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Manual region tracing method for segmentation of infarction lesions in

images from diffusion tensor magnetic resonance imaging (DT-MRI) is

usually used in clinical works, but it is time consuming. A new

unsupervised method has been developed, which is a multistage

procedure, involving image preprocessing, calculation of tensor field

and measurement of diffusion anisotropy, segmentation of infarction

volume based on adaptive multiscale statistical classification (MSSC),

and partial volume voxel reclassification (PVVR). The method

accounts for random noise, intensity overlapping, partial volume effect

(PVE), and intensity shading artifacts, which always appear in DT-MR

images. The proposed method was applied to 20 patients with clinically

diagnosed brain infarction by DT-MRI scans. The accuracy and

reproducibility in terms of identifying the infarction lesion have been

confirmed by clinical experts. This automatic segmentation method is

promising not only in detecting the location and the size of infarction

lesion in stroke patient but also in quantitatively analyzing diffusion

anisotropy of lesion to guide clinical diagnoses and therapy.
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Introduction

Stroke is a life-threatening disease associated with long-term

disability. It is very important to employ the techniques of

diffusion magnetic resonance (MR) imaging, including diffusion

weighted magnetic resonance imaging (DW-MRI) and diffusion

tensor magnetic resonance imaging (DT-MRI) in stroke diagnosis,
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especially at the super-acute stage of stroke. To accurately detect

the location and size of infarct lesions in stroke patients helps

classifying the subtype of stroke (Gonzalez et al., 1999; Lovblad

et al., 1998), quantitatively determining the changes in water

diffusion anisotropy (Mukherjee et al., 2000; Sorensen et al.,

1999; Sotak, 2002), and predicting the clinical condition and

eventual outcome (Lovblad et al., 1997; O’Sullivan et al., 2004).

Manual region tracing methods are used in previous studies to

calculate infarct volume (Baird et al., 1997; Barber et al., 1998;

Mukherjee et al., 2000; Sorensen et al., 1999), but manual

segmentation of infarct lesion is labor intensive and results are

operator dependent.

Automatic or semiautomatic segmentation of infarction lesions

in DW-MR or DT-MR images is still a difficult issue because of

noise, intensity overlapping, partial volume effect (PVE), and

intensity shading artifacts. The existing PVE is due to limited

spatial resolution of the scanner. Intensity shading artifacts are

caused by radio frequency (RF) inhomogeneities. Intensity over-

lapping is caused by similar intensity of infarct lesion and nerve

tracts, which is still an unsolved problem.

The literature about automatic or semiautomatic segmentation

of brain infarct lesion is quite limited. Martel et al. (1999) used a

semiautomatic method to determine infarct volume by DW-MRI.

An adaptive threshold algorithm incorporating a spatial constraint

was used to segment the images. But the misclassification between

susceptible artifacts and nerve tracts cannot be well distinguished.

In fact, the misclassification of nerve tract results from intensity

overlapping in DW-MRI images.

To resolve the problem of segmentation of pathological region

in conventional MR images, atlas-based segmentation technique

has been used (Leemput et al., 1999a, 2001; Moon et al., 2002;

Warfield et al., 1999, 2000). Anatomical templates have been

successfully employed to identify anatomical structures through

nonlinear registration. Leemput et al. (1999b) developed an

automatic segmentation method for magnetic resonance (MR)

image of normal brains by statistical classification using an atlas as

prior knowledge for initialization and also for geometric con-
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straints. Recent extension, detecting brain lesions as outliers

(Leemput et al., 2001), was successfully applied in detection of

multiple sclerosis lesions. Based on the work of Leemput et al.,

Moon et al. (2002) modified spatial atlas to include prior

probabilities for pathology region. Although atlas-based segmen-

tation methods look good in pathological region segmentation

from conventional MR images, it is hard to segment the infarct

region from diffusion MR images due to overlapping intensities

between infarction lesion and normal tissue.

Some approaches have been applied to address the problem of

partial volume (PV) segmentation. Laidlaw et al. (1998) used

histograms taken over voxel-sized regions to represent the contents

of the voxels and identified the mixture of material within the

voxel using a probabilistic Bayesian approach. The Bayesian

approach matches the histogram by finding the mixture of

materials within each voxel, which is most likely to have created

the histogram. But it is not clear how many tissues a voxel contains

for PV distribution, and RF inhomogeneities are assumed to be

negligible. Shattuch et al. (2001) and Noe and Gee (2001)

marginalized over the variables describing the fractional portions

of each pure tissue class and dealt with PV voxels as new set of PV

classes. An additional estimation step is necessary to obtain the

fractional amount of pure tissues in each voxel; and the method

may also oversmooth the classification result.

In this paper, we present a new adaptive unsupervised method

to segment brain infarct lesion from one of the original DT-MR

images of stroke patients, acquired at more than six directions,

based on Bayesian probability theory and partial volume voxel

reclassification (PVVR). The method accounts for random noise,

intensity overlapping, PVE, and intensity shading artifacts. The

method is a multistage process, involving first images preprocess-

ing, second calculation of diffusion tensor and diffusion anisotropy

from DT-MR images, third segmentation of infarction volume

based on region splitting and merging and adaptive multiscale

statistical classification (MSSC), and finally partial volume voxel

reclassification (PVVR). The proposed adaptive MSSC model

accounts for spatial, intensity gradient, diffusion anisotropy, and

contextual information of original DT-MR images of the patient.

