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Abstract: Based on the sliding mode control methodology, this paper presents a robust
control strategy for underactuated systems with mismatched uncertainties. The system
consists of a nominal system and the mismatched uncertainties. Since the nominal system can
be considered to be made up of several subsystems, a hierarchical structure for the sliding
surfaces is designed. This is achieved by taking the sliding surface of one of the subsystems as
the first-layer sliding surface and using this sliding surface and the sliding surface of another
subsystem to construct the second-layer sliding surface. This process continues till the sliding
surfaces of all the subsystems are included. A lumped sliding mode compensator is designed at
the last-layer sliding surface. The asymptotic stability of all of the layer sliding surfaces and the
sliding surface of each subsystem is proven. Simulation results show the validity of this robust
control method through stabilization control of a system consisting of two inverted pendulums
and mismatched uncertainties.
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1 INTRODUCTION

Mechanical systems that possess a lower number of

control inputs than the number of degrees of

freedom to be controlled are called underactuated

systems. They arise in numerous situations. Some

undesired properties of their dynamics, such as non-

linearities, non-holonomic constraints, and cou-

plings, make their control design difficult [1].

In recent years, there has been increasing interest

in the control problem of underactuated systems.

Reyhanoglu et al. [2] and Bloch et al. [3] established a

theoretical framework for the control of underactu-

ated systems and proved that a class of underactuated

systems without the gravity term could not be

smoothly stabilized. Yabuno et al. [4] pointed out

that there exists a reachable and stabilizable area of

an underactuated manipulator without state-feed-

back control. Tarn et al. [5] also gave some theoretical

results about the output regulation of underactuated

systems. Shiriaev et al. [6] and Kolesnichenko and

Shiriaev [7] presented a periodic motion planning and

a partial stabilization method for underactuated

Euler–Lagrange systems, respectively. Control meth-

ods for underactuated vessels [8, 9], underactuated

fingers [10], underactuated vehicles [11], underactu-

ated mobile robots [12], and underactuated manip-

ulators [13] have also been reported.

This paper focuses on a class of underactuated

systems. This class that has a control input and

multiple outputs is rather large, and includes

Acrobot [1], inverted pendulum systems [14–17],

TORA [18], ball–beam systems [15], Pendubots [5,

19], etc. They are often used as test beds for research

on non-linear control and education on various

concepts, because they are simple enough to permit

complete dynamic analyses and experiments, but

there exist strong non-linearities and dynamic

couplings. Fang et al. [20] presented a non-linear

coupling control approach for an overhead crane

system. Wai et al. [17] proposed a cascade adaptive
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fuzzy sliding mode control scheme including inner

and outer control loops which was used for stabiliz-

ing and tracking control of a non-linear two-axis

inverted-pendulum servomechanism. Zhang and

Tarn [19] proposed a hybrid switching control

strategy for a Pendubot. Tsai et al. [21] used a

neuro-sliding mode controller to solve the stabiliza-

tion control problem of a see-saw system. In fact, a

canonical state space expression can depict the

class. This paper is focused on the development of

a general control method for this class of systems.

Uncertainties often exist because of external and

internal disturbances, which make the control

problems of the class more complicated. Sliding

mode control (SMC) is a powerful and robust non-

linear feedback control method [22]. The sliding

mode controller is insensitive to system parameter

changes or external disturbances when system states

continue to slide on a sliding surface. Under

matched conditions, SMC can deal with matched

uncertainties effectively (this is the invariable char-

acteristic of SMC [22]). It provides a good candidate

for a control design of this class. Some papers

concerning the control of underactuated systems

using the SMC approach have been published in the

last few years. There exist two crucial issues

associated with the applications of SMC to the class

of underactuated systems with mismatched uncer-

tainties. One issue is how to design a suitable

sliding-surface structure, because the parameters of

the sliding surface of underactuated systems cannot

be calculated directly using the Hurwitz condition as

for linear systems [23]. The other issue is how to

handle the mismatched uncertainties, because most

physical systems do not satisfy the matched condi-

tion of SMC in practice. In this paper, a structure

design for the sliding surfaces for the class is

proposed and attempts are made to deal with

mismatched uncertainties that cannot be destroyed

by the invariable characteristic of the sliding mode.

