, gen- G(S) = C(SE -A)""B+D:=
eralized dynamical systems, proportional and derivative feedback.

As is known, the plant (1) is called completely stabilizable pro-
|. INTRODUCTION vided thah*ank(sE — AvB) =n,Vs € C+ andrank(E,B) = n.
The plant is properly stabilizable provided thaik(sE — A, B) =

It is well-known that the doubly coprime factorization plays an im;L, Vs € Cic. Clearly, a completely stabilizable plant must be prop-

portant role in investigating generalized dynamical systems with tlgﬁy stabilizable, but not vice versa. The plant (1), simply denoted by
stable fractional approach, e.g., see [1]-3], [5], and the referencas 4 p ¢ D), is completely (or properly) detectable if and only if
therein. In the pioneering work by Wang and Balas [5], by using pr?ﬁe/du/al plantET, AT, CT, BT, D7) is completely (or properly) sta-
portional and derivative (feedback or observation) gains, two doublyiizanie. For simblicity, we cah assuni2 = 0 without loss of gener-
coprime factorizations were established by Theorems 2a and 2b. Wgﬁ& Now, we rewrite [5, Ths. 2a and 2b] in the sequel.

the derivative coefficient matri’ is nonsingular, all transfer func- Theorem 2a [5]: Consider a completely stabilizable and properly
tion matrices of the two doubly coprime factorizations in Theoremgaiactaple plant (1). Choode, F» € R™*", [ € R"*” such that:

2a and 2b are proper stable as pointed out in [5], which can be ufi- p + BF)) is nonsingular; 2Js(E + BF) — (A + BF)]™" ¢
lized to characterize the parameterizations of all properly stabilizingZox "and(sE—A—LC)~' € RH"X"; and 3)lim,—oo Fy (sE —
controllers (Here, properly stabilizing the plant means that making the_ LO)™'B = 0 andlim,_o Fy(sE— A— LC)~'L = 0. Define
corresponding closed-loop system internally proper and stable). How- ’ ‘

ever, the case o being singular is not discussed in [5, Ths. 2a and [sE— A — LC ‘ -B L

2b]. In this note, the focus will be on the situationteing singular. { V(s) —U(s):|_ _(sF — Py) ‘ I o 3)

We prove that the left or right fractional factors of the feedback con __Nr(s) ‘,17[(5)
troller in [5, Th. 2a and Th. 2b] are stable but nonproper wheis C 0o I
singular. This implies that the application of Theorems 2a and 2b has :s(E 4+ BF) - (A+BE) ‘ B —IL
some limitation, e.g., the parameterizationatif properly stabilizing M(s) Uls) i
controllers can not be accomplished as desired. To obtain proper stable[ N(s) V(s) } =
factorizations, the results of [5, Ths. 2a and 2b] are modified here for -~

single input or single output generalized dynamical systems. Based on - ¢ 0 I

the modified factorizations, the parameterization of all properly sta- 4)
bilizing controllers is established. The corresponding result for mul-

tiple-input—-multiple-output (MIMO) case is also presented in the enc-i—.hen
a) all the transfer function matrices defined abovemoperstable;
b) M(s) andM (s) are both nonsingular;
c) G(s) = M(s)"'N(s) = N(s)M(s)™";
In this note,R denotes the set of real numbefs; denotes the com-  d)
plex, closed right-half plan€;. = C4 J{oc}; RH represents the

—(SF1 —FQ) I 0
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As pointed out in [5], Condition 3) is valid wheh is nonsingular. In From (11), there exists a right inverd#} € R™*"f to By €
this case, all transfer function matrices in the doubly coprime factoR" s *""[6], i.e.,
izations by Theorems 2a and 2b are guaranteed to be stable and proper.

The resultant parameterizations of all properly stabilizing controllers BBy = 1Iy. (12)

can be characterized readily.

However, (1) is no longer singular in this case. Therefore, our qu
tion is: What will happen whetE is singular? This motivates us to

conduct the study in this note.