The proposed PVVR model makes segmentation more accurate by

using local parameter information.
Materials and methods

Diffusion MR imaging

DT-MRI is a technique for measuring the anisotropic diffusion

properties of water molecules in biological tissues. Twenty patients

with clinically diagnosed brain infarction by DT-MRI scanning

were used in this study. The scans were obtained by 1.5 or 3.0 T

MRI scanner (GE Medical System, Milwaukee, USA; Siemens,

Erlangen, Germany) using diffusion tensor echo planar imaging

with 13 different motion probing gradient directions (TR/TE:

6000–7000/98 ms, matrix: 128 � 128, FOV: 24 cm, slice thickness

5 mm, b value: 1000 s/mm2). The image used for segmentation is 1

of the 13 original DT-MR images acquired.

Image preprocessing

Before calculating the diffusion tensors from DT-MR images,

the images were restored by using a nonlinear anisotropic diffusion
filter (Perona and Malik, 1990) that reduces white noise while

preserving edges and partial volume effects.

Estimation of diffusion tensor and diffusion anisotropy from

DT-MR images

Diffusion is a three-dimensional process and the molecular

mobility may not be the same in all directions (Le Bihan and

Mangin, 2001; Westin et al., 2002; Wiegell, 2003). The proper way

to study anisotropic diffusion is to consider the diffusion tensor.

Diffusion is no longer characterized by a single scalar coefficient

but a tensor D, which fully describes molecular mobility along

each axis and the correlation between these axes:

D ¼
Dxx Dxy Dxz

Dyx Dyy Dxx

Dzx Dzy Dzz

3
5

2
4

The calculation of tensor D is complex and described in detail

by Le Bihan and Mangin (2001). Fig. 1 presents a bsliceQ of the
diffusion tensor volume data from an acute stroke patient. Each

subimage indicates the scalar values of the associated diffusion

tensor component.

Traditional approaches to diffusion tensor imaging involve

converting the tensors into eigenvalue/eigenvector representation

that is rotationally invariant. Every tensor may then be interpreted

as an ellipsoid with principal axes oriented along the eigenvectors

and radii equal to the corresponding eigenvalues. The ellipsoid

describes the probabilistic distribution of a water molecule after a

fixed diffusion time.

Using eigenvalues/eigenvectors, one can compute different

anisotropy measures (Le Bihan and Mangin, 2001; Westin et al.,

2002) to map tensor data onto scalars and to quantitatively estimate

the diffusion anisotropy. The most commonly used invariant

indices are the fractional anisotropy (FA).

FA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 k1 � Tr Dð Þð Þ2 þ k2 � Tr Dð Þð Þ2 þ k3 � Tr Dð Þð Þ2
h ir

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 k21 þ k22 þ k23
	 
q

ð1Þ

Tr Dð Þ ¼ k1 þ k2 þ k3ð Þ=3 ð2Þ

where Tr(D) is the trace of the diffusion tensor D, which represents

the mean diffusivity. Fig. 2 illustrates the measures of the trace

Tr(D) and diffusion anisotropy FA. From Fig. 2b, we can see that

the diffusion anisotropy is higher in white matter (WM) than in

gray matter (GM) or in cerebrospinal fluid (CSF).

Scale space

In recent years, multiscale approaches in image analysis have

been proven as an effective method in terms of describing images

at varying levels of resolution (Escoda et al., 2002; Schnabel and

Arridge, 1996). The underlying image can be represented by a

family of images at different levels of inner spatial scale. Global

structure properties are extracted from the image and smaller scale

features are suppressed at large scales. The detailed structure

characteristics become more prominent at lower scales. Scale space

of original DT-MR image at one direction will be constructed.

Fig. 3 illustrates scale-space stack (Escoda et al., 2002). It is

composed of successive versions of the original DT-MR data set at



Fig. 1. Slice of a diffusion tensor volume. Every element of the image corresponds to one component of the tensor. The tensor field was calculated from original

DT-MR images with 13 directions of an acute stroke patient.
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coarser scales. It is assumed that the bigger the scale is, the less

information referred to local characteristics of the input data will

appear. General information applying to large scales will last

through scale (Escoda et al., 2002). Different scale level t

represents different image spatial resolution. Scale level t = 0

indicates the original DT-MR image. With increasing scale level,

the image is more blurring and contains less information. It is

reasonable to believe that local and high-resolution scale informa-
Fig. 2. Measurements of the trace Tr(D) and diffusion anisotropy FA. (a)

The trace map. (b) FA map.
tion may be related to general and low-resolution scale informa-

tion. This will enable us to extract image structure.

Scale space can be generated by different principles. Linear

scale-space technique blurs important image features such as

edges. Nonlinear scale space overcomes this major drawback and

encourages intraregion smoothing in preference to inter-region

smoothing. Perona and Malik (1990) proposed a partial differential

equation model. The main idea is to introduce a part of edge

detection step in the filtering itself, allowing an interaction between

scales from the beginning in the algorithm. They replaced the heat
Fig. 3. Illustration of scale-space stack (Escoda et al., 2002). Scale space is

composed by the stack of successive versions of the original data set at

coarser scales. The bigger the scale level, the less information referred to

local characteristics of the input data will appear. Scale level t = 0 indicates

the original image.
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equation by a nonlinear equation. The anisotropic diffusion

equation is

B

Bt
y i; tð Þ ¼ div c i; tð Þjy i; tð Þð Þ ¼ c i; tð ÞDy i; tð Þ þjcdjy i; tð Þ ð3Þ

In our case, y(i,t) stands for the blurred intensity of original DT-

MR image on position i and at scale level t; c(i, t) is the diffusion

coefficient, which is assumed to be a variant dependent of the

space location.; we indicate div as the divergence operator, and j
and D are, respectively, as the gradient and Laplacian operators

with respect to the space variables.

