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New Results on Doubly Coprime Fractional
Representations of Generalized

Dynamical Systems

Zhi-Wei Gao and Fei-Yue Wang

Abstract—This note first points out that the main results by Wang and
Balas regarding the doubly coprime fractional representations for general-
ized dynamical systems have severe limitation in their applications, that is,
the doubly coprime factorization obtained by Wang and Balas cannot char-
acterize the parameterization of all properly stabilizing controllers when
a system is singular, therefore, truly generalized. To remedy those results,
two new doubly coprime factorizations have been developed here that will
parameterize all properly stabilizing controllers for single-input or single-
output cases. In addition, the new results can characterize the parameteri-
zation of all corresponding causal properly stabilizing controllers. Finally,
the extension to the multiple-input–multiple-output case is presented.

Index Terms—Controller parameterization, coprime factorizations, gen-
eralized dynamical systems, proportional and derivative feedback.

I. INTRODUCTION

It is well-known that the doubly coprime factorization plays an im-
portant role in investigating generalized dynamical systems with the
stable fractional approach, e.g., see [1]–[3], [5], and the references
therein. In the pioneering work by Wang and Balas [5], by using pro-
portional and derivative (feedback or observation) gains, two doubly
coprime factorizations were established by Theorems 2a and 2b. When
the derivative coefficient matrixE is nonsingular, all transfer func-
tion matrices of the two doubly coprime factorizations in Theorems
2a and 2b are proper stable as pointed out in [5], which can be uti-
lized to characterize the parameterizations of all properly stabilizing
controllers (Here, properly stabilizing the plant means that making the
corresponding closed-loop system internally proper and stable). How-
ever, the case ofE being singular is not discussed in [5, Ths. 2a and
2b]. In this note, the focus will be on the situation ofE being singular.
We prove that the left or right fractional factors of the feedback con-
troller in [5, Th. 2a and Th. 2b] are stable but nonproper whenE is
singular. This implies that the application of Theorems 2a and 2b has
some limitation, e.g., the parameterization ofall properly stabilizing
controllers can not be accomplished as desired. To obtain proper stable
factorizations, the results of [5, Ths. 2a and 2b] are modified here for
single input or single output generalized dynamical systems. Based on
the modified factorizations, the parameterization of all properly sta-
bilizing controllers is established. The corresponding result for mul-
tiple-input–multiple-output (MIMO) case is also presented in the end.

II. PROBLEM STATEMENT

In this note,R denotes the set of real numbers;C+ denotes the com-
plex, closed right-half plane;C+e = C+ f1g; RH1 represents the
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class of proper stable rational functions;RH2 denotes the set of strictly
proper and stable rational functions;S denotes the class of rational
functions in the formmsp(s) + as + b, wheremsp(s) 2 RH2, a,
b 2 R; AT denotes the transpose ofA; Im(A) andKer(A) respec-
tively denote the image and kernel ofA.

Consider a generalized dynamical plant

E _x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
(1)

wherex(t) 2 Rn is the descriptor vector,u(t) 2 Rm andy(t) 2
Rp are respectively the input and output vectors;E 2 Rn�n may
be singular, that is, rank(E) < n. The pair(E;A) is assumed to be
regular, i.e.,det(sE � A) 6� 0. The transfer function matrix of (1) is
represented as

G(s) = C(sE � A)�1B +D :=
sE � A B

C D
: (2)

As is known, the plant (1) is called completely stabilizable pro-
vided thatrank(sE � A;B) = n, 8s 2 C+ andrank(E;B) = n.
The plant is properly stabilizable provided thatrank(sE � A;B) =
n, 8s 2 C+e. Clearly, a completely stabilizable plant must be prop-
erly stabilizable, but not vice versa. The plant (1), simply denoted by
(E;A; B; C;D), is completely (or properly) detectable if and only if
the dual plant(ET ; AT ; CT ; BT ; DT ) is completely (or properly) sta-
bilizable. For simplicity, we can assumeD = 0 without loss of gener-
ality. Now, we rewrite [5, Ths. 2a and 2b] in the sequel.