As far as physical structure is concerned, the class

of mechanical systems consists of several subsystems.

In light of such physical structure, some control

methods based on the SMC approach have been

presented. Xu and Özgüner [24] proposed a SMC

approach to stabilize the parts of the class that exist in

cascaded form. Martinez et al. [25] developed a

hybrid control synthesis by SMC for some two-

degrees-of-freedom (DOF) underactuated systems of

the class with Coulomb friction in the joints. How-

ever, the methods in references [24] and [25] were

only for second-order underactuated systems with

two-DOF (four states) and one input. Lin and Mon

[16] proposed a hierarchical fuzzy SMC scheme.

However, they did not consider the stability of the

subsystem sliding surfaces. Lo and Kuo [15], designed

a decoupled fuzzy SMC law. Unfortunately, it could

only be applied to two-level control. Wang et al. [26]

developed a cascade SMC approach. However, some

controller parameters needed to be frequently

switched to guarantee the system stability. This might

make it difficult to select a group of suitable controller

parameters. Wang et al. [23] designed a hierarchical

sliding mode controller for all stable sliding surfaces,

but the method could not be generalized to under-

actuated systems with more than two subsystems. In

all of these papers, hierarchical sliding surfaces were

designed instead of a conventional single-layer slid-

ing surface. An advantage of the hierarchical structure

is that the sliding surface of each subsystem can be

designed as a second-order system. This provides the

opportunity to choose the parameters of the sub-

system sliding surface. In order to deal with mis-

matched uncertainties, distributed compensators

were designed in references [15] and [16] that com-

pensated the uncertainties at every layer sliding

surface, but this made their controller structures

complex. Both Wang et al. [23] and Xu and Özgüner

[24] considered uncertain systems in their theoretical

analyses, but they were unable to show the robust-

ness of their controllers in their simulation studies.

Moreover, only systems without uncertainties were

considered in references [25] and [26].

In this paper, a robust controller based on the SMC

methodology is presented for a class of underactuated

systems with mismatched uncertainties, which con-

sist of a nominal system and the mismatched

uncertainties. The hierarchical structure of the sliding

surfaces is designed based on the structural char-

acteristics of the nominal system. For the mis-

matched uncertainties, a lumped sliding mode

compensator is designed at the last-layer sliding

surface. The asymptotic stability of all the sliding

surfaces is proven. Simulation results show the

validity of this robust control method by stabilizing

a system consisting of two inverted pendulums with

mismatched uncertainties. This paper is organized as

follows. Section 2 describes the proposed control

method. A stability analysis and simulation results are

presented in sections 3 and 4, respectively. Finally,

conclusions are drawn in section 5.

2 CONTROL STRATEGY DESIGN

The class of underactuated systems with mis-

matched uncertainties can be expressed in a state
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space representation in the form of

_xx1~x2

_xx2~f1 Xð Þzb1 Xð Þuzd1

_xx3~x4

_xx4~f2 Xð Þzb2 Xð Þuzd2

..

.

_xx2n{1~x2n

_xx2n~fn Xð Þzbn Xð Þuzdn

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ

where X 5 [x1, x2, …, x2n]T is the state variable

vector, fi(X) and bi(X) (i 5 1, 2, …, n) are the non-

linear functions of the state variables, they are

abbreviated to fi and bi, di consists of the mis-

matched uncertainties, including system uncertain-

ties and external disturbances and di is bounded by

|di| ( d̄i where d̄i is a known and positive constant,

and u is the single control input.