IIl. LIMITATION OF PREVIOUS RESULTS

Now, we discuss the limits of Theorems 2a and 2b wheis sin-
gular.

Theorem 3a: Suppose there exidt, € R™*", L € R"*? such
that(E + BF) is nonsingular andsE — A — LC) ™' € RHL™.
Then,lim,_ .. Fi(sE — A — LC)™'B = 0 if and only if E is non-
singular.

Proof: Sufficiencylf E is nonsingular, thefs E—A—LC) ! €
RHL*™, which obviously means thatim._.. Fi(sE — A —
LY 'B =0.

Necessity:For the purpose of the contradiction, we assume tha

lim,—o Fi(sE — A — LC)™'B = 0 implies E is singular. Choose

nonsingular constant matricé () € R"*" to make the following

restricted equivalent transformation [4]:
Fi(sE—A-LC)"'B=FQ[P(sF - A—-LC)Q]"' PB

=F!(sI - A,)"'B, - F} By (8)
A, 0

0 If)'PB:
B, )
<B ),F1Q = (F! Fj), A, € R"™*" Iy € R"/*"7, and
f

ns +ny = n. SinceA, is a stable matrix anim, ... Fi(sE — A —
LC)™'B = 0, then (8) yields

wherePEQ = (I(; 8)

PA+LO)Q = (

FiB; =0, )

Note that (E + BF)) is assumed to be nonsingular an

By € R"+*™ It follows that

=rank(E + BF})

7

=

&Ky postmultiplying B} to the both sides of (9), and using (12), one

concludes immediately

Fj =0. (13)
Therefore, according to (13)
I, B, I,
rank(F + BF;) =rank |:< 0 Bf> <F,1 ):|
<ns < n. (14)

Equation (14) contradicts the assumption {{#at+- B F; ) is nonsin-
gular. This completes the proof.

Similarly, the dual form of Theorem 3a can be proved easily, as fol-

lows.
t Theorem 3b: Suppose there exigt € R™*™ Ly € R™*P such
that(E + L,C) is nonsingular andsE — A — BF)™" € RHL ",
Then,lin,—o, C(sE — A — BF) 'L, = 0 if and only if E is non-
singular.

Remark 2: From Theorem 3a, the left fractional facfiof s) of the
feedback controlleds (s) = V~!(s)U(s) in Theorem 2a must be
stable but nonproper whefi is singular. Similarly, Theorem 3b im-
plies that the right fractional factdr(s) of the feedback controller
K(s) = U(s)V~!(s) in Theorem 2b must be stable but nonproper
when E is singular. Thus, whe®? is singular, Theorems 2a and 2b
both give stable doubly coprime factorizations, but paiper stable
doubly coprime factorizations. This imposes significant limitations on
the application of Theorems 2a and 2b, e.g., one can not characterize
the class ofll properly stabilizingcontrollers by these factorizations.
Thus, it is imperative to provide remedial modifications if possible.

IV. MoDIFIED DouBLY COPRIME FACTORIZATIONS

d

A. Single-Input Plant Case
LetA(s) = s(E+ BF,) — (A+ BF>,), then

s [ B B.F! B.F} sFIA™(s) =F1(E+ BF,) '[A(s) + (A+ BF)]A™'(s)
Trans { B;F!  ByF} ] =F\(E+ BF) (A4 BF,)A " \(s)
I, 0 B, L0 + F(E+ BF)™". (15)
=rank 0 0 B 0 Iy
/ F! F} Using (15), (4) in Theorem 2a can be reformulated equivalently, as
<n, + rank(By) < n. (10) shown in (16) at the bottom of the next page, whére= F(E +
' BF\)""(A+ BFE,) - F.
Equation (10) indicates that Theorem 4a: For a single-input plantE, A, B, C), and suppose
(E+ BFy)™ ! exists. Thenfy (E + BF,)"' B = 1 ifand only if det
rank(Byf) = n — ns = ny. (11) (E) = 0.
~ i [S(E+LiC) = (A+ L.C) | =B —(sLi — L)
Vis) =U(s)] _ ©)
—N(s) M(s) |~ F ‘ I 0
L C 0 I
[sSE—A—BF | B sLi—1L,
M(s) U(s)] _
|:N(s) V(s) - F ‘ I 0 "
C 0 I
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Proof: We will prove the result for two-dimensional which implies thatFy (E + BFy) 'B = 1if and only if det(E) =