The diffusion coefficient is chosen locally as a function of the

magnitude of the gradient of the brightness function.

c i; tð Þ ¼ g jjy i; tð Þjð Þ ð4Þ

Different functions were used for g(d ) giving perceptually similar

results. The following diffusion function is used in our algorithm to

generate scale space

g jjy i; tð Þjð Þ ¼ e � jjy i;tð Þl j=Ksð Þ2
	 


ð5Þ

The constant Ks is fixed either by hand at some fixed value or

using the bnoise estimatorQ described by Canny (1986).

Scale space of original DT-MR data set is generated before

segmentation, and the number of scale level n is confirmed by

experience. Using anisotropic diffusion filter, a series of images

with different and consecutive definition were obtained for

generating the scale space. With increasing scale level, image is

more blurred. For the original DT-MR image with no blurring,

scale level t equals 0 (t = 0). The series images in scale space

will not be subsampled as the scale changes. The segmentation

result at higher scale level t + 1 will be used to initialize the

segmentation at scale level t; when we get the segmentation at

scale level 0 (t = 0), the optimal segmentation result is obtained.

Here DT-MR image at scale level t is denoted by y(t) = ( y(i,t),

ia I), and the corresponding segmentation is then denoted by

x(t) = (x(i,t), ia I).

Multiscale statistical classification (MSSC)

For original DT-MR images of acute or subacute stroke patient,

infarction lesion shows high intensity; and WM and GM have

similar gray intensity. Our purpose is to detect the location and the

size of infarction lesion so we will divide the original image into

three classes, background and CSF, WM and GM, and infarction

lesion.

Using anisotropic diffusion filter, a series of images with

different resolution was obtained. The nonlinear anisotropic

diffusion effectively counters RF inhomogeneities by smoothing

the brain regions. The detail decreases with the increased scale

level. The set of coordinates of the voxel sites in the image is

denoted by I. The blurred image series is represented by y(t),

taN, N = {1,2,. . .,n} (t is the number of scale level, and n is

the maximum of t); yi(t) denotes the image intensity at the

voxel site indexed by i at scale level t. Segmentation of the

image is an assignment of the correct tissue class in every

voxel. The total number of tissue classes in the image is K and

each tissue class is represented by a label from K = {1,2,. . .,k}.
If xi(t) denotes an instance of random variable that represents

the tissue class at the voxel site i, xi(t) = k indicates that the
tissue class k is assigned to the voxel site i at scale level t. A

segmentation on y(t) is then denoted by x at scale level t =

(xi(t), ia I). The process of segmentation is to find x(0) that

represents the correct tissue class at each voxel site given by

original image y(0).

To obtain the optimal segmentation x(t) of y(t), we attempt to

model p( y(t) j x(t)) (the measurement model) and p(x(t)) (the prior

model), which is similar to the method of maximum a posterior

(MAP) estimation (as described in Appendix). We assume that the

noise is additive, white, Gaussian, tissue dependent, and space

variant (Rajapakse et al., 1997). With the assumption, we can get

the measurement model p( y(t)jx(t)). The measurement model is

characterized by the parameter set h(t) = {hi(t), ia I} taN, N =

{1,2,. . .,n}, where hi(t) = {hk,i(t) = (lk ,i(t), rk ,i(t)), kaK}, and

lk,i(t), nk ,i(t), and rk ,i(t) that represent the mean image intensity of

class k at site i, the noise signal at site i for tissue class k, and the

standard deviation of the noise for the tissue class k at site i at scale

level t, respectively.

If the segmentation x(t + 1) is obtained at scale level t + 1, the

parameters h(t + 1) can be estimated accordingly. With the known

parameters h(t + 1) used at scale level t, we get new segmentation

of image y(t) at scale level t. The parameters h(t + 1) of

segmentation x(t + 1) at scale level t + 1 is used to get the next

segmentation at t. After n iterations of segmentation and parameter

estimation, when we reach the original image (t = 0) with the finest

spatial resolution of the image series, the final optimal segmenta-

tion is acquired. Therefore, segmentation can be expressed in two-

step process:

x̂x tð Þ ¼ argmin
x tð Þ

U x tð Þjy tð Þ; ĥh t þ 1ð Þ; x̂x t þ 1ð Þ
� 


ð6Þ

ĥh tð Þ ¼ argmax
h tð Þ

p y tð Þjx̂x tð Þ; h t þ 1ð Þð Þ ð7Þ

where the hat indicates an estimation. In Eq. (6), we estimate the

most likely segmentation given the model parameters for each

class; and in Eq. (7), we estimate the model parameters given the

segmentation. The measurement model parameters are chosen to

maximize the likelihood of the image data. MSSC procedure

converges to a minimum of energy function U(x), after tissue

classes are determined over the image for all iterations. Similar to

the definition of energy function by Rajapakse et al as described

by Eq. (23) in Appendix, we get energy function U(x(t)) at scale

level t.