Equation (1) is the normal form of single-input

multiple-output (SIMO) underactuated systems with

mismatched uncertainties that can be described by

n, fi, bi, and di. If n 5 2, it can represent the Acrobot,

TORA, and single inverted-pendulum system; if

n 5 3, it can express the two-inverted-pendulum

system; if n 5 4, it can be considered as three-

inverted-pendulum system; etc.

Let di 5 0, then equation (1) can be treated as the

nominal system of an underactuated system. The

physical structure of the nominal system means that

it can be treated as being made up of several

subsystems. For example, a three-inverted-pendu-

lum system consists of four subsystems: the upper

pendulum, the middle pendulum, the lower pendu-

lum, and the cart. Using this viewpoint, it is

considered that a hierarchical sliding mode con-

troller can be designed for the nominal system and

that a lumped sliding mode compensator can be

designed for the mismatched uncertainties. The

hierarchical sliding mode controller and the lumped

sliding mode compensator work together to create

robust control for the class with mismatched

uncertainties. In the following two subsections, the

design of the robust controller using the SMC

methodology will be presented for a system such

as equation (1) in a step-by-step manner.

2.1 Hierarchical SMC for the nominal system

The nominal system can represent n subsystems

with a second-order canonical form in terms of the

physical structural characteristic of an underactu-

ated system. The state variables (x2i 2 1, x2i) of the ith

group can be treated as the states of the ith

subsystem. And the state space expression of the

ith subsystem can be described as

_xx2i{1~x2i

_xx2i~fizbiu

�
ð2Þ

The ith subsystem is a second-order system. To be

stable its sliding surface must be in the second and

fourth quadrants. Thus, define its sliding surface (a

linear function) as

si~cix2i{1zx2i ð3Þ

where ci is a positive constant, and is simply the

slope of the sliding surface of this second-order

system. Differentiating si with respect to time t in

equation (3) results in

_ssi~ci _xx2i{1z _xx2i ð4Þ

Substituting equation (2) into equation (4) gives

_ssi~cix2izfizbiu ð5Þ

Let ṡi 5 0, then the equivalent control of the ith

subsystem can be obtained as

ueqi~{ cix2izfið Þ=bi ð6Þ

This equivalent control ueqi is used to guarantee the ith

subsystem goes to its subsystem origin when the ith

subsystem states slides on its subsystem sliding surface.

Depending on the combination of the subsystem

sliding surfaces, a variety of hierarchical SMC laws

can be designed [23, 24, 26]. Also, other control

methods can be combined with the hierarchical

SMC method [15–17, 21]. In this paper, the hier-

archical structure of the sliding surfaces is designed

in the following manner. The sliding surface of one

subsystem is chosen as the first-layer sliding surface

S1. Then S1 is used to construct the second-layer

sliding surface S2, together with the sliding surface of

another subsystem. This process continues until all

the subsystem sliding surfaces are included. Without

loss of generality, the subsystem sliding surface s1 is

selected as S1. The hierarchical structure of the

sliding surfaces is shown in Fig. 1.

In the presented hierarchical structure, it is known

that the ith-layer sliding surface includes informa-

tion on the ith subsystem sliding surface and the

other i 2 1 lower layer sliding surfaces. As a result,
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the ith-layer sliding surface Si and its control law ui

can be defined as follows

Si~li{1Si{1zsi ð7Þ

ui~ui{1zueqizuswi ð8Þ

where li 2 1(i 5 1, 2, …, n) is a constant, l0, S0, u0 are

defined to have a value of zero, uswi (i 5 1, 2, …, n) is

the switching control of the ith-layer sliding surface.

