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Agent-Based Control for Fuzzy Behavior
Programming in Robotic Excavation

Fei-Yue Wang, Fellow, IEEE

Abstract—This paper discusses the concept, formulation, and
implementation of the agent-based control for fuzzy behavior
programming in robotic excavation. Petri net transducers are
introduced to describe excavation control agent coordination and
specification, while fuzzy control rules are used to implement
primitive motions. A prototype laboratory excavation system is
built with PUMA robotic manipulators and a force/torque sensor.
Extensive experiments have been conducted and the results have
demonstrated that the proposed control method is capable of
continuously adapting and replanning its actions based on sensory
feedback, and completing its excavation tasks in dynamic and
unstructured environments.

Index Terms—Agent-based control (ABC), agent coordination,
behavior programming, fuzzy logic, Petri net transducers, robotic
excavation.

1. INTRODUCTION

ARTHMOVING plays an essential role in activities such

as mining, construction, and hazardous waste treatment.
The recent trend toward greater automation of earthmoving ma-
chines, such as backhoes, loaders, shovels, and dozers, reflects
a larger movement in related industries to improve productivity,
efficiency, and safety. However, as pointed out in [19], automa-
tion of fieldworthy earthmovers offers great potentials but is a
difficult problem since these machines must operate with lim-
ited computing and sensing powers in unstructured, dynamic,
outdoor environments, often in poor visibility conditions and
inclement weather.

Over the past decade, a wide range of research efforts have
been taken in modeling, sensing, actuation, control strategies,
and system architectures for automated earthmoving operation,
and several enabling technologies relevant to earthmoving
automation have been developed [3]-[5], [7], [8], [12]-[14],
[16]-[20], [22]. For the control of automated excavators, much
of the research work has been concentrated on backhoe type
excavators [15], [21] and the active control methods proposed
for the cutting blade have been the basis for many studies [1],
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[2], [6]. The major problem for such works is the require-
ment of a mathematical model for interactions of machines
and environments. However, for excavation, especially rock
excavation, it is impossible to predict what exactly will happen
to machines because the characteristics of the materials at the
excavation site cannot be predetermined, and the digging con-
ditions change continuously as machines disturb the material.
This complexity implies that automated excavation machines
might not be able to utilize conventional control methods that
are based on mathematical equations, since it is impractical or
infeasible to develop analytical model to specify interaction
between an excavation machine and its environment [18]. Thus,
new control methods must be developed for such applications.

On the other hand, skilled human operators can achieve
sophisticated control of excavation machines in dynamic, un-
structured and unpredictable environments. This has lead to our
work on using behavior programming, fuzzy control and neural
networks for automated excavation since early 1990s [9]-[11],
[16]-[18], [22]. The motivation for this type of approach is
quite simple: Since the human control process of excavation
tasks requires no analytic models of machine/environment
interactions, it is advantageous to build an excavation control
system using experience and knowledge from skilled human
operators. So far, both laboratory testing with prototype exca-
vation machines and field implementation in industrial wheel
loaders and other type of vehicles have produced successful
results and demonstrated great potentials for our proposed
control method [18], [25], [26], [28].

This paper describes the first part of our work in robotic exca-
vation, fuzzy agent algorithms and their laboratory experiments.
The actual implementation of those algorithms in an industrial
wheel loader and the corresponding field testing results will be
discussed later. The paper is focused on the agent-based con-
trol for fuzzy behavior programming in robotic excavation. The
basic idea is to modify and encapsulate various behavior pro-
grams we have developed for excavation into control agents so
that they can travel and run in a networked environment. This
will enable us to implement a robotic excavation control system
of high performance and intelligence with limited computing
power and memory space. The paper is organized as follows:
Section II explains the basic concept of agent-based control;
Section III introduces Petri net transducers for agent coordi-
nation and specification; Sections IV and V presents various
control agents and primitive motions for excavation and their
fuzzy logic implementations; several lab experiments conducted
by using a PUMA robotic manipulator are described in details
in Section VI, and Section VII concludes the paper with final
remarks.
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II. AGENT-BASED CONTROL FOR EXCAVATION

In the conventional behavior control approach, a robotic ex-
cavation is generally carried out through the three steps of goal
specification, task organization, behavior coordination, and ac-
tion execution [16], [24]. This approach is based on the con-
straint that the robotic excavation control system must be hosted
and supported entirely by the in-vehicle computing facility on
an operational site, normally at remote mining pits. In our new
agent-based control approach, however, we assume that excava-
tion vehicles are connected to a central operation center through
a wireless network, normally via satellite communication as
used currently by some Caterpillar wheel loaders but so far
only for the purpose of service and maintenance. The avail-
ability of the wireless connectivity enables us to design a new
control architecture that can utilize the additional networked
computing power to execute excavation tasks more effectively
and intelligently without actually increasing the cost of system
implementation.

