CASIA OpenIR  > 中国科学院分子影像重点实验室
Multilevel refinable triangular PSP-splines (Tri-PSPS)
Li, Qingde1; Tian, Jie2
2015-10-01
发表期刊COMPUTERS & MATHEMATICS WITH APPLICATIONS
卷号70期号:8页码:1781-1798
文章类型Article
摘要A multi-level spline technique known as partial shape preserving splines (PSPS) (Li and Tian, 2011) has recently been developed for the design of piecewise polynomial freeform geometric surfaces, where the basis functions of the PSPS can be directly built from an arbitrary set of polygons that partitions a giving parametric domain. This paper addresses a special type of PSPS, the triangular PSPS (Tri-PSPS), where all spline basis functions are constructed from a set of triangles. Compared with other triangular spline techniques, Tri-PSPS have several distinctive features. Firstly, for each given triangle, the corresponding spline basis function for any required degree of smoothness can be expressed in closed-form and directly written out in full explicitly as piecewise bivariate polynomials. Secondly, Tri-PSPS are an additive triangular spline technique, where the spline function built from a given triangle can be replaced with a set of refined spline functions built on a set of smaller triangles that partition the initial given triangle. In addition, Tri-PSPS are a multilevel spline technique, Tri-PSPS surfaces can be designed to have a continuously varying levels of detail, achieved simply by specifying a proper value for the smoothing parameter introduced in the spline functions. In terms of practical implementation, Tri-PSPS are a parallel computing friendly spline scheme, which can be easily implemented on modern programmable GPUs or on high performance computer clusters, since each of the basis functions of Tri-PSPS can be directly computed independent of each other in parallel. (C) 2015 Elsevier Ltd. All rights reserved.
关键词Triangular Splines Refinable Splines Spline Basis Functions Multilevel Splines Partition Of Unity Spline Approximation
WOS标题词Science & Technology ; Physical Sciences
DOI10.1016/j.camwa.2015.07.017
关键词[WOS]COMPUTATIONAL DOMAIN ; PARAMETERIZATION
收录类别SCI
语种英语
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000362611000005
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/10041
专题中国科学院分子影像重点实验室
通讯作者Li, Qingde
作者单位1.Univ Hull, Dept Comp Sci, Kingston Upon Hull HU6 7RX, N Humberside, England
2.Chinese Acad Sci, Inst Automat, Beijing 100080, Peoples R China
推荐引用方式
GB/T 7714
Li, Qingde,Tian, Jie. Multilevel refinable triangular PSP-splines (Tri-PSPS)[J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS,2015,70(8):1781-1798.
APA Li, Qingde,&Tian, Jie.(2015).Multilevel refinable triangular PSP-splines (Tri-PSPS).COMPUTERS & MATHEMATICS WITH APPLICATIONS,70(8),1781-1798.
MLA Li, Qingde,et al."Multilevel refinable triangular PSP-splines (Tri-PSPS)".COMPUTERS & MATHEMATICS WITH APPLICATIONS 70.8(2015):1781-1798.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
1-s2.0-S089812211500(4842KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Qingde]的文章
[Tian, Jie]的文章
百度学术
百度学术中相似的文章
[Li, Qingde]的文章
[Tian, Jie]的文章
必应学术
必应学术中相似的文章
[Li, Qingde]的文章
[Tian, Jie]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 1-s2.0-S0898122115003521-main.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。