From the recursive formulas (7) and (8), it is possible

to write that

Si~
Xi

r~1

Yi

j~r

aj

 !
sr ð9Þ

ui~
Xi

r~1

uswrzueqr

� �
ð10Þ

here aj 5 lj (j ? i) is a constant for a given i, and

aj 5 1 (j 5 i). The control law can be derived using

the Lyapunov theorem. The Lyapunov function of

the ith layer is selected as

Vi tð Þ~S2
i

�
2 ð11Þ

Differentiating Vi with respect to time t results in

_VVi~Si
_SSi ð12Þ

Differentiating Si with respect to time t in equation

(9) and substituting it into equation (12) yields

_VVi~Si
_SSi~Si

Xi

r~1

Yi

j~r

aj

 !
_ssr

" #
ð13Þ

Substituting equations (2), (4), and (10) into equa-

tion (13) results in

_VVi~Si

Xi

r~1

Yi

j~r
aj

� �
| crx2rzfrzbruið Þ

h i( )

~Si

Xi

r~1

Yi

j~r

aj

 !
|br

"(

|
Xi

l~1
l=r

ueqlz
Xi

l~1

uswl

0
B@

1
CA
3
75
9>=
>;

~Si

Xi

l~1

Xi

r~1
r=l

Yi

j~r

aj

 !
br

2
64

3
75

8><
>: |ueql

z
Xi

l~1

Xi

r~1

Yi

j~r

aj

 !
br

" #
|uswl

)
ð14Þ

In order to have the stability of the ith-layer sliding

surface, let

Xi

l~1

Xi

r~1
r=l

Yi

j~r

aj

 !
br

2
64

3
75ueql

z
Xi

l~1

Xi

r~1

Yi

j~r

aj

 !
br

" #
uswl~{kiSi{gisgnSi

ð15Þ

where ki and gi are positive constants. The switching

control law uswi is obtained from equation (15)

uswi~{
Xi{1

l~1
uswl{

Pi
l~1

Pi
r~1
r=l

Qi
j~r aj

� �
br

� �
ueqlPi

r~1

Qi
j~r aj

� �
br

{
kiSizgisgnSiPi
r~1

Qi
j~r aj

� �
br

ð16Þ

Substituting equation (16) into equation (10) and

letting i 5 n, the hierarchical SMC law can be

obtained as

un~
Xn{1

l~1

uswlzuswnz
Xn

l~1

ueql

~

Pn
r~1

Qn
j~r aj

� �
brueqrPn

r~1

Qn
j~r aj

� �
br

{
knSnzgnsgnSnPn

r~1

Qn
j~r aj

� �
br

ð17Þ

Remark 1

Although the methods in [23], [24], and [26] use a

hierarchical SMC, the hierarchical structures have

Fig. 1 Structure of the hierarchical sliding mode
surfaces

���
��

���
��
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some differences between themselves. In [23] the

hierarchical structure consists of only two levels, and

is designed for second-order systems. The structure

in [26] generalizes the one in [23] for underactuated

systems with n subsystems. Two-layer sliding sur-

faces still exist in [23], with the second layer being

the aggregate of the sliding surfaces of the n

subsystems defined as the first layer. The sliding

surface of [24] has a single-layer structure and is

defined on the basis of a cascade model. The

structure with n layers shown in Fig. 1 and used in

this paper is different from all of them.

Remark 2

Equation (17) is a recursive formula. As equation (17)

has shown, only the switching control of the last-

layer sliding mode controller works and the switch-

ing controls of the other n 2 1 layers are merged

during the derivation. If any state deviates from its

sliding surface in a dynamic process, then the

switching control of the last layer will drive it back

to its own sliding surface. This makes the system

states slide on the last-layer sliding surface. More-

over, the states of every subsystem continue to slide

on their own sliding surface due to the control action

of its own subsystem equivalent control in equation

(6).

2.2 Compensator for mismatched uncertainties

The proposed hierarchical sliding mode controller is

insensitive to matched uncertainties because of the

invariant characteristic of SMC [22]. However,

mismatched uncertainties can not be handled using

this invariant characteristic. In this section a sliding

mode compensator that is able to resist mismatched

uncertainties is designed. To the best of the authors’

knowledge, this is the first time that such a lumped

sliding compensator for mismatched uncertainties

based on the hierarchical structure of Fig. 1 has been

designed.