In the agent-based control for behavior programming in
robotic excavation, the robotic excavation control system is
divided into two parts: A local control system for task exe-
cution and a remote supervisor for dispatching and learning.
The local excavation control system is supported by an on-site
mining vehicle and conducts its tasks with a set of default
control agents that are based locally and a set of active con-
trol agents that are provided by the remote supervisor via a
network. When the communication is available and real-time
responses are permitted, active control agents will perform ex-
cavation tasks and normally lead to better results in terms of
productivity and damage to vehicles. If the network is off or a
real-time response is not allowed, then either the current active
control agents or the default control agents will conduct exca-
vation tasks, since they are the only available control agents
for task execution in those situations. The remote supervisor
is hosted by a remote central operation center and connected
to the on-site vehicle via a wireless network. The major func-
tion of the supervisor is to maintain, modify, and even design
control agents for excavation, select and send a particular con-
trol agent or a set of control agents as active control agents
for the optimal performance to the local control system based
on the site characteristics, vehicle capacities, and on-line task
information. The two key issues for the remote supervisor are
effective learning algorithms for improving the performance
of control agents and dispatching algorithms for determining
when and which control agents should be selected and sched-
uled to be downloaded for local excavation tasks [27]. In this
paper, however, we will not address those issues related to the
remote supervisor. Instead, we will focus on the design, specifi-
cation and implementation of the agent-based local excavation
control systems.

For the agent-based control approach, a robotic excavation is
conducted through goal specification, task organization, agent
coordination, and motion execution. Generally, an excavation
goal is either assigned by a human operator or selected by the
control system from a set of predetermined goals. A goal is ac-
complished by organizing appropriate excavation tasks into se-

541

quences of executions. An excavation task is conducted by coor-
dinating active or default control agents based on sensory feed-
back and vehicle conditions. Finally, a control agent executes its
functionality through a sequence of primitive motion commands
that are predesigned and specified by fuzzy logic decision rules.

III. AGENT COORDINATION AND SPECIFICATION

As for design of intelligent machines [22], [23], Petri nets are
used to formalize the process of agent coordination and specifi-
cation. This is accomplished by modeling tasks and agents using
transducers (PNTs). A PNT for an excavation task specifies all
the feasible sequences of agents for its completion, while a PNT
for a control agent defines all the possible sequences of primi-
tive motions for its execution. Another commonly used model
for agent coordination and specification is the finite-state ma-
chine (FSM). The major advantage of Petri nets over finite state
machines is the capability of Petri nets to represent cooperation,
parallelism, and conflict in shared resources and environments
[29].

A PNT, M M, is a six-taple [22]

M=(N, %, A, o, p, F)

where

i) N=(P, T, I, O) is a Petri net with initial marking y;

ii) X is a finite input alphabet;

iii) A is a finite output alphabet;

iv) o is a translation mapping from 7' x (X U {A}) to finite

set of A*;

v) F C R(u) is a set of final markings;
and )\ represents the empty string, A* the set of all strings over
A, and R(u) the reachable set of markings from p.

In the actual modeling, 3 represents the set of resources or
inputs to PNT, A the set of commands or outputs by PNT, Petri
net /N and mapping o determine the state transition and task
execution, 4 and F' specify the initial state of and the set of the
final states to be reached by PNT, respectively.

Using PNT, the process of agent coordination for an excava-
tion task TC can be specified as

TC = (Nh Ea7 Aa70t7 Ht, Ft)

where

i) N;= (P, T:, I, O) is a Petri net with initial marking 1,
underlying all the feasible sequences of control agents for
the task completion;

ii) Y, is the set of control agents applicable to TC;

iii) A is the set of active or default control agents applicable
to TC;

iv) o4 Ti x (8, U {A\}) — A} is a mapping that
o4(t,CA) = CA when CA is an active or default agent
otherwise o4 (t, CA) specifies an alterative agent or agent
sequence for executing CA;

v) F; C R(p) is the set of terminal markings indicating the
task completion.

