CASIA OpenIR  > 模式识别国家重点实验室  > 机器人视觉
Identifying Carbon stars from the LAMOST pilot survey with the efficient manifold ranking algorithm
Si, Jian-Min1,2,3; Li, Yin-Bi1; Luo, A-Li1,3; Tu, Liang-Ping4; Shi, Zhi-Xin1,2,3; Zhang, Jian-Nan1; Wei, Peng1,3; Zhao, Gang1; Wu, Yi-Hong2; Wu, Fu-Chao2; Zhao, Yong-Heng1
2015-10-01
发表期刊RESEARCH IN ASTRONOMY AND ASTROPHYSICS
卷号15期号:10页码:1671-1694
文章类型Article
摘要Carbon stars are excellent kinematic tracers of galaxies and can serve as a viable standard candle, so it is worthwhile to automatically search for them in a large amount of spectra. In this paper, we apply the efficient manifold ranking algorithm to search for carbon stars from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) pilot survey, whose performance and robustness are verified comprehensively with four test experiments. Using this algorithm, we find a total of 183 carbon stars, and 158 of them are new findings. According to different spectral features, our carbon stars are classified as 58 C-H stars, 11 C-H star candidates, 56 C-R stars, ten C-R star candidates, 30 C-N stars, three C-N star candidates, and four C-J stars. There are also ten objects which have no spectral type because of low spectral quality, and a composite spectrum consisting of a white dwarf and a carbon star. Applying the support vector machine algorithm, we obtain the linear optimum classification plane in the J - H versus H - K-s color diagram which can be used to distinguish C-H from C-N stars with their J - H and H - K-s colors. In addition, we identify 18 dwarf carbon stars with their relatively high proper motions, and find three carbon stars with FUV detections likely have optical invisible companions by cross matching with data from the Galaxy Evolution Explorer. In the end, we detect four variable carbon stars with the Northern Sky Variability Survey, the Catalina Sky Survey and the LINEAR variability databases. According to their periods and amplitudes derived by fitting light curves with a sinusoidal function, three of them are likely semiregular variable stars and one is likely a Mira variable star.
关键词Methods: Data Analysis Methods: Statistical Stars: Carbon Binaries Stars: Variables
WOS标题词Science & Technology ; Physical Sciences
DOI10.1088/1674-4527/15/10/005
关键词[WOS]DIGITAL SKY SURVEY ; HIGH GALACTIC LATITUDES ; WHITE-DWARF COMPANION ; VARIABILITY SURVEY ; DATA RELEASE ; APM SURVEY ; MILKY-WAY ; CLASSIFICATION ; HALO ; CH
收录类别SCI
语种英语
WOS研究方向Astronomy & Astrophysics
WOS类目Astronomy & Astrophysics
WOS记录号WOS:000362825700005
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/10336
专题模式识别国家重点实验室_机器人视觉
作者单位1.Chinese Acad Sci, Key Lab Opt Astron, Natl Astron Observ, Beijing 100012, Peoples R China
2.Chinese Acad Sci, Inst Automat, Natl Key Lab Pattern Recognit, Beijing 100095, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Liaoning Univ Sci & Technol, Sch Sci, Anshan 144051, Peoples R China
推荐引用方式
GB/T 7714
Si, Jian-Min,Li, Yin-Bi,Luo, A-Li,et al. Identifying Carbon stars from the LAMOST pilot survey with the efficient manifold ranking algorithm[J]. RESEARCH IN ASTRONOMY AND ASTROPHYSICS,2015,15(10):1671-1694.
APA Si, Jian-Min.,Li, Yin-Bi.,Luo, A-Li.,Tu, Liang-Ping.,Shi, Zhi-Xin.,...&Zhao, Yong-Heng.(2015).Identifying Carbon stars from the LAMOST pilot survey with the efficient manifold ranking algorithm.RESEARCH IN ASTRONOMY AND ASTROPHYSICS,15(10),1671-1694.
MLA Si, Jian-Min,et al."Identifying Carbon stars from the LAMOST pilot survey with the efficient manifold ranking algorithm".RESEARCH IN ASTRONOMY AND ASTROPHYSICS 15.10(2015):1671-1694.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Si, Jian-Min]的文章
[Li, Yin-Bi]的文章
[Luo, A-Li]的文章
百度学术
百度学术中相似的文章
[Si, Jian-Min]的文章
[Li, Yin-Bi]的文章
[Luo, A-Li]的文章
必应学术
必应学术中相似的文章
[Si, Jian-Min]的文章
[Li, Yin-Bi]的文章
[Luo, A-Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。