Theorem 2a [5]: Consider a completely stabilizable and properly
detectable plant (1). ChooseF1, F2 2 Rm�n, L 2 Rn�p such that:
1) (E + BF1) is nonsingular; 2)[s(E +BF1)� (A+BF2)]

�1 2
RHn�n

1 and(sE�A�LC)�1 2 RHn�n
1 ; and 3)lims!1 F1(sE�

A�LC)�1B = 0 andlims!1 F1(sE�A�LC)�1L = 0. Define

~V (s) � ~U(s)

� ~N(s) ~M(s)
=

sE �A � LC �B L

�(sF1 � F2) I 0

C 0 I

(3)

M(s) U(s)

N(s) V (s)
=

s(E +BF1)� (A+BF2) B �L

�(sF1 � F2) I 0

C 0 I

:

(4)

Then

a) all the transfer function matrices defined above areproperstable;
b) ~M(s) andM(s) are both nonsingular;
c) G(s) = ~M(s)�1 ~N(s) = N(s)M(s)�1;
d)

~V (s) � ~U (s)

� ~N(s) ~M(s)
�
M(s) U(s)

N(s) V (s)
=

I 0

0 I
: (5)

Theorem 2b [5]: Consider a properly stabilizable and completely
detectable plant (1). ChooseF 2 Rm�n, L1, L2 2 Rn�p such that:
1) (E + L1C) is nonsingular; and 2)(sE � A �BF )�1 2 RHn�n

1

and[s(E+L1C)� (A+L2C)]�1 2 RHn�n
1 ; 3) lims!1 C(sE�

A�BF )�1L1 = 0 andlims!1 F (sE�A�BF )�1L1 = 0. Define
(6)–(7), as shown at the bottom of the next page. Then, the conclusions
specified in a)–d) of Theorem 2a still hold.

Remark 1: In both Theorems 2a and 2b as previously shown, Con-
ditions 1) and 2) can be performed easily under the related assumptions.
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As pointed out in [5], Condition 3) is valid whenE is nonsingular. In
this case, all transfer function matrices in the doubly coprime factor-
izations by Theorems 2a and 2b are guaranteed to be stable and proper.
The resultant parameterizations of all properly stabilizing controllers
can be characterized readily.

However, (1) is no longer singular in this case. Therefore, our ques-
tion is: What will happen whenE is singular? This motivates us to
conduct the study in this note.

III. L IMITATION OF PREVIOUS RESULTS

Now, we discuss the limits of Theorems 2a and 2b whenE is sin-
gular.

Theorem 3a: Suppose there existF1 2 Rm�n, L 2 Rn�p such
that (E + BF1) is nonsingular and(sE � A � LC)�1 2 RHn�n

1 .
Then,lims!1 F1(sE � A � LC)�1B = 0 if and only ifE is non-
singular.

Proof: Sufficiency:If E is nonsingular, then(sE�A�LC)�1 2
RHn�n

2
, which obviously means thatlims!1 F1(sE � A �

LC)�1B = 0.
Necessity:For the purpose of the contradiction, we assume that

lims!1 F1(sE � A � LC)�1B = 0 impliesE is singular. Choose
nonsingular constant matricesP , Q 2 Rn�n to make the following
restricted equivalent transformation [4]:

F1(sE �A � LC)
�1
B =F1Q [P (sE �A � LC)Q]�1 PB

=F 1

s (sI �As)
�1
Bs � F

1

fBf (8)

wherePEQ =
Is 0

0 0
, P (A + LC)Q =

As 0

0 If
, PB =

Bs

Bf

, F1Q = (F 1

s F 1

f ), As 2 R
n �n , If 2 Rn �n , and

ns + nf = n. SinceAs is a stable matrix andlims!1 F1(sE �A�
LC)�1B = 0, then (8) yields

F
1

fBf = 0: (9)

Note that (E + BF1) is assumed to be nonsingular and
Bf 2 R

n �m. It follows that

n =rank(E +BF1)