Fig. 1 illustrates this modeling process for excavation task:

unearth-an-oversize-particle. The Petri net in Fig. 1 specifies
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Fig. 1. PNT for task of “unearth-an-oversized-particle.”

TABLE 1
TYPICAL CONTROL AGENTS FOR EXCAVATION TASKS

Name | CA; : Entry-point-mover
Move the bucket to the initial loading location as instructed by the
higher control level or other modules in the control system;

Name I CAy: Horizontal-digger
Make the bucket dig forward horizontally along a preset elevation,
and small deviations above or below the preset elevation is allowed,;

Name I CAjz: Over-particle-follower
Move the bucket to load over the top of encountered over-sized
particles by digging in parallel to the surface of the particles;

Name I CAy4:Under-particle-follower
Make the bucket to dig down or underneath encountered over-sized
particles within a preset limit on the rotating down angle;

Name | CAs: Bucket-lifter
Lift the bucket from the current position until it clears the pile, and
make it hoist forward and up whenever possible to load more
materials;

Name I CAg:Bucket-extractor

Recover from failures of executing other control agents by extracting
the bucket back to a preset position without considering the lose of
loaded materials;

Name I CAz:Floor-follower

Make the bucket to clear the excavation site by loading forward while
maintaining the contact with the floor of the excavation site;

Name | CAs:Down-digger

Make the bucket to excavate in a downward direction while keeping
its orientation at a preset attack angle, and small deviations from the
preset attack angle are allowed;

Name | CAy: Up-digger

Make the bucket to extract over-sized particles within the material
pile or from the excavation ground and an special effort is made to
prevent the particles from rolling out of the bucket;

Name I CAj9:Pusher
Make the bucket to push over-sized particles away from the loading
path to a location determined by other modules of the control system.

the coordination process of control agents for this specific task,
where

Y. = A, ={CA; : hortizontal-digger
CA, : under-particle-follower
CAy : up-digger
CAg : bucket-extractor
CAj; : bucket-lifter}
F, ={(0,0,0,0,1)}.

A detailed description of control agents for robotic excavation
is given by Table I.

Note that at places p2 and p3, decision conflicts occur and a
selection or specification of the most appropriate control agent
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Fig. 2. PNT for control agent under-particle-follower.

for the current situation must be decided based on the sensory
feedback or external input information.

Similarly, the execution process of primitive motions for an
excavation control agent can be specified by a PNT as

CA = (Ny, Xy, Ay, 04, fha, Fa)

where
i) Ny = (Pa,Tu,1,,0,) is a Petri net with initial marking
14 underlying all the possible sequences of primitive mo-
tions for the agent execution;
ii) X, = A, is the set of primitive motions applicable to
control agent CA;
iii) o4 : 1o X (XpU{A}) — Ay, asimple mapping o (t, p) =
p is assumed here;
iv) F, C R(p,) is the set of terminal marking indicating the
completion of agent execution.
Fig. 2 is an example of PNT for excavation control agent:
under-particle-follower. The Petri net in Fig. 2 specifies the exe-
cution process of primitive motions for the control agent, where

Yp = A;D = {pml,pm3,pm4,pm11,pm14}
F, ={(1,0,0)}.

Table II in the next section presents the complete list of prim-
itive motions for robotic excavation used in this paper.

Clearly, the PNT in Fig. 2 defines four possible sequences in
one execution cycle for control agent under-particle-follower

i) pmz — pmy — pmy;

i) pmy — pmy — pmyy;

iii) pmy — pm;, — pm;;

iv) pmg — pm;, — piny;.
Online and real-time force/torque feedback information must be
used to determine which sequence to be used to carry out the
function of the control agent in the actual excavation.

