SubMIL: Discriminative subspaces for multi-instance learning
Yuan, Jiazheng1,2; Huang, Xiankai3; Liu, Hongzhe1; Li, Bing4; Xiong, Weihua4
2016-01-15
发表期刊NEUROCOMPUTING
卷号173页码:1768-1774
文章类型Article
摘要As an important learning scheme for Multi-Instance Learning (MIL), the Instance Prototype (IP) selection-based MIL algorithms transform bags into a new instance feature space and achieve impressed classification performance. However, the number of IPs in the existing algorithms linearly increases with the scale of the training data. The performance and efficiencies of these algorithms are easily limited by the high dimension and noise when facing a large scale of training data. This paper proposes a discriminative subspaces-based instance prototype selection method that is suitable for reducing the computation complexity for large scale training data. In the proposed algorithm, we introduce the low-rank matrix recovery technique to find two discriminative and clean subspaces with less noise; then present a l(2,1) norm-based self-expressive sparse coding model to select the most representative instances in each subspace. Experimental results on several data sets show that our algorithm achieves superior and stable performance but with lower dimension compared with other IP selection strategies. (C) 2015 Elsevier B.V. All rights reserved.
关键词Multi-instance Learning Low Rank Subspace
WOS标题词Science & Technology ; Technology
DOI10.1016/j.neucom.2015.08.089
关键词[WOS]ALGORITHM ; SELECTION
收录类别SCI
语种英语
项目资助者National Natural Science Foundation of China(61271369 ; Beijing Natural Science Foundation(4152016 ; National Key Technology RD Program(2014BAK08B02 ; Funding Project for Academic Human Resources Development in Beijing Union University(BPHR2014A04 ; Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality(CITTCD 20130513 ; 61372148 ; 4152018) ; 2015BAH55F03) ; BPHR2014E02) ; IDHT 20140508) ; 61370038)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000366879800129
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/10645
专题模式识别国家重点实验室_模式分析与学习
作者单位1.Beijing Key Lab Informat Serv Engn, Beijing 100101, Peoples R China
2.Beijing Union Univ, Comp Technol Inst, Beijing 100101, Peoples R China
3.Beijing Union Univ, Tourism Inst, Beijing 100101, Peoples R China
4.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit NLPR, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Yuan, Jiazheng,Huang, Xiankai,Liu, Hongzhe,et al. SubMIL: Discriminative subspaces for multi-instance learning[J]. NEUROCOMPUTING,2016,173:1768-1774.
APA Yuan, Jiazheng,Huang, Xiankai,Liu, Hongzhe,Li, Bing,&Xiong, Weihua.(2016).SubMIL: Discriminative subspaces for multi-instance learning.NEUROCOMPUTING,173,1768-1774.
MLA Yuan, Jiazheng,et al."SubMIL: Discriminative subspaces for multi-instance learning".NEUROCOMPUTING 173(2016):1768-1774.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Discriminative subsp(548KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yuan, Jiazheng]的文章
[Huang, Xiankai]的文章
[Liu, Hongzhe]的文章
百度学术
百度学术中相似的文章
[Yuan, Jiazheng]的文章
[Huang, Xiankai]的文章
[Liu, Hongzhe]的文章
必应学术
必应学术中相似的文章
[Yuan, Jiazheng]的文章
[Huang, Xiankai]的文章
[Liu, Hongzhe]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Discriminative subspaces for multi-instance learning.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。