Weighted Part Context Learning for Visual Tracking
Zhu, Guibo; Wang, Jinqiao; Zhao, Chaoyang; Lu, Hanqing; Jinqiao Wang
2015-12-01
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING
卷号24期号:12页码:5140-5151
文章类型Article
摘要Context information is widely used in computer vision for tracking arbitrary objects. Most of the existing studies focus on how to distinguish the object of interest from background or how to use keypoint-based supporters as their auxiliary information to assist them in tracking. However, in most cases, how to discover and represent both the intrinsic properties inside the object and the surrounding context is still an open problem. In this paper, we propose a unified context learning framework that can effectively capture spatiotemporal relations, prior knowledge, and motion consistency to enhance tracker's performance. The proposed weighted part context tracker (WPCT) consists of an appearance model, an internal relation model, and a context relation model. The appearance model represents the appearances of the object and the parts. The internal relation model utilizes the parts inside the object to directly describe the spatiotemporal structure property, while the context relation model takes advantage of the latent intersection between the object and background regions. Then, the three models are embedded in a max-margin structured learning framework. Furthermore, prior label distribution is added, which can effectively exploit the spatial prior knowledge for learning the classifier and inferring the object state in the tracking process. Meanwhile, we define online update functions to decide when to update WPCT, as well as how to reweight the parts. Extensive experiments and comparisons with the state of the arts demonstrate the effectiveness of the proposed method.
关键词Visual Tracking Part Context Model Structure Leaning
WOS标题词Science & Technology ; Technology
DOI10.1109/TIP.2015.2479460
关键词[WOS]OBJECT TRACKING ; PICTORIAL STRUCTURES ; MODEL ; RECOGNITION ; HISTOGRAMS
收录类别SCI
语种英语
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000362488900003
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/10027
专题模式识别国家重点实验室_图像与视频分析
通讯作者Jinqiao Wang
作者单位Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Guibo,Wang, Jinqiao,Zhao, Chaoyang,et al. Weighted Part Context Learning for Visual Tracking[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2015,24(12):5140-5151.
APA Zhu, Guibo,Wang, Jinqiao,Zhao, Chaoyang,Lu, Hanqing,&Jinqiao Wang.(2015).Weighted Part Context Learning for Visual Tracking.IEEE TRANSACTIONS ON IMAGE PROCESSING,24(12),5140-5151.
MLA Zhu, Guibo,et al."Weighted Part Context Learning for Visual Tracking".IEEE TRANSACTIONS ON IMAGE PROCESSING 24.12(2015):5140-5151.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Weighted Part Contex(1112KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Guibo]的文章
[Wang, Jinqiao]的文章
[Zhao, Chaoyang]的文章
百度学术
百度学术中相似的文章
[Zhu, Guibo]的文章
[Wang, Jinqiao]的文章
[Zhao, Chaoyang]的文章
必应学术
必应学术中相似的文章
[Zhu, Guibo]的文章
[Wang, Jinqiao]的文章
[Zhao, Chaoyang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Weighted Part Context Learning for Visual Trackin.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。