U x tð Þð Þ ¼ 1

2

X
k

X
iaRk

yi tð Þ � lk;i t þ 1ð Þ
rk;i t þ 1ð Þ

� �2

þ
X
k

X
iaRk

log rk;i t þ 1ð Þ
	 


þ b
X
caC

X
iaRk

Vc xi t þ 1ð Þð Þ

ð8Þ

where Rk represents the voxels that belong to class k. Here,

Vc(xi(t)) is the number of voxels where xj(t) = xi(t) for i and j are

in the clique C. Convergence is decided when the number of

changes of the tissue classes at the voxel sites drops below a certain

threshold.

In DW-MR or DT-MR images, infarction lesion shows up

with high signal intensity while the intensity of nerve tracts is

also high. The overlapping intensities make it hard to identify

nerve tracts from infarction lesion; therefore, it is hard to

accurately detect the infarction volume in stroke patients. We



Fig. 4. Possible edges after MSSC. (a) A region comprised of two tissue

classes. Some voxels near the edges are misclassified as neighbor class

because of PVE. (b) A region comprised of three tissue classes. The strip

between two classes shows the misclassified voxels, which have the similar

intensity with the third class because of PVE.
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resolve the problem by incorporating diffusion anisotropy into the

energy function U(x(t)).

ai tð Þ ¼ jlk;i tð Þ � ri tð Þj ð9Þ

ri tð Þ ¼ adFAi tð Þ ð10Þ

ri(t) represents the effect of diffusion anisotropy FAi(t) on the

original DT-MR image at site i of scale level t. Factor a ensures

the same intensity scope of FA as y, which equals to the highest

gray value of nerve tract tissue in original DT-MR image data set.

ai(t) is the absolute value of the difference between yi(t) and ri(t).

At one voxel site i, if ri(t) is close to the mean gray value of class

binfarction lesionQ, ai(t) will be little. So 1/ai(t) will be high. To

overcome the misclassification of nerve tracts as infarction lesion,

here the energy function U(x(t)) is changed as follows.

U x tð Þð Þ ¼ 1

2

X
k

X
iaRk

yi tð Þ � lk;i t þ 1ð Þ
rk;i t þ 1ð Þ

� �2

þ
X
k

X
iaRk

log rk;i t þ 1ð Þ
	 


þ b
X
caC

X
iaRk

Vc xi t þ 1ð Þð Þ

þ
X
k

X
iaRk

cd
1

ai tð Þ
ð11Þ

where c is a normalizing constant. With the added last term in

energy function U(x(t)) of Eq. (11), normal nerve tracts can be

distinguished from infarction lesion. If one voxel i, which belongs

to normal nerve tracts, is misclassified as infarction lesion, the last

term in Ui(x(t)) will be very high. The bigger c is used, the more

effect is caused by the last term. Voxels are classified by

minimizing energy function U(x(t)), then the misclassification of

nerve tract as infarction lesion can be avoided. Moreover, if this

voxel is not classified as infarction lesion but classified as any of

the other two classes, the last term in U(x(t)) will almost not affect

the general energy. Constant coefficient c is used to adjust the

effect of 1/ai(t), which is confirmed by experience. We classify

every voxel at scale level t by the minimization of U(x(t)), so the

misclassification caused by diffusion anisotropy in diffusion image

can be avoided.

After the segmentation at scale level t is estimated by

minimizing the energy function U(x(t)), the measurement model

parameters can be calculated accordingly. We can get the measure-

ment model parameter set h(t) = {hi(t), iaI} at scale level t, where

hi(t) = {hk,i(t) = (lk,i(t), rk ,i(t)), kaK}, by differentiating log

p( y(t) j x(t), h(t + 1)) with respect to lk,i(t) or rk,i(t), and equating

it to zero. The estimation lk ,i(t) and rk ,i(t) is given by:

lk;i tð Þ ¼ lk tð Þ ¼

X
iaRk

yi tð Þ

jRk tð Þj ; r2
k;i tð Þ ¼ r2

k tð Þ

¼

X
iaRk

yi tð Þ � lk;i tð Þ
	 
2

jRk tð Þj ð12Þ

where Rk(t) denotes the region or the set of all voxel sites belonging

to tissue class k at scale level t.

Partial volume voxel reclassification (PVVR)

Shattuch et al. (2001) and Noe and Gee (2001) marginalized

over the variables describing the fractional portions of each pure
tissue class and dealt with PV voxels as new set of partial volume

classes in segmenting MR images. However, the method does not

suit the issue of segmenting infarction lesion from DT-MR images.

Low spatial resolution makes it more difficult to discern WM from

GM; PV voxels may have the same intensity as pure tissue class.

These make the segmentation more difficult in DT-MR images

than in conventional MR images. In MSSC, we classified the tissue

classes as CSF and background, WM and GM, as well as infarction

lesion. Spatial coherence assumptions are included and we have

adopted the Markov random field (MRF) as prior model and so the

exact computation of the optimal segmentation became intractable.

To solve this problem, we detect the tissue edges and reclassify PV

voxels after rough statistical classification.

As shown in Fig. 4, two possible classification results appear

on PV voxels after MSSC. If the intensity of PV voxel is

approximate to one pure tissue class, there is a strip between two

tissue classes as indicated in b. An additional estimation step is

necessary to obtain the fractionation of the pure tissues in each PV

voxel.

The tissue boundaries are located in rough-classified DT-MR

images by Canny edge detector. It is easy to determine the edge of

tissue because of the smooth region of different tissue obtained in

previously classified DT-MR images. The edges and their

surrounding voxels are treated as possible PV voxels, and we

further reclassified the voxels to refine the segmentation.