Generally speaking, there are two methods to

design a compensator for the hierarchical sliding

surfaces. One is to design a distributed compensator

and compensate the mismatched uncertainties at

every layer of the sliding mode surface [15, 16]. Two

disadvantages of this idea are that this makes the

controller structure complex and that if the com-

pensator at a lower layer does not eliminate the

uncertainties, it will affect the stabilities of higher

layers. The other method is to design a lumped

compensator and compensate the mismatched un-

certainties at the last layer. Its advantage is that this

method simplifies the control design. Thus, a

lumped sliding mode compensator at the last layer

is designed in this work. Based on the above

viewpoints, the lumped sliding mode compensator

can be defined as

ucn~

Pn
r~1

Qn
j~r aj

� �
�ddrPn

r~1

Qn
j~r aj

� �
br

ð18Þ

Remark 3

According to the invariable characteristics of SMC,

the matched part in equation (1) could be handled

by the hierarchical sliding mode controller using the

nominal system designed in Section 2.1. However,

there exists a mismatched part in equation (1),

which means that the output of each subsystem

contains uncertainties that cannot be removed using

a controller designed for the nominal system. A

special compensator is needed for this condition.

Using this lumped compensator all the mismatched

uncertainties are removed at the last layer so that the

mismatched uncertainties in every subsystem can be

treated as if they are added to the last-layer sliding

surface where they are compensated. Therefore, the

qualitative stability analysis of the n 2 1 lower layers

of the nominal system can represent the system with

uncertainties as for equation (1), but the uncertain-

ties actually exist so that the system output in

equation (1) contains them, which is different from

the nominal system.

2.3 Total control law

For the control design, the hierarchical sliding mode

controller for the nominal system and the lumped

sliding compensator of the mismatched uncertain-

ties should be able to work together to realize the

robust control of the SIMO underactuated systems

with mismatched uncertainties. Therefore, the total

control law can be written as

u~unzucn ð19Þ

where un is the hierarchical sliding mode control

law of the nth layer; and ucn is the sliding

mode compensator at the nth layer sliding sur-

face. Here un and ucn are given by equations (17) and

(18).
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3 STABILITY ANALYSIS

In this section, the stability of the entire sliding

surfaces is analysed. The stability of the lumped

sliding mode compensator at the last-layer sliding

surface is first analysed.

Theorem 1

Consider an underactuated system with mismatched

uncertainties as described by equation (1), if the

robust control law is adopted as in equation (19) and

the last-layer sliding surface is defined as in equation

(6) (i 5 n), then the last-layer sliding surface is

asymptotically stable.

Proof

Because of the existence of mismatched uncertain-

ties, the Lyapunov function of the actual system with

uncertainties at the last-layer sliding surface be-

comes

�VVn~�SS2
n

�
2 ð20Þ

The mismatched uncertainties make the dynamic

process of the actual system different from the

nominal system. Furthermore, the actual system

become a nominal one when the uncertainties are

compensated. Thus

�SSn~Sn ð21Þ

and

_�SS�SSn~
Xn

r~1

Yn

j~r

aj

 !
�ddrz

Xn

r~1

Yn

j~r

aj

 !
brueqr

" #

{knSn{gnsgnSn ð22Þ

Differentiating equation (20) with respect to time t,

results in

_�VV�VV n~�SSn
_�SS�SSn~Sn

_�SS�SSn ð23Þ

Substituting equations (21) and (22) into equations

(23) yields

_�VV�VV n~Sn

Xn

r~1

Yn

j~r

aj

 !
dr

" #
{ Snj j

Xn

r~1

Yn

j~r

aj

 !
�ddr

" #

{gn Snj j{knS2
n

ð24Þ

Integrating both sides of equation (24) leads to

ðt

0

_�VV�VV ndt~

ðt

0

Sn

Xn

r~1

Yn

j~r
aj

� �
dr

" #

{ Snj j
Xn

r~1

Yn

j~r
aj

� �
�ddr

h i

{gn Snj j{knS2
n dt ð25Þ

Then it is possible to write that

�VVn 0ð Þ{�VVn tð Þ

~

ðt

0

gn Snj jzknS2
nz Snj j

Xn

r~1

Yn

j~r
aj

� �
dr

" #"