IV. CONTROL AGENTS AND PRIMITIVE MOTIONS

Since 1992, we have developed a large collection of behavior
programs for a robotic excavation experimental setup at the
University of Arizona, Tucson [17], [18]. Those excavation
behaviors have been constructed and formulated based on
onsite and/or video observation of skilled human operators of
wheel loaders at several open pit mines. Recently, we have
modified and encapsulated those behaviors into control agents
so that they can travel and run in a networked environment.
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TABLE II
PRIMITIVE MOTIONS FOR EXCAVATION CONTROL AGENTS.
Symbol Name
pm move forward parallel to bucket bottom
pm; move upward perpendicular to bucket bottom
pm; move backward parallel to bucket bottom
pmy move downward perpendicular to bucket bottom
pns move forward up
pms move backward up
pm; move forward down
pms move backward down
pny dig forward and rotate up
pmi dig backward and rotate down
pmy dig forward down and rotate down
pn dig backward down and rotate up
pmiz rotate up
pmyy rotate down

Table I presents some control agents for robotic excavation
frequently used in our laboratory experiments that demonstrate
the versatile abilities achieved by a typical excavation machine.
A more comprehensive list of control agents for autonomous
truck loading can be found in [28].

From the functions described in Table 1, it is clear that those
control agents have the following features: 1) the functional
specification of an individual control agent is too broad to be
accomplished by executing a single simple robotic motion; and
2) many terms used in those descriptions are too ambiguous or
at least not specific enough for precise specification, lest accu-
rately predesigned and preprogrammed robotic motions for their
completion. To implement those control agents for excavation,
primitive motions designed for accomplishing simple excava-
tion tasks are introduced.

Table II lists primitive motions applicable for control agents
to utilize for their task execution. Those primitive motions are
developed based on the analysis of basic bucket digging actions
of front-end-loaders. Note that the bucket motion is planar since
both its translation and rotation are confined to the vertical plane
parallel to the main shaft of the loading vehicle.

Those primitive motions are control commands that would
translate the available sensory feedback information, mainly
force/torque signals, to bucket motions. Since it is very dif-
ficult to interpret those force/torque signals precisely, it is
quite natural to pursue fuzzy logic for their representation and
implementation, as described in the following section.

V. Fuzzy LoGic CONTROL RULES FOR PRIMITIVE MOTIONS
OF ROBOTIC EXCAVATION

In our experimental robotic excavation, only force/torque
sensory data are actually used to infer the bucket/environment
interaction. However, since it is not possible to determine
precisely the status of interaction and very difficult to specify
accurately the useful patterns for digging conditions from the
force/torque sensory information, fuzzy-logic based control
rules are used to express primitive motions for excavation.

Fig. 3 shows the coordinate system for the robotic arm,
bucket, and wrist force/torque sensor. Let F' and AF' be the
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Fig. 3. Coordinate system for robotic excavation.

force/torque vector and the force/torque variation during the
two consecutive sampling points, and M be the motion control
vector for bucket, that is

F = (FwaFyan:MwaMwMz)T
AF = (AF,,AF,, AF.,AM,,AM,, AM,)*
M =(A,, AL A, BV)T

where A, and A, are the translational change in the bucket po-
sition along y and z axes, A,. the rotational change in the bucket
orientation along x axis and BV is bucket velocity. Variation
AF in force/torque readings are used to detect collisions be-
tween the bucket and rock particles since it generally is very
difficult or even impossible to differentiate normal resistance
from bucket motion by using instant force/torque information
alone.

As an example, primitive motion dig-forward-and-rotate-up
(pmy) is specified by the following set of fuzzy decision rules:

Rule 1 —IF M, is PL, THEN A, is ZR, A, is PL
A, is PS, and BV is PM

Rule 2 —IF M, is PS, THEN A, is PM, A is PL
A, is PL, and BV is PL

Rule 3 —IF M, is ZR, THEN A, is PM, A, is PL
A, is PL, and BV is PL

Rule 4 —IF M, is NS, THEN A, is PM, A is PL
A, is PL, and BV is PL;

Rule 5 —IF M, is NL, THEN A, is PL, A, is PL
A, is PL, and BV is PL;

Rule 6 —IF F, is NL, THEN A, is PL, A is PS
A, is PS, and BV is PS;

Rule 7 —IF F, is NS, THEN A, is PL, A is PM
A, is PS, and BV is PM;

Rule 8 —IF F, is ZR, THEN A, is PL, A is PL
A, is PS, and BV is PL;

Rule 9 —IF F, is PS, THEN A, is PL,, A, is PL.
A, is PS, and BV is PL;

Rule 10 —IF F. is PL, THEN A, is PL, A is PL
A, is PS, and BV is PL;
Rule 11 —IF AF), is PL, THEN A, is PL, A is PL

A, is PL, and BV is PL;
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Fig. 4. Membership functions for fuzzy linguistic terms.