PV voxels are represented as a linear combination of intensity

distributions associated with the K possible tissue classes. The

likelihood of the PV voxel can be written as

p yijhð Þ ¼
X
k

pi;kpk yijhkð Þ ð13Þ

h = {hi, iaI}, where hi = (lk ,i, rk ,i), kaK}, represents the known

measurement model parameter set and h = h(0) is acquired from

MSSC. pi,k represents the mixing weight of the class k in the

mixture at voxel site i.

To determine the fractional amount of specified pure tissue

classes within every possible PV voxel, Eq. (13) is solved for pi,k.

Additional constrains are necessary and we make the assumption

that each PV voxel stands for a mixture of two tissue types only.

For PV voxels consisting of pure classes k1 and k2, respectively,

Eq. (13) reduces to:

p yijhð Þ ¼ pi;k1p yijhk1ð Þ þ pi;k2p yijhk2ð Þ; pi;k1 þ pi;k2 ¼ 1 ð14Þ
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hl
i = (lk,i

l , rk,i
l ), kaK, represents the mean intensity and the

standard deviation of class k in the local neighborhood region Ri
l of

site i with a diameter r.

ll
k;i ¼

X
iaRl

i

lk;i

jRl
k;ij

; rl
k;i ¼

X
iaRl

i

yi � ll
k;i

� 
2
jRl

k;ij
ð15Þ

where jRk,l
l j denotes the total number of voxels belonging to tissue

class k in region Rl
i . To overcome intensity inhomogeneities, we

use hi
l instead of hi in Eq. (14).

p yijhl
	 


¼ pi;k1p yijhlk1
� 


þ pi;k2p yijhlk2
� 


; pi;k1 þ pi;k2 ¼ 1 ð16Þ

As the intensity distribution y and the measurement model

parameter set h for every pure tissue classes are known in prior

adaptive statistical classification, we calculate hi
l = (lk,i

l , rk,i
l ),

kaK, using Eq. (15), and the PV voxel at location i, consisting of

tissues k1 and k2, can be obtained by solving Eq. (16) for pi,k. At

every location i of the edges, k1 and k2 are selected according to

the two largest numbers of voxels with the same tissue class in the

region Ri
l. With known pi,k, we reclassify possible PV voxel as a

certain tissue type.

Pseudocodes

To estimate the tissue classes in DT-MR images, a series of

consecutive segmentation at different scale level and partial volume

classification is needed. To begin the algorithm, a starting config-

uration of x(n) is obtained from a rough segmentation that is initially

from region splitting and merging at the highest scale level n. Before

region splitting and merging, we confirmed the number of classes K

and the maximum number of total regions. We split the blurred

image into M/16 regions, where M is the total number of voxels in

the image; and we merge the regions into K tissue classes. Based on

initial rough segmentation, we can get the accurate segmentation

from the original image with the highest spatial resolution in scale

space by MSSC and PVVR with Eqs. (6), (7), (9), (11), (12), (15)

and (16).

The pseudocode for complete segmentation algorithm is as

follows:
Evaluation of MSSC–PVVR method on synthetic data

A 128 � 128 image square was developed and divided into four

regions with three tissue classes to test our synthetic image

algorithm. The gray value is from 0 to 255. The image was filtered

by two or four voxel Gaussian filter in variable radius for

constructing it with different PVE; random noise was added upon

each test to generate various signal-to-noise (SNR). Here SNR is

defined as

SNR ¼ mean interclass contrast=standard deviation of the noise

We compared the performance of our MSSC–PVVR method

with threshold segmentation, adaptive maximum a prior (MAP),

MSSC on the synthetic images. Adaptive MAP method was

described in the Appendix (Rajapakse and Kruggel, 1998;

Rajapakse et al., 1997). Mean false-positive rate (FPR), mean true

positive rate (TPR), and misclassification ratio (MCR) were

calculated for quantitative evaluation of adaptive MAP method

and MSSC–PVVR method. MCR is defined as

MCR ¼ number of misclassified voxels=total number of voxels

For the ideal classification, FPR = 0, TPR = 1, and MCR = 0.

Because the purpose is to evaluate the effect of MSSC–PVVR

method in overcoming PVE and noise disturbance on tissue

classification, here we set c = 0 in Eq. (11). Receiver operating

characteristic (ROC) curves are generated to show the validity of

MSSC–PVVR against noise and PVE.

Evaluation of MSSC–PVVR method on real DT-MRI data

The automatic segmentation results were compared with the

manual region tracing results to validate MSSC–PVVR method on

real DT-MRI data. Several stoke patients with different size and

site of infarction were chosen for quantitative evaluation by

radiologists. The results were quantified by the similarity index

derived from a reliability measurement known as kappa statistic

described by Atkins and Mackiewich (1998) and Zijdenbos et al.

(1994). Consider a binary segmentation as a set A containing the

voxels that are considered to belong to the classification. The

similarity of two segmentations A1 and A2 is given by a real

number Sa{0,. . .,1} that is defined by

S ¼ 2
jA1\A2j

jA1j þ jA2j
ð17Þ

Results

Our new unsupervised segmentation method has been applied

to both synthetic and real DT-MR images to evaluate the algorithm.

For synthetic data, the algorithm comes very close to perfect

classification. Moreover, the results from collected data indicate

that the algorithm works well on real data. The segmentation

algorithm was implemented in the C programming language.

