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Abstract. This paper introduces a probabilistic formulation in terms of
Maximum-likelihood estimation to calculate the optimal deformation
parameters, such as scale, rotation and translation, between a pair of
fingerprints acquired by different image capturers from the same finger.
This uncertainty estimation technique allows parameter selection to be
performed by choosing parameters that minimize the deformations un-
certainty and maximize the global similarity between the pair of finger-
prints. In addition, we use a multi-resolution search strategy to calculate
the optimal deformation parameters in the space of possible deforma-
tion parameters. We apply the method to fingerprint matching in a pen-
sion fund management system in China, a fingerprint-based personal
identification application system. The performance of the method
shows that it is effective in estimating the optimal deformation pa-
rameters between a pair of fingerprints.

1 Introduction

Fingerprint-based biometric systems have attracted great interest of researchers to
find new algorithms and techniques for fingerprint recognition in the last decade.
Great progress has been made in the development of on-line fingerprint sensing tech-
niques [1, 2, 3] and, as a consequence, several small and inexpensive sensing ele-
ments have overrun the market. Significant improvements have been achieved on the
algorithmic side as well [2, 3]. However, a large number of challenging problems
[4,5] still exist. For example, a pension fund management system in China, a finger-
print-based personal identification application system, requires that the matching
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algorithm be more tolerant with deformations and non-linear distortions, which influ-
ence the performance of these algorithms in fingerprints acquired by different image
capturers.
Although many methods [3,4,5] have been proposed and succeeded in dealing with
many similar problems mentioned above, they, to the best of our knowledge, are only
designed for identifying a pair of fingerprints acquired by the same image capturer
and may be invalid when applied to fingerprint identification for a pair of fingerprints
produced by different image capturers. In addition, it is very difficult for many re-
searchers to find an effective and efficient optimization algorithm capable of auto-
matically calculating the optimal deformation parameters between the pair of finger-
prints.

Thereby, we introduce in this paper a probabilistic formulation in terms of Maxi-
mum-likelihood estimation to automatically model the deformations, such as scale,
rotation, and translation, between a pair of fingerprints. This uncertainty estimation
technique adopts the strategy of replacement of the local similarity between two fin-
gerprints by their global similarity in estimating their deformation parameters. To
search the optimal deformation parameters in the space of possible deformation pa-
rameters, we use a multi-resolution search strategy in examining the hierarchical cell
of this space of possible deformation parameters, by which this space is divided into
cells, and then the algorithm can determine which cells could contain a position satis-
fying the acceptance criterion. The motivation of our effort is that a good comprehen-
sion of the deformation dynamics can be very helpful for designing new robust (de-
formation tolerant) fingerprint matching algorithms. The performance of our method
proves that it is an effective method of dynamically estimating the deformation pa-
rameters between a pair of fingerprints.

2 Deformation Analysis

Pressing the finger’s tip against the plain surface of an on-line acquisition sensor
produces, as the main effect, a 3d to 2d mapping of the finger skin. The user’s ran-
dom placement brings out the deformations, such as rotation and translation, between
a pair of fingerprints acquired by the same image capturer from the same finger.
There is also scale deformation between a pair of fingerprints acquired by different
image capturers. These deformations in fingerprints greatly influence the performance
of a fingerprint-matching algorithm.

Many methods [1,8,9] in literature explicitly attempt to model fingerprint defor-
mations for a pair of fingerprints acquired by the same image capturers. However,
few are designed for a pair of fingerprints acquired by different image capturers. And
many fingerprint-based personal identification application systems, such as the men-
tioned pension fund management system in China, require that their matching algo-
rithms be tolerant with some factors, such as resolution and size, which these image
capturers bring out, and therefore greatly influence the performance of these algo-
rithms.  Hereby, to model deformations between a pair of fingerprints acquired by
different image capturers for fingerprint matching, we investigate the characteristics
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of mapping and introduce a probabilistic formulation in terms of maximum-likelihood
estimation.