=rank
Is +BsF

1

s BsF
1

f

BfF
1

s BfF
1

f

=rank
Is 0 Bs

0 0 Bf

Is 0

0 If

F 1

s F 1

f

�ns + rank(Bf) � n: (10)

Equation (10) indicates that

rank(Bf) = n� ns = nf : (11)

From (11), there exists a right inverseBr
f 2 Rm�n to Bf 2

Rn �m[6], i.e.,

BfB
r
f = If : (12)

By postmultiplyingBr
f to the both sides of (9), and using (12), one

concludes immediately

F
1

f = 0: (13)

Therefore, according to (13)

rank(E +BF1) =rank
Is Bs

0 Bf

Is

F 1

s

�ns < n: (14)

Equation (14) contradicts the assumption that(E+BF1) is nonsin-
gular. This completes the proof.

Similarly, the dual form of Theorem 3a can be proved easily, as fol-
lows.

Theorem 3b: Suppose there existF 2 Rm�n, L1 2 R
n�p such

that(E + L1C) is nonsingular and(sE � A � BF )�1 2 RHn�n
1 .

Then,lims!1 C(sE � A � BF )�1L1 = 0 if and only ifE is non-
singular.

Remark 2: From Theorem 3a, the left fractional factor~V (s) of the
feedback controllerK(s) = ~V �1(s) ~U(s) in Theorem 2a must be
stable but nonproper whenE is singular. Similarly, Theorem 3b im-
plies that the right fractional factorV (s) of the feedback controller
K(s) = U(s)V �1(s) in Theorem 2b must be stable but nonproper
whenE is singular. Thus, whenE is singular, Theorems 2a and 2b
both give stable doubly coprime factorizations, but notproper stable
doubly coprime factorizations. This imposes significant limitations on
the application of Theorems 2a and 2b, e.g., one can not characterize
the class ofall properly stabilizingcontrollers by these factorizations.
Thus, it is imperative to provide remedial modifications if possible.

IV. M ODIFIED DOUBLY COPRIME FACTORIZATIONS

A. Single-Input Plant Case

Let �(s) = s(E + BF1)� (A + BF2), then

sF1�
�1(s) =F1(E +BF1)

�1[�(s) + (A+BF2)]�
�1(s)

=F1(E +BF1)
�1(A+BF2)�

�1(s)

+ F1(E +BF1)
�1
: (15)

Using (15), (4) in Theorem 2a can be reformulated equivalently, as
shown in (16) at the bottom of the next page, whereFc = F1(E +
BF1)

�1(A + BF2) � F2:

Theorem 4a: For a single-input plant(E;A;B; C), and suppose
(E +BF1)

�1 exists. Then,F1(E +BF1)
�1B = 1 if and only if det

(E) = 0.

~V (s) � ~U(s)

� ~N(s) ~M(s)
=

s(E + L1C)� (A+ L2C) �B �(sL1 � L2)

F I 0

C 0 I

(6)

M(s) U(s)

N(s) V (s)
=

sE �A �BF B sL1 � L2

F I 0

C 0 I

: (7)
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Proof: We will prove the result for two-dimensional
plant, which can be generalized to n-dimensional plant readily.

Let E =
e11 e12

e21 e22
, A =

a11 a12

a21 a22
, B =

b1

b2
,

F1 = ( f11 ; f12 ), then

E +BF1 =
e11 + b1f

1
1 e12 + b1f

1
2

e21 + b2f
1
1 e22 + b2f

1
2

(17)

det(E +BF1) =det
e11 b1f

1
2

e21 b2f
1
2

+ det
b1f

1
1 e12

b2f
1
1 e22

+ det
e11 e12

e21 e22

=det

1 �f11 �f12
b1 e11 e12

b2 e21 e22

(18)

(E +BF1)
�1 =

1

det(E +BF1)

e?11 e?21

e?12 e?22
(19)

where e�ij (i; j 2 f1; 2g), is the cofactor ofeij + bif
1
j , that is,

(�1)i+j det[(E + BF1)(ijj)], where(E +BF1)(ijj) stands for the
submatrix of(E +BF1) obtained by deleting rowi and columnj[6].
Now, it follows that