{Sn

Xn

r~1

Yn

j~r
aj

� �
dr

" ##
dt

¢

ðt

0

gn Snj jzknS2
n

� �
dt

ð26Þ

Furthermore

�VVn 0ð Þ¢
ðt

0

gn Snj jzknS2
n

� �
dt ð27Þ

Finally, the following equation is obtained

lim
t??

ðt

0

gn Snj jzknS2
n

� �
dt¡�VVn 0ð Þv? ð28Þ

In the light of Barbalat’s lemma, gn Snj jzknS2
n?0

as t R ‘, which means limt??Sn~0, namely, the

last-layer sliding surface Sn is asymptotically stable.

Theorem 2

Consider an uncertain underactuated system such as

equation (1), and define every layer sliding surface as

in equation (6) (i 5 1, …, n 2 1). If the robust control

law is adopted as in equation (19), then the sliding

surfaces of the lower n 2 1 layers are still asympto-

tically stable.

Proof

As previously stated the lumped sliding mode com-

pensator compensates the mismatched uncertainties

at the last layer. Thus, the lower n 2 1 layers can be

treated as being sliding surfaces of a nominal system.

From equation (2), the Lyapunov function of

the ith-layer sliding surface is Vi tð Þ~S2
i

�
2 for

#

#
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1 ( i ( n 2 1. Differentiating Vi(t) with respect to

time t, leads to

_VVi~Si
_SSi ð29Þ

Using the Lyapunov stabilization theorem,

let Ṡi 5 2gisgnSi 2 kiSi (ki and gi are positive con-

stants) as in equation (15). Thus, it is possible to

write that

_VVi~{gi Sij j{kiS
2
i ð30Þ

Integrating both sides of equation (30) yields

Vi 0ð Þ{Vi tð Þ~
ðt

0

gi Sij jzkiS
2
i

� �
dt ð31Þ

Furthermore, it is possible to write that

Vi 0ð Þ~Vi tð Þz
ðt

0

gi Sij jzkiS
2
i

� �
dt

¢

ðt

0

gi Sij jzkiS
2
i

� �
dt ð32Þ

Finally the following equation is obtained

lim
t??

ðt

0

g Sij jzkS2
i

� �
dt¡Vi 0ð Þv? ð33Þ

In light of Barbalat’s lemma, gi Sij jzkiS
2
i ?0 as

t R ‘, which means that limt??Si~0, namely, the

ith-layer sliding surface (1 ( i ( n 2 1) is asymptoti-

cally stable.

Theorem 3

Consider an uncertain underactuated system as

in equation (1) and define the sliding surfaces of all

the subsystems as in equation (3). If the control law

as in equation (19) is adopted, then the sliding

surfaces of all the subsystems are asymptotically

stable.

Proof

From Theorem 1 and Theorem 2, there exist

lim
t??

Si~0, for 1¡i¡n ð34Þ

If as previously defined S1 5 s1, then the sliding

surface of the first subsystem is asymptotically

stable.

In the following, it will be proved that the sliding

surfaces of the other n 2 1 subsystems are asympto-

tically stable by contradiction.

If it is assumed that si (2 ( i ( n) is not asympto-

tically stable, that is

lim
t??

si=0 ð35Þ

From equation (7), it can be obtained that

Si~li{1Si{1zsi, for 2¡i¡n ð36Þ

Calculating the limit of both sides of equation (7)

yields

lim
t??