plant, which can be generalized to n-dimensional plant readllé['.et e €12\ g This completes the proof.

let B = (€ €2\ 4 _ (e az) 5 _ b1 ea1 €2 , ‘
T o \ewr ewn )T T \asr ase )’ - o\ ! Remark 3: Theorem 4a shows thaf (s) and.N (s) in (16) are both
Fi = (fl, f2) then strictly proper and stable for single-input generalized plant with sin-
) ) gular E. This result paves a way for obtaining proper stable doubly
E+ BF, = <611 +bufi e +bifs > (17) coprime factorizations from Theorem 2a.
ea1 +bafl e +bafs Theorem 5a: Consider a completely stabilizable and properly de-
. . enn bifs bifl ens tectable single-input plant (1) with being singular. ChoosE , F» €
det(E + BFy) = det <e,21 bafa ) + det <b2f11 €22 RY™"™ L e R"*? such that Conditions 1) and 2) hold in Theorem
el e 2a. Leta be a negative-real number. Define (22)—(23), as shown at the
+ det ( ) bottom of the next page. Then, all the corresponding conclusions spec-
€21 €22 ' !
1 —f = ified in a)—d) of Theorem 2a still hold. :
—det [ by e er (18) Proof: Note that in Theorem 2ay (s), M(s), U(s), V(s) are
by e oo all proper stable, whilé” (s) € S, U(s) € S**?, M(s) € R'Hz, and
f ool N(s) € RHL*! from the aforementioned analysis. Let
_ €11 €21
(E+ BF) 1:7( . 4 > 19)
det(E + BFy) \ ey e Vina(s) =(s — oz)flV'(s)
whereel; (i.j € {1.2}), is the cofactor ofe;; + b:f/, that is, Una(s) =(5 — o) 'U(s)
(—=1)"" det[(E + BFy)(i|j)], where(E + BFy)(i|j) stands for the Mona(s) =M(s)(s — a)
submgtrlx of(E 4+ BF) obtained by deleting rowand columny[6]. Nowa(s) =N(s)(s — ). (24)
Now, it follows that
, . Then,Vina(s), Uma(s), Mma(s), Nma(s) are all proper stable. From
BB+ BF11) B N . b (24) and the conclusions b)—d) of Theorem 2a, it can be shown easily
s S R I AR ! that M« (s) is nonsingularN .« (s)M,,; 1 (s) = G(s) and
det(E+BF1)(f“ f”(efg e§2><b2> (s) 9 ( ) =GG)
- 1 Vina(8)  —Uma(s)] [Mma(s) U(s)] _[I 0 (25)
det(E+ BF) —N(s)  M(s) Nowa(s) Vi(s)| ~ |0 T
X (blffefl + blfjefz + b2f11651 + b2f216§2>
. 1 From (3), one has
" det(E+ BF))
- Fr —1 /17 Fr
b et bifl (Vina(s). =Ua(s)) s =)~ (V(5), =U(s))
X fldet<b. . +bﬁ) L [sE-A-LC | -B L
2 €22 2J2 =(s—a)” |
1d ern+bifi b —(sF - F) o
+f'2 et €91 +b2f11 b2 s —« SFl —F2 1 0
1 (0 ~fi ~f2 =| 0 sE-A-LC | -B L
= ————— _det | b1 €11+b1f11 612+b1f'21 |
det(E + BF 1 0 0 0
¢ ( + 1) bz 621+b2f11 622+b2f% 26
o _p g (26)
S ST (P (20)
T det(E+BFR) ° b‘ e Using (16) and noting that — Fy(E + BF,)"'B = 0, then (27),
2 c2 o2 shown at the bottom of the next page, holds. i i
In comparison with (18) and (20), one has By subsﬁtung Vina(s), —Dﬁi-;) )in (26),( —N(s), M(s))
in @), <AV\,,M(~V) in (27), V(;) in (16), respectively, into
/ -1 - Nmgls (S
B(E+BR) B 1 ! Vima(s)  —Uma(s) and Mia(s) Uls) one completes the
0 —fi =f “N(s)  M(s) Numa(s) Vi(s)]’ P
det [ b1 e11  er2 proof.
by e21  ean Remark 4: Theorem 5a is an improved modification of Theorem

