CASIA OpenIR  > 脑网络组研究中心
Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition
Kuang, Li-Dan1; Lin, Qiu-Hua1; Gong, Xiao-Feng1; Cong, Fengyu2,3; Sui, Jing4,5; Calhoun, Vince D.6,7
2015-12-30
发表期刊JOURNAL OF NEUROSCIENCE METHODS
卷号256页码:127-140
文章类型Article
摘要Background: Canonical polyadic decomposition (CPD) may face a local optimal problem when analyzing multi-subject fMRI data with inter-subject variability. Beckmann and Smith proposed a tensor PICA approach that incorporated an independence constraint to the spatial modality by combining CPD with ICA, and alleviated the problem of inter-subject spatial map (SM) variability.
关键词Canonical Polyadic Decomposition (Cpd) Independent Component Analysis (Ica) Multi-subject Fmri Data Inter-subject Variability Tensor Pica Shift-invariant Cp (sCp)
WOS标题词Science & Technology ; Life Sciences & Biomedicine
DOI10.1016/j.jneumeth.2015.08.023
关键词[WOS]RESTING-STATE NETWORKS ; TENSOR DECOMPOSITIONS ; DEFAULT-MODE ; MRI DATA ; BRAIN ; CONNECTIVITY ; ALGORITHMS ; SIMULATION ; MOTION ; ICA
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61379012 ; "100 Talents Plan" of Chinese Academy of Sciences ; NSF(0840895 ; NIH(R01EB005846 ; Fundamental Research Funds for the Central Universities (China)(DUT14RC(3)037) ; China Scholarship Council ; 61105008 ; 0715022) ; 5P20GM103472) ; 61331019 ; 81471367)
WOS研究方向Biochemistry & Molecular Biology ; Neurosciences & Neurology
WOS类目Biochemical Research Methods ; Neurosciences
WOS记录号WOS:000366618400014
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/10643
专题脑网络组研究中心
作者单位1.Dalian Univ Technol, Fac Elect Informat & Elect Engn, Sch Informat & Commun Engn, Dalian 116024, Peoples R China
2.Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dept Biomed Engn, Dalian 116024, Peoples R China
3.Univ Jyvaskyla, Dept Math Informat Technol, SF-40351 Jyvaskyla, Finland
4.Chinese Acad Sci, Brainnetome Ctr, Beijing 100190, Peoples R China
5.Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
6.Mind Res Network, Albuquerque, NM 87106 USA
7.Univ New Mexico, Dept Elect & Comp Engn, Albuquerque, NM 87131 USA
推荐引用方式
GB/T 7714
Kuang, Li-Dan,Lin, Qiu-Hua,Gong, Xiao-Feng,et al. Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition[J]. JOURNAL OF NEUROSCIENCE METHODS,2015,256:127-140.
APA Kuang, Li-Dan,Lin, Qiu-Hua,Gong, Xiao-Feng,Cong, Fengyu,Sui, Jing,&Calhoun, Vince D..(2015).Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition.JOURNAL OF NEUROSCIENCE METHODS,256,127-140.
MLA Kuang, Li-Dan,et al."Multi-subject fMRI analysis via combined independent component analysis and shift-invariant canonical polyadic decomposition".JOURNAL OF NEUROSCIENCE METHODS 256(2015):127-140.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Kuang, Li-Dan]的文章
[Lin, Qiu-Hua]的文章
[Gong, Xiao-Feng]的文章
百度学术
百度学术中相似的文章
[Kuang, Li-Dan]的文章
[Lin, Qiu-Hua]的文章
[Gong, Xiao-Feng]的文章
必应学术
必应学术中相似的文章
[Kuang, Li-Dan]的文章
[Lin, Qiu-Hua]的文章
[Gong, Xiao-Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。