2.1 Fingerprint Minutiae

A fingerprint is the pattern of ridges and valleys on the surface of a finger. The
uniqueness of a fingerprint can be determined by the overall pattern of ridges and
valleys as well as the local ridge anomalies (a ridge bifurcation or a ridge ending, call
minutiae points) which posses the discriminatory information. Our representation for
the fingerprint consists of positional, directional, and type information of minutiae.
Let M(F)={(xi, yi, αi, βi)}, i=1,2,…,m(F)  be the minutiae set of fingerprint F con-
taining the position information (x, y), directional information (α), and minutiae type
information β (β=0 indicates a ridge ending and β=1 indicates a bifurcation) for m(F)
minutiae elements in fingerprint F. Parameter m(F) is the number of minutiae in fin-
gerprint F. For convenience, M(F, i) is used to represent the ith minutia Mi in finger-
print F.

2.2 Affine Transformation

For a pair of fingerprints F and G acquired from the same finger, an ink-on-paper
fingerprint and a live-scanned fingerprint, there are deformations, including transla-
tion, scale, rotation and so on, between them. Let M(F)={M(F, i)=(xi,yi,α i,β i),
1≤i≤m(F)}and M(G)={M(G, j)=(xj, yj,αj,βj), 1≤j≤m(G)} to be the minutiae sets of
fingerprint F and G respectively where m(F) and m(G) are the numbers of minutiae
elements in fingerprint F and G respectively. Both M(F) and M(G) can be considered
to be sets of discrete points at locations of the occupied pixels in fingerprint F and G.
Considering minutiae sets: M(F) and M(G), we impose an affine transformation
model T that relates these two minutiae sets, i.e. T: M(F)→ M(G). The parameterized
affine transformation model T is invoked when it can be safely assumed that spatial
variations of pixels in a region can be represented by a low-order polynomial [7].
Five random variables θ (-90<θ≤90), tx, ty, sx, and sy (sx, sy >0) in the affine transfor-
mation model are used to describe the rotation, scale, translation deformations be-
tween fingerprint F and G where tx and ty represent horizontal and vertical translation
respectively, sx and sy correspond to horizontal and vertical scale respectively, θ cor-
responds to rotation. These random variables can be thought of five functions that
map the input fingerprint minutiae set, M(F), into the template fingerprint G. But, the
type of M(F, i) keeps invariable. The new minutia M(F, i) can be presented by (x’i,
y’i, α’ i, β i) = (sxcosθ+sy sinθ+ tx, -sxsinθ+sycosθ+ ty, arctan[(syα i)/ sx ], β i ).

2.3 Constructing the Probability Density Function (PDF)

M(F), the minutiae set of fingerprint F, is mapped into the template fingerprint G
using the affine transformation model T. To formulate the problem in terms of maxi-
mum-likelihood estimation of the deformations, including scale, translation, and rota-
tion, we must have some set of measurements that are a function of these deformation
parameters between fingerprints F and G.  Similar to methods based on the Hausdorff



424      Yuliang He et al.

distance [7], we use the Hausdorff distance from each minutia in fingerprint F (with
respect to deformation parameters specified byθ, tx, ty sx, and sy) to the closest occu-
pied minutia in fingerprint G as our set of measurements. Let di (θ, tx, ty sx, sy) denote
these Hausdorff distances. In general, these distances can be found quickly for any θ,
tx, ty sx, and sy, if we pre-compute the Hausdorff distance transform of fingerprint G
by Equality 1 on condition that  the distance between (x’ i, y’ i) and (x j, y j) is less than
εl and |a’i- a’j|<εa, where Mi (1≤i≤m(F)) is the ith minutia in fingerprint F after the
minutia set M(F) is mapped into the fingerprint G, and Mj ( 1≤j≤m(G)) in fingerprint
G is the jth minutia and the closest minutia to the mapped minutia Mi. The mentioned
condition, a bounding box, can accelerate the rate of searching and reduce errors
during matching where εl and εα are thresholds of positional and directional errors. If
the mapped minutia Mi meets the mentioned condition, it is reported as the possible
position in fingerprint F.

jijiiyxyxi MMMMdttssd −== ),(),,,,(θ (1)

To yield a matching criterion, A probability density function (PDF), a function p(di

(θ, tx, ty sx, sy)) (1≤i≤m(F)), is used to measure the global similarity which consists of
local minutia similarity. p(d i (θ, tx, ty sx, sy)), the PDF of Hausdorff distance, can be
obtained by Equality 2 where ∆βi=|βi (F)- βj (G) |, σ2=(ε2

l+ε2
a), and if x=0, f(x)=1;