Synthetic data

The performance of the proposed method was compared with

others on the simulated data, as shown in Fig. 5. The original

image is indicated in Fig. 5a with SNR 5.2. Fig. 5b is the result



Fig. 5. Comparison of different segmentation methods. (a) Original image with SNR 5.2. (b) Segmentation result by threshold method. (c) Segmentation result

by adaptive MAP segmentation. Panel c is initialized by b. (d) Segmentation result by MSSC method. (e) Segmentation result by MSSC–PVVR method.
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from threshold segmentation; Fig. 5c adaptive maximum a prior

(MAP); Fig. 5d MSSC; and Fig. 5e MSSC–PVVR. To specifically

compare the effectivity of overcoming PVE and noise disturbance

on tissue classification, we set c = 0 in Eq. (11) of MSSC–PVVR

method. In Figs. 5c, d, and e, obvious difference can be seen where

an incorrect layer of gray tissue has been introduced between the

dark background and the light regions due to PVE. The results

showed that MSSC–PVVR significantly reduces artifacts intro-

duced by adaptive MAP or MSSC at the boundaries of materials.

On synthetic images with different PVE and SNR, we

qualitatively and quantitatively compared the validity of the

methods in Table 1. Mean FPR, mean TPR, and MCR were

calculated, respectively. It is clear that with more serious PVE,

mean FPR and MCR are higher, and mean TPR is lower;

misclassification is increased with noise disturbance as well. The

accuracy of MSSC–PVVR is significantly higher than adaptive

MAP and MSSC in terms of effectively reducing PVE and noise.

For example, if the original synthetic image is added by random

noise (SNR = 5.2) and filtered by Gaussian filter of four voxels

radius, FPR of adaptive Map, MSSC, and MSSC–PVVR are

16.57%, 16.51%, and 10.45%, respectively.

To further clarify the robustness of MSSC–PVVR against noise

and PVE, ROC curves of MSSC–PVVR method are depicted as in

Fig. 6. Fig. 6a shows the ROC curves corresponding to case 1

(SNR = 28.3), case 2 (SNR = 12.2), and case 3 (SNR = 5.2),

respectively. Fig. 6b shows the ROC curves corresponding to case

1 and case 2 with the same SNR = 28.3 and different PVE. With

this comparison, we can conclude that the MSSC–PVVR method is

robust to noise and PVE.

Real DT-MRI data

The segmentation algorithm has been used to segment DT-MRI

scans of 20 patients with clinically diagnosed brain infarction. In

acute and subacute stage of stroke, the cerebral infarct signals are

hyperintensive in diffusion images. Here we divided the image into
Table 1

Comparative FPR, TPR, and MCR for three algorithms: adaptive MAP, MSSC, a

Case SNR Radius of

Gaussian filtera
Adaptive MAP M

FPR (%) TPR (%) MCR (%) FP

1 28.3 2 8.87 96.39 4.55 8

2 12.2 2 9.97 96.31 4.63 9

3 5.2 2 10.23 96.10 4.74 10

4 28.3 4 15.39 94.24 7.89 15

5 12.2 4 15.86 94.08 8.05 15

6 5.2 4 16.57 93.87 8.36 16

a The image was filtered by Gaussian filter in variable radius for different PVE.
three classes K = 3, background and CSF, WM and GM, and

infraction lesion.

Fig. 7 indicates the segmentation results using the MSSC

method at different scale level in the scale space. Columns a

and c are the original diffusion tensor images at decreasing

levels in scale space. Scale level t = {20, 15, 10, 5, 3, 0} is

chosen to be displayed, which denotes the number of

anisotropic diffusion filtering of the image. The image (a-1)

shows the highest scale level t = 20; the image (c-3) shows the

lowest scale level t = 0. It is clear that the increased spatial

resolution associated with decreased scale level. Columns b and

d indicate the segmentation results at the corresponding levels.

Constant Ks = 10 is applied in the anisotropic diffusion filter.

Constants b = 0.25, c = 0.05, and a = 255 are chosen by

experience. Using the segmentation result at scale level t + 1 as

the initial segmentation, we get the segmentation result at scale

level t. When scale level t = 0 is reached, the final

segmentation is obtained accordingly. In all of our experiments,

the highest scale level n is no more than 20.

To compare the proposed method with others on real data,

randomly selected DT-MR images from patients with infarction

lesion were segmented by different methods: (1) Adaptive MAP;

(2) MSSC; (3) MSSC–PVVR. The results are illustrated in Figs.

8–10. The result of adaptive MAP depended on a good initial

segmentation. With a bad initialization, the MSSC or MSSC–

PVVR method will get much better results than adaptive MAP.

With the initialization by region splitting and merging, MSSC

and MSSC–PVVR are more robust and convenient. Moreover,

adaptive MAP makes misclassification due to the overlapping

intensity between infarction lesion and nerve tracts in DT-MR

images, while the MSSC method successfully overcomes

intensity overlapping by using diffusion anisotropy information

from FA map. Using MSSC–PVVR, PV voxels are mostly

detected and can be classified more accurately as shown in Figs.