Rule 12 —IF AF, is PS, THEN A, is PM, A is PL
A, is PM, and BV is PL;

Rule 13 —IF AF, is NS, THEN A, is PS, A, is PL
A, is PL, and BV is PL

Rule 14 —IF AF, is NL, THEN A, is ZR, A, is ZR
A, is PS, and BV is PS.

where (PL, PM, PS,ZR, NS, NM, NL) is a set of fuzzy linguistic
terms for positive large, positive medium, positive small, zero,
negative small, negative medium, and negative large, respec-
tively. Fig. 4 illustrates membership functions for those terms.
Note that in the actual computation, the universe of discourse
of the input and output signals are linearly normalized to inter-
vals [-1000, 1000] and [—100, 100], respectively. A large scale
factor is used for input signals in order to achieve high resolu-
tion, while a small scale factor is applied to evaluate output con-
trols since normally their values are quite small in our laboratory
experiments.

Using the standard procedure for fuzzy reasoning and de-
fuzzification, a crisp value for conducting primitive motion dig-
forward-and-rotate-up can be obtained from the previous deci-
sion rule set once the current force/torque reading and its vari-
ation are available.

In general, a primitive motion pin; can be implemented as a
set of fuzzy decision rules as

Rulel —IF F'is Qil and AF'is AQih THEN M is Uil;

Rule n; — IF F'is Qini and AF'is AQih THEN M is Uini

where n; is the number of rules for pm,, and Q;1, AQ;; and
U;1 are linguistic terms for bucket position and orientation,
force/torque signals and their variation, and motion control
commands, respectively.

1000

Fig. 5. Prototype experimental setup for robotic excavation.

As we have pointed out in Section III, at a particular marking
for a PNT of a control agent, more than one primitive motion
might be enabled and compete for task execution. Therefore,
an arbitration process must be conducted to determine which
primitive motion will be selected for actual action (or firing in
terms of the language of Petri nets). A reasonable rule of ar-
bitration is to select primitive motions based on the levels at
which the preconditions of their fuzzy decision rules are satis-
fied. In this paper, the average value of input membership func-
tions of a primitive motion is used for arbitration, i.e., the primi-
tive motion with the highest average input membership function
value, which is enabled under the current marking of an excava-
tion control agent, will be selected for task execution. When the
highest average input membership function value of a control
agent is below a threshold, a new control agent must be called
upon locally or over the network to replace the current executing
control agent to continue the task.
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Fig. 6. Bucket trajectory of running over-particle-follower.

A similar rule of arbitration is also introduced to resolve the
competition for execution by control agents in a PNT for an ex-
cavation task. Define the highest average value of input mem-
bership functions of all enabled primitive motions of a control
agent as its firing strength; the control agent with the highest
firing strength, which are enabled under the current marking
of the excavation task, will be selected for execution. Various
experimental results conducted in the laboratory have demon-
strated the effectiveness of those simple arbitration rules, as one
can see in the following section.

VI. LABORATORY EXPERIMENTS

To test and demonstrate the effectiveness of the proposed
agent-based control method for robotic excavation, a prototype
experimental setup has been developed at the Robotics and Au-
tomation Laboratory of the University of Arizona, Tucson, with
a joint effort in control hardware design at the Key Laboratory
for Complex Systems and Intelligence Science of the Chinese
Academy of Sciences, Beijing, China. The setup consists mainly
of an excavation site, a force/torque sensor, a PUMA robotic
arm with excavation bucket, an interface board for receiving and
hosting control agents, and a remote supervisory control that
maintain all excavation control agents and communicate exca-
vation tasks and agents to the interface board and PUMA arm
via Internet (see Fig. 5).

