CASIA OpenIR  > 智能感知与计算研究中心
Learning Representative Deep Features for Image Set Analysis
Wu, Zifeng1; Huang, Yongzhen2; Wang, Liang2
2015-11-01
发表期刊IEEE TRANSACTIONS ON MULTIMEDIA
卷号17期号:11页码:1960-1968
文章类型Article
摘要This paper proposes to learn features from sets of labeled raw images. With this method, the problem of over-fitting can be effectively suppressed, so that deep CNNs can be trained from scratch with a small number of training data, i e., 420 labeled albums with about 30 000 photos. This method can effectively deal with sets of images, no matter if the sets bear temporal structures. A typical approach to sequential image analysis usually leverages motions between adjacent frames, while the proposed method focuses on capturing the co-occurrences and frequencies of features. Nevertheless, our method outperforms previous best performers in terms of album classification, and achieves comparable or even better performances in terms of gait based human identification. These results demonstrate its effectiveness and good adaptivity to different kinds of set data.
关键词Album Classification Deep Learning Gait Recognition Image Set
WOS标题词Science & Technology ; Technology
DOI10.1109/TMM.2015.2477681
关键词[WOS]GAIT RECOGNITION ; CLASSIFICATION ; APPEARANCE ; CONTEXT
收录类别SCI
语种英语
项目资助者National Basic Research Program of China(2012CB316300) ; National Natural Science Foundation of China(61135002 ; CCF-Tencent Open Fund ; 360 OpenLab Program ; 61420106015)
WOS研究方向Computer Science ; Telecommunications
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering ; Telecommunications
WOS记录号WOS:000364102400009
引用统计
被引频次:17[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/10499
专题智能感知与计算研究中心
作者单位1.Univ Adelaide, Australian Ctr Visual Technol, Adelaide, SA 5005, Australia
2.Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wu, Zifeng,Huang, Yongzhen,Wang, Liang. Learning Representative Deep Features for Image Set Analysis[J]. IEEE TRANSACTIONS ON MULTIMEDIA,2015,17(11):1960-1968.
APA Wu, Zifeng,Huang, Yongzhen,&Wang, Liang.(2015).Learning Representative Deep Features for Image Set Analysis.IEEE TRANSACTIONS ON MULTIMEDIA,17(11),1960-1968.
MLA Wu, Zifeng,et al."Learning Representative Deep Features for Image Set Analysis".IEEE TRANSACTIONS ON MULTIMEDIA 17.11(2015):1960-1968.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Zifeng Wu_Learning R(1567KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wu, Zifeng]的文章
[Huang, Yongzhen]的文章
[Wang, Liang]的文章
百度学术
百度学术中相似的文章
[Wu, Zifeng]的文章
[Huang, Yongzhen]的文章
[Wang, Liang]的文章
必应学术
必应学术中相似的文章
[Wu, Zifeng]的文章
[Huang, Yongzhen]的文章
[Wang, Liang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Zifeng Wu_Learning Representative Deep Features for Image Set Analysis.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。