F1(E +BF1)
�1
B

=
1

det(E +BF1)
( f11 ; f12 )

e?11 e?21

e?12 e?22

b1

b2

=
1

det(E +BF1)

� b1f
1

1 e
?
11 + b1f

1

2 e
?
12 + b2f

1

1 e
?
21 + b2f

1

2 e
?
22

=
1

det(E +BF1)

� f
1

1 det
b1 e12 + b1f

1
2

b2 e22 + b2f
1
2

+ f
1

2 det
e11 + b1f

1
1 b1

e21 + b2f
1
1 b2

=
1

det(E +BF1)
det

0 �f11 �f12
b1 e11 + b1f

1
1 e12 + b1f

1
2

b2 e21 + b2f
1
1 e22 + b2f

1
2

=
1

det(E +BF1)
det

0 �f11 �f12
b1 e11 e12

b2 e21 e22

: (20)

In comparison with (18) and (20), one has

F1(E +BF1)
�1
B

=

det

0 �f11 �f12
b1 e11 e12

b2 e21 e22

det

0 �f11 �f12
b1 e11 e12

b2 e21 e22

+ det
e11 e12

e21 e22

(21)

which implies thatF1(E + BF1)
�1B = 1 if and only if det(E) =

det
e11 e12

e21 e22
= 0. This completes the proof.

Remark 3: Theorem 4a shows thatM(s) andN(s) in (16) are both
strictly proper and stable for single-input generalized plant with sin-
gularE. This result paves a way for obtaining proper stable doubly
coprime factorizations from Theorem 2a.

Theorem 5a: Consider a completely stabilizable and properly de-
tectable single-input plant (1) withE being singular. ChooseF1, F2 2
R1�n, L 2 Rn�p such that Conditions 1) and 2) hold in Theorem
2a. Let� be a negative-real number. Define (22)–(23), as shown at the
bottom of the next page. Then, all the corresponding conclusions spec-
ified in a)–d) of Theorem 2a still hold.

Proof: Note that in Theorem 2a,~N(s), ~M(s), U(s), V (s) are
all proper stable, while~V (s) 2 S , ~U(s) 2 S1�p, M(s) 2 RH2, and
N(s) 2 RHp�1

2 from the aforementioned analysis. Let

~Vma(s) =(s� �)�1 ~V (s)

~Uma(s) =(s� �)�1 ~U(s)

Mma(s) =M(s)(s� �)

Nma(s) =N(s)(s� �): (24)

Then,~Vma(s), ~Uma(s),Mma(s),Nma(s) are all proper stable. From
(24) and the conclusions b)–d) of Theorem 2a, it can be shown easily
thatMma(s) is nonsingular,Nma(s)M

�1
ma(s) = G(s) and

~Vma(s) � ~Uma(s)

� ~N(s) ~M(s)
�

Mma(s) U(s)

Nma(s) V (s)
=

I 0

0 I
: (25)

From (3), one has

( ~Vma(s); � ~Uma(s) )=(s� �)�1 ( ~V (s); � ~U(s) )

=(s� �)�1
sE �A � LC �B L

�(sF1 � F2) 1 0

=

s� � sF1 � F2 1 0

0 sE � A� LC �B L

1 0 0 0

:

(26)

Using (16) and noting that1 � F1(E + BF1)
�1B = 0, then (27),

shown at the bottom of the next page, holds.
By substituting( ~Vma(s); � ~Uma(s) ) in (26),(� ~N(s); ~M(s) )

in (3),
Mma(s)

Nma(s)
in (27),

U(s)

V (s)
in (16), respectively, into

~Vma(s) � ~Uma(s)

� ~N(s) ~M(s)
and

Mma(s) U(s)