A. Simple Excavation Tasks

The first set of robotic experiments was designed to test
and evaluate the performance of individual control agents for
simple excavation tasks. Fig. 6 shows the results of excavation
control agent over-particle-follower. The function of this con-
trol agent is to make the orientation of the bucket follow the
outline of the particle by rotating the bucket tip upwards when
passing over the front of the rock particle and rotating the tip

downwards while moving down along the back of the rock. In
this way, the bucket will try to dig parallel to the rock particle
surface. This feature has enabled the bucket to reduce the resis-
tive forces encountered during the excavation, which leads to a
quick climb and/or descend in the front and/or back of the par-
ticle. This agent is very useful for various robotic excavation
tasks since it can be used to uncover buried (invisible) objects
of any shapes without damaging both buried objects and the
bucket. Note that in Fig. 6 the bucket tip trajectory at the initial
digging is not very smooth. Fig. 7 illustrates the performance
of control agent under-particle-follower when it is used to ex-
cavate a large rock. This experimental run shows the bucket has
to contact the rock twice before it can proceed underneath the
rock; a behavior mimics the actions of a human using a shovel
to dig under a rock. The actual executing record indicates that
in this case the control agent first repeats the sequence of
primitive motions: move-backward (pms), move-down (pm,),
and move-forward down-and-rotate-up (pm, ) until the bucket
tip reaches the point vertically below the initial contact point,
and then starts a sequence of rotate-up (pm,,) and move-for-
ward(pm;) until the bucket is horizontal. Note that in the
last sequence primitive motion move-backward (pmj) is called
upon but not activated.

The results of those two experiments, as well as others, have
demonstrated the adaptability of robotic excavation control
agents to unknown conditions and their effectiveness for simple
tasks in unstructured environments.

B. Complex Excavation Tasks

The second set of experiments was designed to validate and
evaluate the capability and performance of coordinating con-
trol agents for completing complex robotic excavation tasks.
Figs. 8-14 presents the experimental results of achieving the ex-
cavation task of “loading along a horizontal plane and removing
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over the top of the rock, and thus agent over-particle-follower
is called for action. The bucket passes successfully over the top
and down the back of the rock until it reaches its initial exca-
vation elevation. Since the bucket is not perceived to be full,
agent horizontal-digger is selected again to continue the exca-
vation task. At point B, agent over-particle-follower is called
up once again since another rock is detected and the bucket has
loaded some materials already. Finally, at point C the bucket is
perceived to be full and control agent bucket-lifter is employed
to complete the loading task.

Another experiment is given in Fig. 9. In this case, the bucket
contacts the surface of a large particle and digs down to remove
it with control agent under-particle-follower. This agent is se-
lected since the bucket is almost empty and the forces F), and

\J un un nn mu  mun

T T A
0 X 20 300 400
Time sequence

—rrr—vrT
500 600

Fig. 10. Bucket elevation during task execution.

F’. indicates the rock is not facing upwards steeply which usu-
ally means the rock may not be buried deeply. Executing this
agent until point A, the arbitration rule decides to abort it since
the bucket can not rotate down any further, and agent bucket-ex-
tractor is selected to recover the bucket and followed by agent
over-particle-follower until reaching point B where the bucket
comes back to its original digging elevation and agent hori-
zontal-digger is then activated. The bucket is full at point C and
is removed by agent bucket-lifter. Figs. 10 and 11 present the
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Fig. 13. Force F, during task execution.

bucket tip elevation and orientation, and Figs. 11-14 display the
force/torque information during this task execution, where the
feedback at points A, B, and C are marked.

These experimental results indicate that the agent-based con-
trol for robotic excavation can emulate the basic abilities and be-
haviors of human operators for excavators to achieve complex
excavation tasks under unknown environments. Note that some
of experimental results have been published in [17], similar but
new experimental results cannot be published at this time due to
our research contract with Caterpillar Corporation, Peoria, IL.
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Fig. 14. Force F . during task execution.

VII. CONCLUSION

This paper presents an agent-based control for fuzzy behavior
programming in robotic excavation and the corresponding ex-
perimental results in a simulated excavation environment using
a PUMA robotic manipulator. In this approach, the control
problem for robotic excavation is solved by decomposing
complex tasks into various simple actions that can be imple-
mented by control agents through primitive motions. Petri net
transducers and fuzzy logic based decision rules are used to
specify control agents and primitive motions for excavation
tasks. Extensive laboratory experiments validate this approach
and demonstrate its effectiveness.

The control technique developed is an initial step toward au-
tonomous robotic excavation in real-world applications. Related
efforts for applying this technique to industrial wheel loaders for
open pit mining operations have been conducted and will be re-
ported in our future works.
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