Si~ lim
t??

li{1Si{1zsið Þ~ lim
t??

li{1Si{1z lim
t??

si

~ lim
t??

si=0 ð37Þ

This case contradicts the case limt??Si~0

2¡i¡nð Þ that was obtained using Theorem 1 and

Theorem 2. Therefore, the initial assumption of

equation (17) is false and the opposite case of

equation (17) that limt??si~0 2¡i¡nð Þ must be

correct.

In summary, the sliding surfaces of all the

subsystems are asymptotically stable.

4 SIMULATION RESULTS

In this section, it will be demonstrated that the

proposed robust control strategy is able to stabilize a

system consisting of two inverted pendulums. The

structure of such a system is shown in Fig. 2. It

consists of three subsystems: the lower pendulum,

the upper pendulum, and the cart. The control

objective of stabilizing the system is to balance both

Fig. 2 Structure of system consisting of two inverted
pendulums
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of the pendulums upright and to move the cart to

the start of the rail.

The symbols in Fig. 2 are defined as follows: x1 is

the lower pendulum angle with respect to the

vertical line, x3 is the upper pendulum angle with

respect to the vertical line, x5 is the cart position with

respect to the origin, and u is the control force. Let

n 5 3 in equation (1), then we have its state equation

_xx1~x2

_xx2~f1zb1uzd1

_xx3~x4

_xx4~f2zb2uzd2

_xx5~x6

_xx6~f3zb3uzd3

8>>>>>>>><
>>>>>>>>:

ð38Þ

where x2 is the angular velocity of the lower

pendulum, x4 is the angular velocity of the upper

pendulum, and x6 is the velocity of the cart, the

expressions of fi and bi (i 5 1, 2, 3) are given in [15],

and di is the mismatched uncertain term whose

bound is known as d̄i. The mismatched uncertain

terms of the system are assumed to be

d1~0:0872z0:5r

d2~0:0872z0:5r

d3~0:5r

8><
>:

ð39Þ

where r is a random number whose range is from 21

to 1.

The structural parameters are a cart mass

M 5 1 kg, the lower-pendulum mass m1 5 1 kg, the

upper-pendulum mass m2 5 1 kg, the lower-pendu-

lum length l1 5 0.1 m, the upper-pendulum length

l2 5 0.1 m, the gravitational acceleration g 5 9.81

m/s2. The control objective is to go from the initial

states [p/6, 0, p/18, 0, 0, 0]T to the desired states

[0, 0, 0, 0, 0, 0]T. The initial states, the desired states,

the structure parameters, and the control objective

are the same as those in Lin and Mon [16].

From equation (39), the bounds of the mis-

matched uncertain terms d1, d2, and d3 can be

determined to be 0.5872, 0.5872, and 0.5. The

lumped sliding mode compensator can now be

obtained. The parameters of the hierarchical sliding

mode controller are selected by a trial-and-error

approach to be c1 5 184.26, c2 5 15.96, c3 5 0.72,

a1 5 20.06, a2 5 0.45, k 5 1.50, and g 5 0.02. The

simulation results are now discussed.

Figure 3 shows the angular curves and the posi-

tional curves. The solid curves are with a compen-

sator and the dashed curves are without a compen-

sator. The parameters of the hierarchical sliding

mode controller for the nominal systems are the

same. The only difference is that one has a

compensator and the other does not have a

compensator. This allows a fair comparison of the

systems to highlight the effect of the lumped

compensator. As can be seen from the plots the

positional curves show that the proposed robust

Fig. 3 (a) The angle of the lower pendulum, (b) the
angle of the upper pendulum, and (c) the
position of the cart
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controller can compensate for the mismatched

uncertainties and realize the control objective

although both controllers are able to make the

double pendulums reach an upright position.

Figure 4 is the control force applied to the cart.