8c, d, 9c, d, and 10c, d. It confirms that PVVR is necessary and

effective.
nd MSSC–PVVR

SSC MSSC–PVVR

R (%) TPR (%) MCR (%) FPR (%) TPR (%) MCR (%)

.83 96.85 4.53 7.74 97.59 3.24

.94 96.42 4.61 7.94 97.43 3.43

.11 96.11 4.71 8.21 97.08 3.68

.36 94.24 7.80 10.28 95.95 4.66

.82 94.11 8.01 10.32 95.73 4.73

.51 94.00 8.25 10.45 95.56 4.87



Fig. 6. ROC curves of MSSC–PVVR method. (a) ROC curves for cases 1, 2, and 3 with various SNR and the same PVE. (b) ROC curves for cases 1 and 4 with

the same SNR and different PVE.
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Now Zijdenbos et al. (1994) state that although S N 0.7

indicates excellent agreement, it is difficult to interpret the absolute

value of S (Atkins and Mackiewich, 1998). Fig. 11 illustrates the

comparison of manual segmentation and automatic MSSC–PVVR

segmentation method. Table 2 lists both manually and automati-

cally segmented infarction lesion voxels, and similarity index as

well. The similarity between MSSC–PVVR and the expert’s

manual outlined lesion region was very high—always above

0.92, best at 0.98. Two independent manual segmentations were
Fig. 7. Segmentation obtained by MSSC method at different scale levels. Columns

{20, 15, 10, 5, 3, 0} is chosen to displayed here. The image (a-1) shows the hig

Columns b and d are the segmentation results at the corresponding scale levels.
performed by radiologists to measure the intra-observer accuracy,

and the similarity is around 0.97.
Discussions

In MSSC–PVVR, the Gaussian assumption for random noise is

applied (Laidlaw et al., 1998; Marroquin et al., 2002; Martel et al.,

1999; Noe and Gee, 2001; Rajapakse and Kruggel, 1998; Shattuch
a and c show the diffusion images at a decreasing scale level. Scale level t =

hest scale level t = 20; the image (c-3) shows the lowest scale level t = 0.



Fig. 8. Segmentation obtained by different methods. (a) Original cerebral DT-MR image of infarction lesion acquired with 3.0 T. (b) Segmentation by adaptive

MAP. The block arrow points to misclassified nerve tract. (c) Segmentation by MSSC. (d) Segmentation by MSSC–PVVR.
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et al., 2001). Segmentation results were obtained from MSSC by

using both the measurement model and a prior model at different

scale level. AMRF is applied as prior model to impose the continuity

and homogeneity constraints of tissue regions, which is similar as

Rajapakse and Kruggel (1998), so the false positive in lesion

classification is successfully reduced. Incorporation of the disconti-

nuity process into the prior model may improve segmentation result,

but the calculation is more complicated. Using tissue-specific and

spatial-dependent means and standard deviations as parameters in

the measurement model (Rajapakse and Kruggel, 1998), biological

variations and spatial intensity variations are accounted for.

The ICM algorithm adopted by Rajapakse et al. (1997) and

Martel et al. (1999) converges on a local minimum of the energy

function in a few iterations. The initial segmentation is important

for ICM. If the initial configuration is far from the optimal

configuration, the final segmentation may end in a local minimum.

Manual segmentation has been employed sometimes to get an

acceptable initialization even it is labor intensive. We advanced

ICM algorithm by scale space. From coarse level to fine level in

scale space, we get the accurate segmentation in infarction lesion

step by step and the susceptibility artifacts are mostly removed at

the same time. The MSSC method is an iterative process. We

iteratively get the model parameters of the image at lower spatial

resolution and use these parameters to determine the tissue class of

next image at higher resolution until final segmentation of original

image is obtained. MSSC or MSSC–PVVR is less influenced by

the initial segmentation. Rough region splitting and merging are

sufficient to initialize MSSC or MSSC–PVVR. Moreover, by

incorporating the information from the FA map, the MSSC model

can adaptively adjust the energy value according to diffusion

anisotropy, so the misclassification caused by diffusion anisotropy

in DT-MR images can be avoided.
Fig. 9. Segmentation obtained by different methods. (a) Original cerebral DT-MR i

MAP. The block arrow points to misclassified nerve tract. (c) Segmentation by M
Partial volume voxel reclassification is applied after MSSC to

overcome PVE accounting for RF inhomogeneities. PVE exists at

the tissue boundaries of the DT-MR images. A complication in PVE

is that the combined voxels of infarction lesions and CSF or

background may result in similar intensities to WM or GM. The

PVVR model was proposed to overcome PVE that presents at the

tissue boundaries of the image. To account for RF inhomogeneities,

PV voxels are reclassified based uponmeans and standard deviations

of local region other than of whole tissues, that is, different from

other researchers (Laidlaw et al., 1998; Noe andGee, 2001; Shattuch

et al., 2001).MSSC–PVVR ismore accurate than adaptiveMAP and

MSSC because PVE is greatly diminished by PVVR.

The segmentation results by threshold, adaptive MAP, MSSC,

and MSSC–PVVR are analyzed on both synthetic data and real DT-

MRI data, respectively. On synthetic images with different PVE and

SNR, the validity of each method has been compared both

qualitatively and quantitatively. From Table 1, it is clear that if the

PVE is more serious, the mean FPR andMCRwill be higher, and the

mean TPR will be lower. Moreover, misclassification is increased

with noise disturbance. The accuracy of MSSC–PVVR is signifi-

cantly higher than adaptive MAP and MSSC in terms of effectively

reducing PVE and noise. For example, if the original synthetic image

is added by random noise and filtered with Gaussian filter of four

voxels radius, FPR of adaptive Map, MSSC, and MSSC–PVVR is

16.57%, 16.51%, and 10.45%, respectively. As shown in Figs. 8–10,

the segmentation results confirmed that MSSC–PVVR can over-

come intensity overlapping in infarct lesion and nerve tract; is less

sensitivity to initialization, noise, and RF inhomogeneities; and can

well overcome PVE. Analysis of DT-MRI scans in 20 patients with

clinically diagnosed infarction was carried out. The automated

method results in a satisfied segmentation of infarction lesion even

with the presence of noise and RF inhomogeneities of scanners. The
mage of infarction lesion acquired with 1.5 T. (b) Segmentation by adaptive

SSC. (d) Segmentation by MSSC–PVVR.