Nma(s) V (s)
, one completes the

proof.
Remark 4: Theorem 5a is an improved modification of Theorem

2a for single-input plants withE singular, because all transfer func-
tions in (22)–(23) are proper and stable. Hence, two parameterizations
of all causal properly stabilizing controllers can be obtained, which

M(s) U(s)

N(s) V (s)
=

s(E +BF1)� (A+BF2) B �L

�Fc I � F1(E +BF1)
�1B F1(E +BF1)

�1L

C 0 I

(16)
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read as shown in (28)–(29) at the bottom of the page. Note that if a)
the conditiondet[( ~Vma(s) + Q(s) ~N(s))(1)] 6= 0 is replaced by
det[ ~Vma(s) +Q(s) ~N(s)] 6� 0 in (28), and b) a similar manipulation
is made in (29), then one gets two parameterizations of all properly sta-
bilizing controllers.

B. Single-Output Plant Case

Similar to the discussion above for single-input plant, one can show
the following results for single-output plant without proofs.

Theorem 4b: For a single-output plant(E;A; B;C), and assuming
(E + L1C)�1 exists, thenC(E + L1C)�1L1 = 1 if and only if det
(E) = 0.

Theorem 5b: Consider a properly stabilizable and completely de-
tectable single-output plant (1) withE being singular. ChooseF 2
Rm�n, L1, L2 2 R

n�1 such that Conditions 1) and 2) hold in The-

orem 2b. Let� be a negative real number. Define (30)–(31), shown at
the top of the next page, whereLc = (A+L2C)(E+L1C)�1L1�L2.
Then, all the corresponding conclusions specified in a)–d) of Theorem
2a still hold.

Remark 5: Theorem 5b is an appropriate modification of Theorem
2b for single-output plants withE singular, because all transfer func-
tions in (30)–(31) are proper stable. Hence, two parameterizations of all
causal properly stabilizing controllers can be obtained, which read as

K(s)= ~V (s) +Q(s) ~Nmb(s)
�1

~U(s) +Q(s) ~Mmb(s) j

Q(s) 2 RHm�1
1 ; det ( ~V (s) +Q(s) ~Nmb(s))(1) 6= 0

(32)

~Vma(s) � ~Uma(s)

� ~N(s) ~M(s)
=

s� � sF1 � F2 1 0

0 sE �A� LC �B L

1 0 0 0

0 C 0 I

(22)

Mma(s) U(s)

Nma(s) V (s)
=

s(E +BF1)� (A+BF2) ��B + (A+BF2)(E +BF1)
�1B �L

�Fc �Fc(E +BF1)
�1B F1(E +BF1)

�1L

C C(E +BF1)
�1B I

: (23)

Mma(s)

Nma(s)
=

M(s)

N(s)
(s� �)

=

s(E +BF1)� (A+BF2) B

�Fc 0

C 0

(s� �)

=

s(E +BF1)� (A+BF2) ��B + (A+BF2)(E +BF1)
�1B

�Fc �Fc(E +BF1)
�1B

C C(E +BF1)
�1B

: (27)

K(s) = ~Vma(s) +Q(s) ~N(s)
�1

~Uma(s) +Q(s) ~M(s) j

Q(s) 2 RH1�p
1 ; det ( ~Vma(s) +Q(s) ~N(s))(1) 6= 0 (28)

= [U (s) +Mma(s)Q(s)] [V (s) +Nma(s)Q(s)]�1 j

Q(s) 2 RH1�p
1 ; det [(V (s) +Nma(s)Q(s))(1)] 6= 0 : (29)
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~V (s) � ~U(s)

� ~Nmb(s) ~Mmb(s)
=

s(E + L1C)� (A+ L2C) �B �Lc

F I �F (E + L1C)�1L1

��C + C(E + L1C)�1(A+ L2C) �C(E + L1C)�1B �C(E + L1C)�1Lc

(30)

M(s) Umb(s)

N(s) Vmb(s)
=

sE � A�BF �(sL1 � L2) B 0

0 s� � 0 1

F 0 I 0

C 1 0 0

(31)

= [Umb(s) +M(s)Q(s)] [Vmb(s) +N(s)Q(s)]�1 j

Q(s) 2 RHm�1
1 ; det [(Vmb(s) +N(s)Q(s))(1)] 6= 0 :

(33)

C. MIMO Case

In this section, we shall extend our work for single-input and single-
output systems to the MIMO case.