Figure 5 shows the sliding surfaces. Using the robust

control method, not only is every layer sliding

surface asymptotically stable, but also the sliding

surfaces of all the subsystems possess asymptotic

stability, as proven in Theorems 1, 2, 3. In Fig. 5(a),

S3 is smoother than S2 and S1. This could be

explained as follows. Using the proposed method,

the lumped sliding mode compensator is designed at

the third-layer sliding surface. It works and elim-

inates all the uncertainties at the sliding surface of

the third layer. However, uncertainties actually exist

in the first and second subsystems. Thus, S1 and S2

are not as even as S3.

Figure 6, is a performance comparison between a

traditional single-layer sliding mode controller with-

out a compensator and the presented hierarchical

method with a compensator from the initial condi-

tion vector X0 5 [p/18, 0, p/36, 0, 0, 0]T to the origin.

To design the traditional controller, the nominal

system model was linearized at the origin and then

the SMC law is equivalent to control plus switching

control. When the linearized nominal system arrives

at the sliding mode stage, the sliding mode function

Ss can be obtained using equation (40) by the pole

placement approach of linear systems

Ss~{2:2296x1{0:0121x2z3:1639x3z0:1982x4

z0:2026x5z0:2813x6 ð40Þ

The parameters used for the switching control are

those used in the hierarchical system.

From the simulations it can be seen that the single-

layer sliding mode controller designed by the linear-

ization method could not stabilize the system with

mismatched uncertainties (equation (1)) from the

initial condition X0 5 [p/6, 0, p/18, 0, 0, 0]T to the

desired [0, 0, 0, 0, 0, 0]T whereas the hierarchical

sliding mode controller can achieve this goal. This

fact means that this initial condition is out of the

stability domain of the single-layer controller, which

confirms that the presented hierarchical controller

with a compensator is more robust than the single-

layer controller. As the initial condition approaches

the operating point [0, 0, 0, 0, 0, 0]T for the lineariza-

tion, not only can the single-layer controller stabilize

the uncertain system, but also the performance of the

two pendulums may be better, which is shown in

Figs 6(a) and (b). In Fig. 6(c), the cart is moved a

shorter distance by the hierarchical controller with a

compensator, which is in agreement with Fig. 3(c).

Remark 4

In [15], the control objective was simply to make the

two pendulums become upright and the cart posi-

Fig. 4 Control force applied to the cart

Fig. 5 (a) The single-layer sliding surfaces and (b) the
subsystem sliding surfaces
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tion was not considered. Compared with [15] the

objective in this work is more difficult. Compared

with [16], the curves obtained in this study are

smoother and the response time is shorter. Further-

more, the presented controller is robust although it

needs a large control force (see Fig. 4) that exceed

200 N at the start of the simulation. For most

physical systems, it is generally very difficult to

produce such a force. Also, this force may make the

input saturated, which may influence the operation

and performance characteristics of the control

system. This drawback will restrict the control

method in practice. However, this phenomenon

suggests two interesting areas for future study. One

is how to design a controller with a smaller control

force. The other is how to analyse the system

stability of this robust control method when the

control input becomes saturated.

5 CONCLUSIONS

In this paper, a robust controller for a class of

underactuated systems with mismatched uncertain-

ties, consisting of a nominal system and mismatched

uncertainties has been proposed on the basis of

SMC. The nominal system is made up of several

subsystems and this allows a hierarchical sliding

mode controller to be designed. A lumped sliding

mode compensator has been designed to deal with

the mismatched uncertainties. The hierarchical

sliding mode controller and the lumped sliding

mode compensator work together to create robust

control for the system. The asymptotic stability of all

the sliding surfaces has been proven. In the simula-

tions, the proposed control method was applied to

the stabilization control of a system consisting of

two inverted pendulums. The simulation results

show the validity of the control strategy. Although

there exist some weak points in the presented robust

control method, such as how to select suitable

controller parameters, how to deal with the problem

of the input saturation, and so on, this method

provides a robust control strategy for the class of

underactuated systems with mismatched uncertain-

ties.
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