- 0 —ff —7f (1) 2a for single-input plants witlE' singular, because all transfer func-
det | By eyr era | +det <C” C”) tions in (22)—(23) are proper and stable. Hence, two parameterizations

by ey eas 21 c22 of all causal properly stabilizing controllers can be obtained, which

s(E+BF)~ (A+BF) | B L
M(s) U(s)] _ _ ‘ _
[N(S) v(s)} = —-F, I-F(E+BF)'B F(E+BF) 'L (16)
c 0 I
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read as shown in (28)— (29) at the bottom of the page. Note that if@em 2b. Letw be a negative real number. Define (30)—(31), shown at
the condltlondot[(vma ) + Q(s)N(s))(oc)] # 0 is replaced by the top of the next page, whefe = (A+L2C)(E+1:C)~"Li—Lo.
det[Vina(s) + Q(s)N(s)] 2 0in (28), and b) a similar manipulation Then, all the corresponding conclusions specified in a)-d) of Theorem
is made in (29), then one gets two parameterizations of all properly s still hold.

bilizing controllers. Remark 5: Theorem 5b is an appropriate modification of Theorem
2b for single-output plants witf’ singular, because all transfer func-
B. Single-Output Plant Case tionsin (30)—(31) are proper stable. Hence, two parameterizations of all

Similar to the discussion above for single-input plant, one can Sh&ﬁusal properly stabilizing controllers can be obtained, which read as

the following results for single-output plant without proofs.

Theorem 4b: For a single-output plaitE, A, B, C'), and assuming —1 o O(s\ M.
(E + L,C)~* exists, therC(E + L,C) 'L, = 1 if and only if det t(s)= [ (5) + Q(5)Nons (s ] [ () + Qls)] ""b(s)] |
(E) = 0.

Theorem 5b: Consider a properly stabilizable and completely de- Q(s) € RH™*L det [(f/’(s) + Q(s)Nmb(s))(oo)] + 0}
tectable single-output plant (1) with' being singular. Choosé' €
R™*" Ly, Ly € R™*" such that Conditions 1) and 2) hold in The- (32)

s— sk — F» | 1 0
Vina(s) _(jzma(s)] |0 sE-A-IC L .
{— N(s) M(s) | | 1 0 | 0 0 =
L0 c ’ 0 I
s(E+BF))— (A+ BF) ‘ —aB+ (A+BFR)(E+BF)™'B L
Mia(s) Uls)| _ | , . ! (23)
Nowa(s) Vis)| = _F. ~F.(E+BF)™'B Fi(E+BFR)'L|-
I c | C(E+BF)™'B I
<.Mmq(s)) B <1W(s)) (5 — a)
Nmal(s) ]~ \N(s)
rs(E+ BF,)— (A+BFE) | B
= —F. 0| (s—a)
L C 0
[S(E+ BF)— (A+BF) | —aB+(A+BFR)(E+BF)"'B
= _F. _F.(E+BF)"'B . @7)
i C C(E+BF)"'B
E(s) :{ (Vs () + Q)N ()] [Frna () + Q)31 ()] |
Q(s) € RHIX?, det [(ff,m(s) + Q(S)N(s))(oo)] # 0} (28)
:{[U(s) + Mo (8)Q() [V (5) + Nona (5)Q()] " |
Qs) € RHL?, det [(V(5) + Nona (5)Q(s)) (50)] # “}' (29)
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S(E + L1C) — (A + L,0) ] -B ~Le
Vis)  =U(s)] _ N1
{—Nmb(s) Mo(s) | = F | d F(B+ L0y L
| —aC + C(E + LiC) " (A + L,C) ‘ ~C(E+L,C)™'B —C(E+LC)""'L.
(30)
[sE—A—BF —(sLi—1Lsy) | B 0
{ﬂf[(s) erb(s):|_ 0 5 — | 0 1 (31)
N(s) Vins(s) F 0 | 1o
C 1 ’ 00