Theorem 6a: Consider a triple(E;A; B) with E;A 2 Rn�n,
B 2 Rn�m, q := rank(E), and rank(B) = m � n. Assume
there existsF1 2 Rm�n such thatE + BF1 is nonsingular. Then
F1(E + BF1)

�1B = Im if and only if q = n �m.
Proof: Let U := (E + BF1)

�1 andV := F1U , it is clear that
EU + BV = In.

Necessity. SupposeF1(E + BF1)
�1B = Im, i.e., V B = Im,

which impliesEUB = 0. ThenIm(B) � Ker(EU). Thusm =
rank(B) � n � q. Notice that,(E + BF1)

�1 exists if and only if
rank(E;B) = n, i.e.,Im(E) + Im(B) = Rn, givingm � n � q.
Therefore, one has shownm = n� q, equivalentlyq = n�m.

Sufficiency. Supposeq = n � m. Sincerank(E;B) = n, there
exists a nonsingular matrixP 2 Rn�n such that

( ~E; ~B) := P (E;B) =
E1 0

0 Im

whereE1 2 R
(n�m)�n has full-row rank. Next, put

~U := UP
�1 = (U1 U2 ) ; and ~V := V P

�1 = (V1 V2 )

where the first and second submatrices have respectivelyn � m and
m columns. Then,EU + BV = In implies ~E ~U + ~B ~V = In giving
E1U1 = In�m, E1U2 = 0, V1 = 0 andV2 = Im. Thus

F1(E +BF1)
�1
B = V B = ~V ~B = (0 Im )

0

Im
= Im:

Remark 6: rank(B) = m is a necessary condition for the validity
ofF1(E+BF1)

�1B = Im. Since this condition is standard in control,
it has been added to the assumptions. Form = 1, the theorem above
coincides with the result presented by Theorem 4a for single-input case.
Based on Theorem 6a, theproper stabledoubly coprime factorizations
of Theorem 5a can be extended to multi-input plants withrank(B) =
m � n andrank(E) = n�m. Specifically, we can replace 1,s� �,

�B in Theorem 5a, respectively, withI , sI � �a, B�a for multi-
input systems, where�a 2 R

m�m is a stable matrix. The resulting
parameterizations of all causal properly stabilizing controllers can be
obtained in the forms (28)–(29), whereQ(s) 2 RH1�p

1 is replaced by
Q(s) 2 RHm�p

1 .
Theorem 6b: Consider a triple(E;A; C) withE;A 2 Rn�n,C 2

Rp�n, q := rank(E), andrank(C) = p � n. Assume there ex-
istsL1 2 Rn�p such thatE + L1C is nonsingular. Then,C(E +
L1C)�1L1 = Ip if and only if q = n � p.

Proof: This proof is similar to that for Theorem 6a, so it is
omitted.

Remark 7: Based on Theorem 6b, the result of Theorem 5b can
be extended to multi-output plants withrank(C) = p � n and
rank(E) = n � p. Specifically, we can replace 1,s � �, �C in
Theorem 5b respectively withI , sI � �b, �bC for multi-output
systems, where�b 2 R

p�p is a stable matrix. The resulting param-
eterizations of all causal properly stabilizing controllers can also be
presented in the forms (32)–(33), whereQ(s) 2 RHm�1

1 is replaced
by Q(s) 2 RHm�p

1 .

V. CONCLUSION

For generalized dynamical systems(E;A;B; C) with E singular,
which are either single-input or single-output, proper stable doubly co-
prime factorizations are obtained by using proportional and derivative
state feedback (or output injection), enabling the parameterization of all
causal properly stabilizing unity feedback controllers. The extensions
for the multi-input case and the multi-output case are also presented.
The results of [5] are hereby significantly improved.
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