Robust Visual Tracking via Exclusive Context Modeling
Zhang, Tianzhu1,2; Ghanem, Bernard1,3; Liu, Si4; Xu, Changsheng2; Ahuja, Narendra5
2016
发表期刊IEEE TRANSACTIONS ON CYBERNETICS
卷号46期号:1页码:51-63
文章类型Article
摘要In this paper, we formulate particle filter-based object tracking as an exclusive sparse learning problem that exploits contextual information. To achieve this goal, we propose the context-aware exclusive sparse tracker (CEST) to model particle appearances as linear combinations of dictionary templates that are updated dynamically. Learning the representation of each particle is formulated as an exclusive sparse representation problem, where the overall dictionary is composed of multiple group dictionaries that can contain contextual information. With context, CEST is less prone to tracker drift. Interestingly, we show that the popular L-1 tracker [1] is a special case of our CEST formulation. The proposed learning problem is efficiently solved using an accelerated proximal gradient method that yields a sequence of closed form updates. To make the tracker much faster, we reduce the number of learning problems to be solved by using the dual problem to quickly and systematically rank and prune particles in each frame. We test our CEST tracker on challenging benchmark sequences that involve heavy occlusion, drastic illumination changes, and large pose variations. Experimental results show that CEST consistently outperforms state-of-the-art trackers.
关键词Contextual Information Exclusive Sparse Learning Particle Filter Tracking
WOS标题词Science & Technology ; Technology
DOI10.1109/TCYB.2015.2393307
关键词[WOS]OBJECT TRACKING ; OCCLUSION DETECTION
收录类别SCI
语种英语
项目资助者Advanced Digital Sciences Center, Singapore's Agency for Science, Technology and Research, under a Research Grant for the Human Sixth Sense Programme ; National Program on Key Basic Research Project (973 Program)(2012CB316304) ; National Natural Science Foundation of China(61225009)
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000367144300006
引用统计
文献类型期刊论文
条目标识符http://ir.ia.ac.cn/handle/173211/10648
专题模式识别国家重点实验室_多媒体计算与图形学
作者单位1.Adv Digital Sci Ctr, Singapore 138632, Singapore
2.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
3.King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
4.Chinese Acad Sci, Inst Informat Engn, Beijing 100190, Peoples R China
5.Univ Illinois, Beckman Inst, Dept Elect & Comp Engn, Coordinated Sci Lab, Urbana, IL 61801 USA
推荐引用方式
GB/T 7714
Zhang, Tianzhu,Ghanem, Bernard,Liu, Si,et al. Robust Visual Tracking via Exclusive Context Modeling[J]. IEEE TRANSACTIONS ON CYBERNETICS,2016,46(1):51-63.
APA Zhang, Tianzhu,Ghanem, Bernard,Liu, Si,Xu, Changsheng,&Ahuja, Narendra.(2016).Robust Visual Tracking via Exclusive Context Modeling.IEEE TRANSACTIONS ON CYBERNETICS,46(1),51-63.
MLA Zhang, Tianzhu,et al."Robust Visual Tracking via Exclusive Context Modeling".IEEE TRANSACTIONS ON CYBERNETICS 46.1(2016):51-63.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
TCYB15_Exclusive Con(1451KB)期刊论文作者接受稿开放获取CC BY-NC-SA浏览 下载
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Tianzhu]的文章
[Ghanem, Bernard]的文章
[Liu, Si]的文章
百度学术
百度学术中相似的文章
[Zhang, Tianzhu]的文章
[Ghanem, Bernard]的文章
[Liu, Si]的文章
必应学术
必应学术中相似的文章
[Zhang, Tianzhu]的文章
[Ghanem, Bernard]的文章
[Liu, Si]的文章
相关权益政策
暂无数据
收藏/分享
文件名: TCYB15_Exclusive Context Modeling.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。