Otherwise, f(x)=λ (0<λ≤1). f(x) is used to evaluate the type of a minutiae. If the type
of M(F, i) in fingerprint F is different from the type of M(G, j) in fingerprint G, their
PDF should be discounted by λ (0<λ≤1) .
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2.4 Maximum-Likelihood Measurement

The joint PDF for the Hausdorff distances, given θ, tx, ty sx, and sy, can be approxi-
mated as the product of each individual PDF by Equality 3 where p(di (θ, tx, ty sx, sy))
is PDF of di(θ, tx, ty sx, sy) evaluated by deformation parameter θ, tx, ty sx, and sy, if the
distance measurements are independent. We have found that this yields accurate
results since the correlation among Hausdorff distances falls off quickly as the points
become farther apart.
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To find the most likely θ, tx, ty sx, and sy, we find the deformation parameters that
maximize Equality 3. It is often easier to work with the logarithm of Equality 3 since
this involves addition, rather than multiplication, and yields a measure that preserves
the ordering of the deformations.
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a, the first term in equality 4, is irrelative with deformation parameters θ, tx, ty, sx, and
sy, and therefore ∂a/∂θ=∂a/∂tx=∂a/∂ty=∂a/∂sx=∂a/∂sy=0. h(θ, tx, ty sx, sy), the second
term in equality 4, is a function of θ, tx, ty sx, and sy, and directly influences the prob-
ability density function when deformation parameters θ, tx, ty sx, and sy change. Theo-
retically, we seek deformation parameters θ, tx, ty sx, and sy that maximize this likeli-
hood function on condition that ∂h/∂θ=∂h/∂tx=∂h/∂ty=∂h/∂sx=∂h/∂sy=0. Thereby we,
theoretically, can calculate the optimal deformation parameters θ, tx, ty sx, and sy in
the five-dimension real space, S={(θ, tx, ty ,sx,sy): θ∈(-90,90), tx∈(-w,w), ty∈(-
h,h),sx∈(sxs,sxl),sy∈(sys,syl)} where w and h are the width and height of finger-
print G respectively, sxs, and sxl correspond to the possible minimal and maximal scale
horizontal deformations in fingerprint F, and sys and syl correspond to the possible
minimal and maximal vertical deformations in fingerprint F.

But it may be difficult to find the optimal deformation parameters θ, tx, ty sx, and sy

which meet Equality 11 and maximize this likelihood function a-h(θ, tx, ty sx, sy) in
the discretized space S, because space S may not include the position that maximizes
Equality 4.  Hereby, we use a search strategy to obtain the possible optimal deforma-
tion parameters in discretized space S.

2.5 Search Strategy

To determine these deformation parameters θ, tx, ty sx, and sy that maximize the likeli-
hood function developed above, we use a search strategy that generalizes previous
methods for matching with the Hausdorff distance[8] in the discretized five-
dimension space S. This method divides space S into cells and determines which cells
could contain a position satisfying the acceptance criterion. The cells that pass the test
are divided into sub-cells, which are examined recursively, while the rest are pruned
(Fig.1). If a conservative test is used, this method is guaranteed to find the best loca-
tion in the discretized search space S. The basic idea of the method is to use a multi-
resolution search that examines a hierarchical cell decomposition of the space of
possible deformation space.

To find whether some cell C in the five-dimension space S may contain a position
meeting the criterion (Equality 4), that is, fi (θ, tx, ty sx, sy)→0 (i=1…5), we begin with
examining the pose c at the center of the cell C.  A five-dimension bound is computed
on | fi (θ, tx, ty sx, sy)| and treated as a function defined by: ∆C={|| fi (θ, tx, ty sx, sy)||,
i=1,…,5}. If  ΔC<ε ( a very litter five-dimension bounding), the search process (as
Figure 1) is quilted. Otherwise, we continue searching a minimal bound over the
entire cell C. After we have searched over the entire cell C, we select a sub-cell,
which minimizesΔC in C to the next search process.
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Fig.1. A search strategy used to recursively
divides and prunes cells of the space of defor-
mation parameters S.

3 Experimental Results

Our method is used to estimate the possible optimal deformation parameters for the
fingerprint-matching algorithm designed specifically for the fingerprint-based pen-
sion fund management system in China.

