Unsupervised Ranking of Multi-Attribute Objects Based on Principal Curves
Li, Chun-Guo1,2; Mei, Xing1; Hu, Bao-Gang1
2015-12-01
发表期刊IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING
卷号27期号:12页码:3404-3416
文章类型Article
摘要Unsupervised ranking faces one critical challenge in evaluation applications, that is, no ground truth is available. When PageRank and its variants show a good solution in related objects, they are applicable only for ranking from link-structure data. In this work, we focus on unsupervised ranking from multi-attribute data which is also common in evaluation tasks. To overcome the challenge, we propose five essential meta-rules for the design and assessment of unsupervised ranking approaches: scale and translation invariance, strict monotonicity, compatibility of linearity and nonlinearity, smoothness, and explicitness of parameter size. These meta-rules are regarded as high level knowledge for unsupervised ranking tasks. Inspired by the works in [ 12] and [ 35], we propose a ranking principal curve (RPC) model, which learns a one-dimensional manifold function to perform unsupervised ranking tasks on multi-attribute observations. Furthermore, the RPC is modeled to be a cubic Bezier curve with control points restricted in the interior of a hypercube, complying with all the five meta-rules to infer a reasonable ranking list. With control points as model parameters, one is able to understand the learned manifold and to interpret and visualize the ranking results. Numerical experiments of the presented RPC model are conducted on two open datasets of different ranking applications. In comparison with the state-of-the-art approaches, the new model is able to show more reasonable ranking lists.
关键词Unsupervised Ranking Multi-attribute Meta-rules Data Skeleton Principal Curves Bezier Curves
WOS标题词Science & Technology ; Technology
DOI10.1109/TKDE.2015.2441692
关键词[WOS]DESIGN
收录类别SCI
语种英语
项目资助者NSFC(61273196 ; 61271430 ; 61332017)
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:000364853800019
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/10510
专题模式识别国家重点实验室_多媒体计算与图形学
作者单位1.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
2.Hebei Univ, Coll Math & Informat Sci, Baoding 071002, Hebei, Peoples R China
推荐引用方式
GB/T 7714
Li, Chun-Guo,Mei, Xing,Hu, Bao-Gang. Unsupervised Ranking of Multi-Attribute Objects Based on Principal Curves[J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,2015,27(12):3404-3416.
APA Li, Chun-Guo,Mei, Xing,&Hu, Bao-Gang.(2015).Unsupervised Ranking of Multi-Attribute Objects Based on Principal Curves.IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,27(12),3404-3416.
MLA Li, Chun-Guo,et al."Unsupervised Ranking of Multi-Attribute Objects Based on Principal Curves".IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 27.12(2015):3404-3416.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Li15.pdf(962KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Chun-Guo]的文章
[Mei, Xing]的文章
[Hu, Bao-Gang]的文章
百度学术
百度学术中相似的文章
[Li, Chun-Guo]的文章
[Mei, Xing]的文章
[Hu, Bao-Gang]的文章
必应学术
必应学术中相似的文章
[Li, Chun-Guo]的文章
[Mei, Xing]的文章
[Hu, Bao-Gang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Li15.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。