CASIA OpenIR  > 脑网络组研究中心
Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data
Jie, Nan-Feng1,2; Zhu, Mao-Hu3; Ma, Xiao-Ying5; Osuch, Elizabeth A.4; Wammes, Michael4; Theberge, Jean4; Li, Huan-Dong1,2; Zhang, Yu1,2; Jiang, Tian-Zi1,2; Sui, Jing1,2,6; Calhoun, Vince D.7,8
2015-12-01
发表期刊IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT
卷号7期号:4页码:320-331
文章类型Article
摘要Discriminating between bipolar disorder (BD) and major depressive disorder (MDD) is a major clinical challenge due to the absence of known biomarkers; hence a better understanding of their pathophysiology and brain alterations is urgently needed. Given the complexity, feature selection is especially important in neuroimaging applications, however, feature dimension and model understanding present serious challenges. In this study, a novel feature selection approach based on linear support vector machine with a forward-backward search strategy (SVM-FoBa) was developed and applied to structural and resting-state functional magnetic resonance imaging data collected from 21 BD, 25 MDD and 23 healthy controls. Discriminative features were drawn from both data modalities, with which the classification of BD and MDD achieved an accuracy of 92.1% (1000 bootstrap resamples). Weight analysis of the selected features further revealed that the inferior frontal gyrus may characterize a central role in BD-MDD differentiation, in addition to the default mode network and the cerebellum. A modality-wise comparison also suggested that functional information outweighs anatomical by a large margin when classifying the two clinical disorders. This work validated the advantages of multimodal joint analysis and the effectiveness of SVM-FoBa, which has potential for use in identifying possible biomarkers for several mental disorders.
关键词Bipolar Disorder Classification Feature Selection Major Depression Multimodal Fusion
WOS标题词Science & Technology ; Technology ; Life Sciences & Biomedicine
DOI10.1109/TAMD.2015.2440298
关键词[WOS]SUPPORT VECTOR MACHINES ; 1ST EPISODE SCHIZOPHRENIA ; VOXEL-BASED MORPHOMETRY ; UNIPOLAR DEPRESSION ; GRAY-MATTER ; FUNCTIONAL CONNECTIVITY ; PATTERN-ANALYSIS ; MOOD DISORDERS ; FRONTAL-LOBE ; MRI ANALYSIS
收录类别SCI ; SSCI
语种英语
项目资助者National High-Tech Development Plan (863)(2015AA020513) ; "100 Talents Plan" of the Chinese Academy of Sciences (CAS) ; Strategic Priority Research Program of the CAS(XDB02060005) ; Chinese National Science Foundation(81471367) ; Ph.D. Research Startup Foundation of Jiangxi Normal University(6247) ; Lawson Health Research Institute(LHR D1374) ; Pfizer Independent Investigator Award(WS2249136) ; Strategic Priority Research Program of the Chinese Academy of Sciences(XDB02060005 ; National Key Basic Research and Development Program (973)(2011CB707800) ; National Institutes of Health(R01EB006841 ; XDB02030300) ; R01EB005846 ; P20GM103472)
WOS研究方向Computer Science ; Robotics ; Neurosciences & Neurology
WOS类目Computer Science, Artificial Intelligence ; Robotics ; Neurosciences
WOS记录号WOS:000366614800006
引用统计
被引频次:18[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/10558
专题脑网络组研究中心
作者单位1.Chinese Acad Sci, Brainnetome Ctr, Beijing 100083, Peoples R China
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100083, Peoples R China
3.Jiangxi Normal Univ, Elementary Educ Coll, Nanchang, Peoples R China
4.Univ Western Ontario, Dept Med Biophys, London, ON N6G 1G9, Canada
5.Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China
6.Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100083, Peoples R China
7.Univ New Mexico, LBERI, Mind Res Network, Albuquerque, NM 87106 USA
8.Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87106 USA
推荐引用方式
GB/T 7714
Jie, Nan-Feng,Zhu, Mao-Hu,Ma, Xiao-Ying,et al. Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data[J]. IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT,2015,7(4):320-331.
APA Jie, Nan-Feng.,Zhu, Mao-Hu.,Ma, Xiao-Ying.,Osuch, Elizabeth A..,Wammes, Michael.,...&Calhoun, Vince D..(2015).Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data.IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT,7(4),320-331.
MLA Jie, Nan-Feng,et al."Discriminating Bipolar Disorder From Major Depression Based on SVM-FoBa: Efficient Feature Selection With Multimodal Brain Imaging Data".IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT 7.4(2015):320-331.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
FoBa Multimodal_IEEE(1662KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 请求全文
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jie, Nan-Feng]的文章
[Zhu, Mao-Hu]的文章
[Ma, Xiao-Ying]的文章
百度学术
百度学术中相似的文章
[Jie, Nan-Feng]的文章
[Zhu, Mao-Hu]的文章
[Ma, Xiao-Ying]的文章
必应学术
必应学术中相似的文章
[Jie, Nan-Feng]的文章
[Zhu, Mao-Hu]的文章
[Ma, Xiao-Ying]的文章
相关权益政策
暂无数据
收藏/分享
文件名: FoBa Multimodal_IEEE TAMD v12.0.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。