Fig. 10. Segmentation obtained by different methods. (a) Original cerebral DT-MR image of infarction lesion acquired with 3.0 T. (b) Segmentation by adaptive

MAP. The block arrow points to misclassified nerve tract. (c) Segmentation by MSSC. (d) Segmentation by MSSC–PVVR.
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automated method was quantitatively compared with lesion

delineations by clinical experts. In Table 2, the similarity index

between automatic and manual segmentation is high, always above

0.92. The automatic MSSC–PVVR method highly matches the

manual segmentation, which confirms its accuracy and reproduci-

bility in terms of identifying infarction lesion.

DT-MRI study in both experiments and real stroke patient

suggests that DT-MRI may provide useful information for disease

evolution (Sotak, 2002) by calculating mean apparent diffusion

coefficient (ADC), FA, and lattice index (LI) in normal and stroke

lesion regions. This quantitative information is valuable in

distinguishing old and new lesions (Gonzalez et al., 1999; Martel

et al., 1999; Sotak, 2002) and in assisting accurate diagnosis and

prognosis in stroke (Lie et al., 2004; O’Sullivan et al., 2004;

Sotak, 2002). Unsupervised segmentation method of MSSC–

PVVR makes the procedure feasible, convenient, and reprodu-

cible. It may play an important role in the clinical evaluation of

stroke treatments.
Conclusions

In summary, we have presented a novel MSSC–PVVR frame-

work of automatically segmenting brain infarction lesion from DT-

MR images. The method can overcome the problem of intensity

overlapping caused by diffusion anisotropy, and it was proven

robust even in the presence of noise, PVE, and RF inhomogene-

ities. We validated the MSSC–PVVR method on both synthetic

images and real DT-MR images. Moreover, the accuracy and

reproducibility have been confirmed by clinical experts. The

application of DT-MRI combined with our unsupervised segmen-
Fig. 11. Comparison of manual segmentation and automatic MSSC–PVVR segm

segmentation by radiologist. (c) Automatic segmentation by MSSC–PVVR meth
tation method may play an important role in the clinical evaluation

of new stroke treatments.
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Appendix A

Rajapakse et al. (1997) introduced the segmentation method of

adaptive MAP estimation in details as described below. The

process of segmentation is to find x that represents the correct

tissue class at each voxel site given by image y. We attempt to find

the MAP estimation from the image data. Here p(xjy) is the

posterior density of the segmentation x given the image y. Because

the prior probability of image p( y) is independent of the

segmentation x, from Bayesian theorem

p xjyð Þ~p x; yð Þ ¼ p yjxð Þp xð Þ ð19Þ

The image data at a particular site i represents a noise-

corrupted version of the signature of the tissue class at that voxel.
entation in infarction lesion. (a) Original diffusion MR image. (b) Manual

od. The similarity index of b and c is 0.973.



Table 2

Comparison of manual and automatic segmentation of infarction lesion

Patient Slice

number

Manual

area (voxel)

Auto

area (voxel)

Similarity

index

1 11 619 654 0.973

13 437 471 0.952

2 11 115 128 0.944

12 44 50 0.931

3 12 954 994 0.978

14 782 817 0.963
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We assume that the noise is additive, white, Gaussian, tissue

dependent, and space variant. Here lk ,i, nk,I, and rk,i, respec-

tively, represent the mean image intensity of class k at site i, the

noise signal at site i for tissue class k, and the standard deviation

of the noise for the tissue class k at site i. The measurement

model is characterized by the parameter set h = {hi, ia I}, where

hi = {hk,i = (lk ,i, rk,i), kaK}.

If Rk denotes the region or the set of all voxel sites belonging to

tissue class k, then the conditional density p( yjx) can be written as

p yjxð Þ ¼ j
k

j
iaRk

pk yijhk;i
	 


¼ j
k

j
iaRk

1ffiffiffiffiffiffiffiffiffi
2pð Þ

p
rk;i

exp � 1

2

 
yi � lk;i

rk;i

!2
9=
;

8<
: ð20Þ

The probability density of x is given by a Gibbs distribution

(German and Geman, 1984; Pappas, 1992), having the form

p xð Þ ¼ exp �b
X
caC

Vc xð Þ
)(

ð21Þ

where b is a normalizing constant and the summation is taken over

all the cliques C over the image. A clique is a set of points that are

neighbors of one another.

By substituting Eqs. (20) and (21) in Eq. (19) and omitting the

constant factors, the posterior probability is

p xjyð Þ~exp �U xð Þf g ð22Þ

where the energy function U(x)

U xð Þ ¼ 1

2

X
k

X
iaRk

yi � lk;i

rk;i

� �2

þ
X
k

X
iaRk

log rk;i

	 

þ b

X
caC

Vc xð Þ
ð23Þ

The problem of finding the MAP estimate of the segmentation is

same as the minimization problem of the energy function U(x).
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