aB in Theorem 5a, respectively, with sI — A,, BA, for multi-
input systems, wherda, € R'™*™ is a stable matrix. The resulting
parameterizations of all causal properly stabilizing controllers can be
O(s) € RH™X', det [(Vins (5) + N(5)Q(s)) (00)] # 0}_ obtained in the forms (28)—(29), whefl s) € RH.X? is replaced by
Q(s) € RHZ*P.
(33) Theorem 6b: Consider atriplé £, A, C)with E, 4 ¢ R"*",C €
RE*"™, ¢ := rank(F), andrank(C') = p < n. Assume there ex-
ists L1 € R"*P such thatt' + L,C' is nonsingular. Then(’(E +
C. MIMO Case LiC)™'Ly = I,ifand only ifg = » — p.

) ) ) ) ) Proof: This proof is similar to that for Theorem 6a, so it is
In this section, we shall extend our work for single-input and singleymitted.

output systems to the MIMO case.

Theorem 6a: Consider a triple(E. A, B) with E,. A € R"*",
B € R™™, ¢ = rank(E), andrank(B) = m < n. Assume
there existsF; € R™*™ such thatE + BF; is nonsingular. Then
F\(E4+BF) 'B=1,ifandonlyifg =n —m.

:{[L’Tmb(s) + M(5)Q(8)] [V (5) + N(5)Q(s)] |

Remark 7: Based on Theorem 6b, the result of Theorem 5b can
be extended to multi-output plants witank(C) = p < n and
rank(F) = n — p. Specifically, we can replace %, — «, aC' in
Theorem 5b respectively witlh, sI — Ay, A,C for multi-output
o systems, wherd, € R?*? is a stable matrix. The resulting param-
Proof: LetU := (E+ BF) " andV = FiU, itis clear that eterizations of all causal properly stabilizing controllers can also be

EU + BV = In. , ) presented in the forms (32)—(33), whepeés) € RH7Z*" is replaced
NecessitySupposeF, (E + BF\)™'B = I,,,ie,VB = I, by Q(s) € RH™XP.

which impliesEUB = 0. ThenIm(B) C Ker(EU). Thusm =
rank(B) < n — ¢. Notice that,(E + BF,)~! exists if and only if

. "o V. CONCLUSION
rank(E,B) = n,i.e.,Im(E)+ Im(B) = R", givingm > n — q.

Therefore, one has shown = n — ¢, equivalentlyy = n — m. For generalized dynamical systeins, 4, B, ') with E singular,
Sufficiency Suppose; = n — m. Sincerank(E, B) = n, there Which are either single-input or single-output, proper stable doubly co-
exists a nonsingular matri® € R"*" such that prime factorizations are obtained by using proportional and derivative
state feedback (or output injection), enabling the parameterization of all
o E, 0 causal properly stabilizing unity feedback controllers. The extensions
(E,B):=P(E,B) = < 0 Im) for the multi-input case and the multi-output case are also presented.

The results of [5] are hereby significantly improved.
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where the first and second submatrices have respectivelyn and
m columns. ThenEU + BV = I,, impliesEU + BV = I, giving
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