Fingerprint Databases

Two fingerprint databases, an ink-on-paper fingerprint database  (Set A) acquired by
HP-6350C Scanner and a live-scanned fingerprint database (Set B) acquired by
U.are.U-2000 Fingerprint Sensor are produced to evaluate the performance of our
method.  Each database has 204 fingers and one impression per finger. The size of a
fingerprint image in each database is 256×256. But their resolutions are different and
the sizes of their available region are obviously different. Fingerprints in Set A and
Set B, acquired from fingers of the retirees who are older than 55, are of low quality
because the image capturers are of low resolution.  Ink-on-paper fingerprints in Set A
have the following characteristics: 1) low quality because of being often stained; 2)
random placement of a stained finger on a paper. Live-scanned fingerprints in Set B
have good placement of a finger in a small rotation direction.

Validation of Maximum-Likelihood in Estimating the Optimal Deformations

For a random pair of fingerprints (such as, 1-a and 1-b, 2-a and 2-b, and 3-a and 3-b
in Figure 2) selected from Set A and B respectively, the possible optimal deformation
parameters θ, tx, ty sx, and sy  (Table 1) between them are calculated. And minutiae of
fingerprints from Set A are aligned by these optimal values and then mapped to these
fingerprints of Set B (1-c, and 2-c and 3-c).  As the performance above shows, al-
though there are still a few unavoidable false minutiae, which locally influence the
accuracy of positioning mapped minutiae, the method have no impact on global esti-
mation of the deformations.

Validation of Maximum-Likelihood in Fingerprint Verification

In matching experiments, Let Ai (i=1…204) and Bj (j=1…204) denote the ith finger-
print in Set A and the jth fingerprint in Set B respectively. If i=j, Ai and Bj are consid-
ered to be from the same finger. Each fingerprint Ai (i=1…204) in Set A is matched
with each fingerprint Bj(j=1…204) in Set B. The number of matches is
204*204=41616. Let Rij denote the matching result between Ai and Bj. If Rij is higher
than a certain threshold t, Ai and Bj are considered to be from the same finger. Other-
wise, they are considered to be from different fingers. Let nc (0≤nc≤204) denote the
number of correct matches, that is, one match between Ai and Bi is considered as a
correct match if Rii (i=1…204) ≥ t. Let nf (0≤nf ≤41412) denote the number of false
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matches, that is, one match between Ai and Bj (i≠j) is considered as a false match if Rij

(1≤ i,j ≤204 and i≠j) ≥ t. Correct match rate rc= (100%×nc )/204 and false match rate
rf =(100%×nf )/ 41412 are used to describe the performance of our matching algo-
rithm, where rc is in inverse proportion to rf according to t. The matching experiment
is made on a PC computer with PIII 800 CPU. The average time for matching and
enrolling over two fingerprint databases is 2.83 seconds.

1-a 2-a 3-a

1-b 2-b 3-b

1-d 2-d 3-d

Fig. 2. Performance of our method in estimating the optimal deformations

Table 1. Estimated optimal deformation parameters between three pair of fingerprints

θ (°C) sx sy tx ty

1-a and 1-b 1.90 1.45 1.17 -9.00 -16.03
2-a and 2-b 7.82 1.49 1.15 21.01 -71.00
3-a and 3-b -3.31 1.49 1.19 35.11 -24.14

Table 2. Performance of our matching algorithm

t rc (100%) rf (100%)
6.00 90.45 10.30
7.00 86.23 8.80
8.00 82.66 7.10
9.00 72.55 5.70

10.00 70.90 2.40
11.00 63.00 1.00
12.00 59.00 0.00
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4 Summary and Future Work

This paper introduces a probabilistic formulation in terms of maximum-likelihood
estimation to calculate the optimal deformations between a pair of fingerprints. We
also use a multi-resolution search strategy to calculate the optimal deformation pa-
rameters in the space of possible discretized deformations. But there are non-linear
distortions in a finger often produced by individual physical attributes (e.g. force,
torque, linear motion, rotation) except the attributes of the image capturer. And it is
difficult to use a simple transformation model to simulate these distortions of a fin-
gerprint. R. Cappelli and et al built a plastic distortion model [4] to analyze these non-
linear distortions. C.I. Watson and et al proposed a distortion-tolerant filter method
[5] for elastic distorted fingerprint matching. These methods provide us with some
new ideas and one of our further works is to combine these methods mentioned above
and to improve upon our probabilistic formulation. In addition, low-quality finger-
prints may bring out many false minutiae that influence the performance of our
method. Another future work is to improve upon our method in extracting minutiae
from a fingerprint.
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